
Master Thesis

Title

Type-3 Code Clone Detection Using The Smith-Waterman Algorithm

Supervisor

Prof. Shinji KUSUMOTO

by

Hiroaki MURAKAMI

February 5, 2013

Department of Computer Science

Graduate School of Information Science and Technology

Osaka University

Master Thesis

Type-3 Code Clone Detection Using The Smith-Waterman Algorithm

Hiroaki MURAKAMI

Abstract

Recently, code clones have received much attention. Code clones are defined as source code

fragments that are identical or similar to each other. Code clones are introduced into source code

by various reasons such as copy-and-paste operations. It is generally said that the presence of code

clones makes software maintenance more difficult. This is because if we modify a code fragment,

it is necessary to check its correspondents and verify whether they need the same modifications

simultaneously or not.

In this thesis, we focus on code clones that is generated by copy-and-paste operations and

then made modifications such as adding, deleting and changing statements. In order to detect

such code clones, AST-based technique, PDG-based technique, metric-based technique and token-

based technique using LCS can be used. However, each of these detection techniques has limita-

tions. For example, existing AST-based techniques and PDG-based techniques require additional

costs for transforming source files into intermediate representations such as ASTs or PDGs, and

existing metric-based techniques and token-based techniques using LCS cannot detect code clones

that locate in a part of modules. In this thesis, we propose a new detection method using the Smith-

Waterman algorithm to resolve these limitations. The Smith-Waterman algorithm is an algorithm

for identifying similar alignments between two sequences even if they include some gaps. We

developed the proposed method as a software tool and confirmed that the proposed method could

resolve the limitations by conducting a quantitative evaluation of our tool with Bellon’s bench-

mark.

Keywords

Code Clones

Program Analysis

Software Maintenance

Tool Comparison

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Code Clone . 3

2.1.1 Definition . 3

2.1.2 Causes of Creations . 3

2.2 Code Clone Detection Methods . 4

2.2.1 Text-based Techniques . 4

2.2.2 Token-based Techniques . 5

2.2.3 Tree-based Techniques . 5

2.2.4 PDG-based Techniques . 6

2.2.5 Other Detection Techniques . 8

2.3 The Smith-Waterman Algorithm . 8

3 Proposed Method 11

4 Overview of Investigation 15

5 Experiment A 17

6 Experiment B 20

7 Threats to Validity 25

7.1 Clone References . 25

7.2 Code Normalization . 25

8 Conclusion 26

9 Acknowledgement 27

References 28

i

List of Figures

1 An Example of Clone Pairs and Clone Sets . 3

2 An Example of ASTs. 6

3 An Example of PDGs. 7

4 A Code Clone with a Differnt Order of Statements 8

5 The Smith-Waterman Algorithm Applied to Two Base Sequences, “GACGACAACT”

and “TACACACTCC”. 10

6 Overview of the Proposed Method. 12

7 An Example of Detection Process Using the Proposed Method. 14

8 An Example of Bellon’s Clone Reference (Clone Reference No. 1101). 18

9 An Example of the Clone Reference We Remade (Clone Reference No. 1101). . 18

10 Recall of CDSW for the Target Software Systems Calculated by Bellon’s and Our

Clone References. 18

11 Precision of CDSW for the Target Software Systems Calculated by Bellon’s and

Our Clone References. 19

12 Recall of All Clone Detectors for the Type-3 Clone References. 22

13 Precision of All Clone Detectors for the Type-3 Clone References. 22

14 Recall of All Clone Detectors for the Type-1 and Type-2 Clone References. . . . 23

15 Precision of All Clone Detectors for the Type-1 and Type-2 Clone References. . 23

16 Execution Time of DECKARD andCDSW. 24

ii

List of Tables

1 Target Software Systems . 15

2 Tools Used for Comparison . 20

iii

1 Introduction

Recently, code clones have received much attention. Code clones are identical or similar code

fragments to one another in source code. Code clones are generated by various reasons such as

copy-and-paste operations. Bellon et al. categorized code clones into following three types by the

degree of their similarities [1].

Type-1 is an exact copy without modifications (except for white space and comments).

Type-2 is a syntactically identical copy; only variable, type, or function identifiers were

changed.

Type-3 is a copy with further modifications; statements were changed, added, or removed.

A number of techniques detecting Type-3 code clones have been proposed before now [2].

The detection techniques can be categorized as follows.

AST (Abstract Syntax Tree)-based technique

After generating ASTs from source files, subtrees having the same structure are detected as

code clones. One of the disadvantages when using this technique is that it requires additional costs

for transforming source files into ASTs and identifying common subtrees.

PDG (Program Dependency Graph)-based technique

After building PDGs from source files, isomorphic subgraphs are detected as code clones.

One of the disadvantages when using this technique is that it requires similar additional costs as

AST-based technique.

Metric-based technique

After calculating metric values on every program module (such as classes or methods), mod-

ules which have the same or almost the same metric values are regarded as code clones. This

technique can detect code clones quickly. However, this technique cannot find code clones lying

in a part of a class or a method.

Token-based technique using LCS (Longest Common Subsequence) algorithm

After using LCS algorithm to token sequences transformed from every pair of blocks or func-

tions, token sequences whose similarities are larger than a threshold are regarded as code clones.

This technique can detect code clones quickly as well as the metric-based technique. However,

this technique cannot find code clones lying in a part of a block or a function.

1

Each of those detection techniques has limitations as described previously. In order to resolve

these limitations, we propose a detection method using the Smith-Waterman algorithm [3]. The

proposed method detects not only Type-1 and Type-2 but also Type-3 code clones at lower cost

than the ASTs or PDGs techniques. The reason is that the proposed method does not use any

intermediate representations such as ASTs or PDGs. Furthermore, the proposed method detects

code clones that the metric or LCS techniques cannot detect because these techniques perform

coarse-grained detections such as method-level or block-level. On the other hands, the proposed

method performs a fine-grained detection that identifies sentence-level code clones.

We implemented the proposed method and evaluated it by using Bellon’s benchmark [1]. How-

ever, Bellon’s benchmark has a limitation that the reference of Type-3 code clones does not have

the information where gaps are. Bellon’s reference represents code clones with only the informa-

tion where they start and where they end. We do not consider that gapped parts of code clones

should be regarded as a part of code clones. Thus, Bellon’s benchmark is likely to evaluate Type-3

code clones incorrectly when it is used as-is. Therefore, we remade the reference of code clones

with the information where gaps are. Moreover, we compared the result by using Bellon’s refer-

ence with that by using our reference.

Consequently, the contributions of this thesis are as follows:

• We confirmed that evaluatingprecision andrecall by using the information where gaps

are had higher accuracy than using only the information where code clones start and where

they end.

• We confirmed that the proposed method had high accuracy and finished detecting code

clones in practical time.

The rest of this thesis is organized as follows: In Section 2, we introduce preliminaries related

to this work. Section 3 describes the outline of the proposed method. We describe the overview

of investigation in Section 4, then Section 5 and Section 6 report the evaluations of the proposed

method in detail. In section 7, we describe threats to validity. Finally, Section 8 summarizes this

thesis and refers to the future work.

2

clone pair

clone pair

clone
pair

clone set

α

β

γ

Figure 1: An Example of Clone Pairs and Clone Sets

2 Preliminaries

2.1 Code Clone

2.1.1 Definition

Code clone is defined as identical or similar code fragments in source code. As shown in

Figure 1, we call a pair of code fragmentsα andβ as a clone pair ifα andβ are similar. In

addition, we call a set of code fragmentsS as a clone set if any pair of code fragments inS are

clone pairs [4]. Note that there is neither a generic nor strict definition of code clone, therefore

each clone detection method or tool has its own definition of code clone.

2.1.2 Causes of Creations

Code clones can be created or introduced by the following factors.

Copy-and-paste Operations

This is the most popular situation that code clones are created. The code reuse by copy-and-

paste operations is a common practice in software development, because it is quite easy, and it

enables us to make software development faster.

Stylized Processing

Processing used frequently (e.g. calculations of the income tax, insertions in queues, or access

to data structures) may cause code duplication.

3

Lack of Suitable Functions

Programmers may have to write similar processes with similar algorithms if they use program-

ming languages that do not have abstract data types or local variables.

Performance Improvement

Programmers can introduce code duplication intentionally to improve the performance of soft-

ware systems in the case that the in-line expansion is not supported.

Automatically Generated Code

Code generation tools automatically create code based on stylized code. As a result, if we use

code generation tools to handle similar processes, it may generate similar code fragments.

To Handle Multiple Platforms

Software systems that can handle multiple operation systems or CPUs tend to include many

code clones in the processes handling each platform.

Accident

Different developers may write similar code accidentally. However, it is rare that the amount

of similar code generated accidentally becomes high.

2.2 Code Clone Detection Methods

There are many methods that detect code clones automatically, and there are also many code

clones detectors implementing these methods. Code clones detectors can be loosely categorized

into the following categories by their detection units [5, 1].

2.2.1 Text-based Techniques

Text-based detection techniques detect code clones by comparing every line of code as a string.

They detect multiple consecutive lines that match in specified threshold or more lines as code

clones. The biggest advantage of this technique is that it can detect code clones quickly compared

with other detection techniques. This technique requires no pre-processing on source code, which

enables the fast detection. However, we cannot detect code clones including differences of coding

styles (e.g. whether long lines are divided into multiple lines or not) with this technique.

4

The method proposed by Johnson [6] and the method proposed by Ducasse et al. [7] are

instances of line-based clone detectors. In these methods, every line of code is compared after

white space and tabs are removed. These methods are language-independent because they compare

lines of code textually.

2.2.2 Token-based Techniques

In a token-based approach, source code is lexed/parsed/transformed to a sequence of tokens.

This technique detects common subsequences of tokens as code clones. Compared to text-based

approaches, a token-based approach is usually robuster against code changes such as formatting

and spacing. Detection speed is inferior as compared with text-based techniques, meanwhile su-

perior as Tree- or PDG-based approaches. This is because, in token-based approach, source code

has to be transformed into intermediate representations such as AST and PDG.

CCFinder, a clone detector developed by Kamiya et al. [8], is one of the token-based detectors.

CCFinder replaces user-defined identifiers by special tokens. By this pre-processing, it can detect

code clones with different identifiers. In addition, it can handle multiple widely-used programming

languages such as C/C++, Java, COBOL, and FORTRAN. Moreover, there is a major version up

of CCFinder named CCFinderX [9]. In this version up, the detection algorithm is changed, and

the detection speed is improved by multithreading.

CP-Miner is also a token-based detector. CP-Miner is developed by Li et al. [10]. Firstly,

lexical and syntax analyses are performed on source code. User-defined identifiers are replaced

by special tokens as well as CCFinder. The major difference between CP-Miner and CCFinder is

in detection algorithms. In CP-Miner, hash values are calculated from every statement, and then a

frequent pattern mining algorithm is applied to detect code clones. Frequent patterns do not have

to be consecutive, which means that CP-Miner can detect Type-3 clones.

2.2.3 Tree-based Techniques

In a Tree-based detection, a program is parsed to a parse tree or an abstract syntax tree (in short,

AST) with a parser of the language in interest. An AST is one of the intermediate representations

that capture the structure of source code. Figure 2 shows an example of ASTs. Common subtrees

are regarded as code clones. This approach considers the structural information of source code,

therefore tree-based detectors do not detect code clones ignoring the structure of source code

such as code clones including a part of a method and a part of another method. However, a

disadvantage of this approach compared with Text- and Token-based approaches is that it requires

more detection costs because of the additional cost required to transform source code to parse trees

or ASTs.

5

if statement

binary operation assignment statement assignment statement

> variable variable variable variable

variable

constant

a integer type 0 x a x

unary operation

-

a

if (a > 0) {
 x = a;
} else {
 x = -a;
}

cond else

lhs rhs lhs rhs

name type value name name name

name

AST transformation

Figure 2: An Example of ASTs.

One of the pioneers of AST-based clone techniques is that of Baxter et al.’s CloneDR [11, 12].

CloneDR compares subtrees of ASTs by characterization metrics based on a hash function through

tree matching, instead of comparing subtrees of ASTs directly. This processing allows CloneDR

to detect code clones quickly from large software systems. It can handle a lot of programming

languages. Moreover, it has a function to assist clone removal.

Koschke et al.’s method [13] and Jiang et al.’s method [14] are tree-based approaches as well

as CloneDR. In Koschke et al.’s method, ASTs are compared with a suffix tree algorithm to have

an increase of detection speed. On the other hand, Jiang et al. use a locality sensitive hashing

algorithm to detect code clones. With the algorithm, Jiang et al.’s method can detect Type-3 code

clones.

2.2.4 PDG-based Techniques

In a PDG-based approach, code clones are detected by comparing PDGs created from source

code. Figure 3 shows an example of PDGs. Isomorphic subgraphs are regarded as code clones.

6

1: x = 0;
2: y = 0;
3: z = MAX;
4: while (y < z) {
5: y = x + 1;
6: }
7: println(y);

PDG transformation

method
enter

<1> <3> <2>

<7> <5>

<4>

Data Dependence Edge

Control Dependence Edge

Figure 3: An Example of PDGs.

PDGs require a semantic analysis for their creation, therefore this approach requires much cost

than other detection techniques. However, this technique can detect code clones with additions/deletions/changes

in statements or those with some differences that have no impact on the behavior of programs. This

is because PDG-based techniques can consider the meanings of programs.

Figure 4 shows one of the code clones that include some differences that have no impact on the

behavior of programs. Other techniques cannot detect these two code fragments as a code clone

because there is a different order of statements.

One of the leading PDG-based clone detection approach is Komondoor and Horwitz’s method

[15]. Their method detects isomorphic subgraphs of PDGs with program slicing. They also pro-

pose an approach to group identified clones together while preserving the semantics of the original

code for automatic procedure extraction to support software refactoring. Krinke’s method [16],

and Higo et al.’s method [17, 18] are also included in PDG-based techniques. Each detection

method is optimized to reduce detection cost. Krinke sets a limit of the search range of PDGs with

a threshold. By contrast, Higo et al. confine nodes to be base of subgraphs with some conditions.

Moreover, Higo et al. introduce a new dependence named “execution dependence”. That is, there

7

fp = lookaheadset + tokensetsize;

for (I = lookaheas(state) ; I < k ; i++) {

% fp1 = LA + i * tokensetsize;

% fp2 = lookaheadset;

% while (fp2 < fp3)

% *fp2++ |= fp1++;

}

fp3 = base + tokensetsize;

…

if (rp) {

while ((j = *rp++) >= 0) {

…

fp1 = lookaheadset;

fp2 = LA + j * tokensetsize;

while (fp1 < fp3)

*fp1++ |= *fp2++;

}

}

(a) Code Fragment 1 (b) Code Fragment 2

Figure 4: A Code Clone with a Differnt Order of Statements

is an execution dependence from a nodeA to another nodeB if the program element represented

by B may only be executed after the program element represented byA. By introducing this

dependence, they succeeded to detect code clones that other PDG-based methods could not detect.

2.2.5 Other Detection Techniques

One of the detection techniques that can be categorized into this category is a metrics-based

approach [19]. First, metrics-based detectors calculate metrics on every program module (such as

files, classes, or methods), then detect code clones by comparing the coincidence or the similarity

of these values.

Beside this, there are some file-based detection methods [20, 21]. This detection technique

detects code clones by comparing every file instead of statements or tokens, which let it quick

detections. However, this technique cannot find code clones that exist in a part of a file.

Moreover, incremental detection techniques are under intense studies [22, 23, 17]. In incre-

mental detections, code clone detection results or their intermediate products persist by using

databases, and it is used in the next code clone detection. By reusing previous revisions’ analysis,

it can reduce detection cost on the current revision substantially.

2.3 The Smith-Waterman Algorithm

The Smith-Waterman algorithm [3] is an algorithm for identifying similar alignments between

two base sequences. This algorithm has an advantage that it identifies similar alignments even

if they include some gaps. Figure 5 shows an example of the behavior of the Smith-Waterman

algorithm applied to two base sequences, “GACGACAACT” and “TACACACTCC”. The Smith-

8

Waterman algorithm consists of the following five steps.

Step A (creating table):a (N + 2)× (M + 2) table is created, whereN is the length of one

sequence⟨a1, a2, · · · , aN ⟩ andM is the length of the other sequence⟨b1, b2, · · · , bM ⟩.
Step B (initializing table): the top row and leftmost column of the table created in Step A are

filled with two base sequences as headers. the second row and column are initialized to zero.

Step C (calculating table): scores of all the remaining cells are calculated by using the fol-

lowing formula.

vi,j(2 ≤ i, 2 ≤ j) = max


vi−1,j−1 + s(ai, bj),

vi−1,j + g,

vi,j−1 + g,

0.

(1)

s(ai, bj) =

{
1 (ai = bj),

−1 (ai ̸= bj).
(2)

g = −1. (3)

wherevi,j is the value ofci,j ; ci,j is the cell located at theith row and thejth column;g is a gap-

penalty parameter; ands(ai, bj) is a score parameter of matchingai with bj ; ai is theith value of

one sequence andbj is thejth value of the other sequence.

While calculating table, a pointer from the cell that is used for calculatingvi,j to the cell

ci,j is created. For example, in Figure 5,v9,11(= 5) is calculated by addingv8,10(= 4) and

s(v0,11, v9,0)(= 1). In this case, the pointer fromc8,10 to c9,11 is created.

Step D (traceback table): traceback means moving operation fromci,j to ci−1,j , ci,j−1 or

ci−1,j−1 using the pointer created in Step C. Tracing the pointer reversely represents traceback.

Traceback begins at the cell whose score is maximum in the table. This continues until cell values

decreased to zero.

Step E (identifying similar alignments): the array elements pointed by the traceback path

are identified as similar local alignments.

In Step D, the hatched cells with numbers represent the traceback path. The array elements

pointed by the traceback path are similar local alignments(“ACGACAACT” and “ACACACT”).

9

-
G

A

C

G

A

C

A

A

C

T

-
0

0
0

0
0

0
0

0
0

0
0

T
0

A

0

C

0

A

0

C

0

A

0

C

0

T
0

C

0

C

0

-
G

A

C

G

A

C

A

A

C

T

- T A

C

A

C

A

C
 T C

C

G

A

C

G

A

C

A

A

C

T

T
A

C

A

C

A

C

T

C

C

B
as

e
al

ig
n

m
en

t
1

:

B
as

e
al

ig
n

m
en

t
2

:

St
e

p
 A

 :

cr
ea

ti
n

g
ta

b
le

St
e

p
 B

 :

in
it

ia
liz

in
g

ta
b

le

St
e

p
 C

 :
 c

al
cu

la
ti

n
g

ta
b

le

-
G

A

C

G

A

C

A

A

C

T

-
0

0

0
0

0
0

0
0

0
0

0

T
0

0

0
0

0
0

0
0

0
0

1

A

0
0

1

0
0

1
0

1
1

0
0

C

0
0

0

2
1

0
2

1
0

2
1

A

0
0

1

1
1

2
1

3
2

1
0

C

0
0

0

2
1

1
3

2
2

3
2

A

0
0

1

1
0

2
2

4
3

2
1

C

0
0

0

2
1

1
3

3
3

4
3

T
0

0

0
1

1
0

2
2

2
3

5

C

0
0

0

1
0

0
1

1
1

3
4

C

0
0

0

1
0

0
1

0
0

2
3

G

A

C

G

A

C

A

A

C

T

T
A

C

A

C

A

C

T

C

C

Si
m

ila
r

al
ig

n
m

en
ts

B
as

e
al

ig
n

m
en

t
1

:

B
as

e
al

ig
n

m
en

t
2

:

St
e

p
 D

 :

tr
ac

eb
ac

k
ta

b
le

St
e

p
 E

 :

id
en

ti
fy

in
g

si
m

ila
r

al
ig

n
m

en
ts

-
G

A

C

G

A

C

A

A

C

T

-
0

0

0
0

0
0

0
0

0
0

0

T
0

0

0
0

0
0

0
0

0
0

1

A

0

0
1

0
0

1
0

1
1

0
0

C

0

0
0

2
1

0
2

1
0

2
1

A

0

0
1

1
1

2
1

3
2

1
0

C

0

0
0

2
1

1
3

2
2

3
2

A

0

0
1

1
0

2
2

4
3

2
1

C

0

0
0

2
1

1
3

3
3

4
3

T
0

0

0
1

1
0

2
2

2
3

5

C

0

0
0

1
0

0
1

1
1

3
4

C

0

0
0

1
0

0
1

0
0

2
3

0 1 2 3 4 5 6 7 8 9 10

11

0

1

2

3
 4 5

6

7

8

9

10

11
 0 1 2 3 4 5 6 7 8 9 10

11

0
1

2
3

4
5

6
7

8
9

10

11

0 1 2 3 4 5 6 7 8 9

10

11

0

1

2

3

4
5

6

7
8

9

1
0

11

0
1

2

3
4

5

6

7
8

9
10

1

1
0

1
2

3
4

5
6

7

8

9

1

0
11

F
ig

ur
e

5:
T

he
S

m
ith

-W
at

er
m

an
A

lg
or

ith
m

A
pp

lie
d

to
Tw

o
B

as
e

S
eq

ue
nc

es
,“

G
A

C
G

A
C

A
A

C
T

”
an

d
“T

A
C

A
C

A
C

T
C

C
”.

10

3 Proposed Method

The proposed method takes the followings as its inputs:

• source files,

• minimal clone length (number of tokens),

• maximal gap rate (ratio of gapped tokens in the detected tokens).

The proposed method outputs a list of detected clone pairs. Scoring parameters(ai, bj) and

gap-penalty parameterg use the same equations (2), (3) described in Section 2.3. The proposed

method consists of the following four steps.

Step 1: performing lexical analysis and normalization

Step 2: generating statement hash

Step 3: identifying similar hash sequences

Step 4: mapping identical subsequences to source code

Figure 4 shows an overview of the proposed method. Figure 7 shows an example of detection

process using proposed method. The remainder of this section explains every of the steps in detail.

Step 1: performing lexical analysis and normalization

All the target source files are transformed into token sequences. User-defined identifiers are

replaced with specific tokens to detect not only identical code fragments but also similar ones as

code clones even if they include different variables. All modifiers are deleted for the same reason.

Step 2: generating statement hash

A hash value is generated from every statement in the token sequences. Herein, we define a

statement as every subsequence between semicolon (”;”), opening brace (”{”), and closing brace

(”}”). Note that every hash has the number of tokens included in its statement.

Step 3: identifying similar hash sequences

Similar hash sequences are identified from hash sequences generated in Step 2 by using the

Smith-Waterman algorithm. Herein, we make following changes to Step D described in section

2.3 for detection of code clones.

• Traceback begins at multiple cells in order to detect two or more clone pairs between two

source files. In particular, cells are searched from the lower right to the upper left and cells

ci,j that have following characteristics are selected as start cells of traceback.

11

30

minimal
clone length
(# of tokens)

0.5

maximal gap rate
(ratio of gapped tokens
in the detected tokens)

source files

Step 1: performing lexical analysis and normalization

clone pairs

Step 2: generating statement hash

Step 3: identifying similar hash sequences

Step 4: mapping identical subsequences to source code

Figure 6: Overview of the Proposed Method.

– vi,j > 0

– vi,0 = v0,j

Moreover, if the start cell isci,j and the end cell isck,l (k ≤ i, l ≤ j), the cells included

in the following setS will be out of scope from all the traceback following the current

traceback in order not to detect redundant code clones.

S = {cm,n|k ≤ m ≤ i ∧ l ≤ n ≤ j} (4)

• The number of tokens and gaps are counted while tracebacking in order to detect code clones

whose token length is greater than a minimal clone length and the ratio of gapped tokens in

the detected tokens is less than a maximal gap rate.

12

Step 4: mapping identical subsequences to source code

Identified subsequences detected in Step 3 are converted to location information in the source

code (file path, start line, end line and gapped lines), which are clone pairs.

13

30: if(flg){
31: for(int i = 0; i < token.length; i++){
32: buffer.append(token[i]);}
33: String result = buffer.toString();
34: }else{
35: for(int j = 0; j < token.length; j++){
36: buffer.append(token[j]);
37: if(j % 2 == 0){buffer.append(",");}}
38: String result = buffer.toString();
39: }
40: return result;

52: StringBuffer buffer = new StringBuffer();
53: for(int i = 0; i < token.length; i++){
54: buffer.append(token[i]);}
55: buffer.append(">");
56: String result = buffer.toString();
57: System.out.println(result);

...
...

...
...

code clone

clone pair
relationship

Lexical
analysis Normalization

Identifying statements

Generating
statement
hash

Generating
hash sequences

Creating and initializing table

Calculating
table

Traceback
table

Identifying similar
hash sequences

Mapping identical
subsequences
to source code

if (flg) {

for (int i = 0 ; i < token length . ; i + +) {

buffer . append (token [i]) ; }

String result = buffer . toString () ;

else } {

for (int j = 0 ; j < token length . ; j + +) {

buffer . append (token [j]) ; }

if (j % 2 = = 0) { buffer . append (“,”) ; } }

String result = buffer . toString () ;

}

return result ;

StringBuffer

for (int i = 0 ; i < token length . ; i + +) {

buffer . append (token [i]) ; }

String result = buffer . toString () ;

buffer = new StringBuffer () ;

buffer . append (“>”) ;

System . out . println (result) ;

if ($) {

for ($ $ = $; $ < $ $. ; $ + +) {

$. $ ($ [$]) ; }

$ $ = $. $ () ;

else } {

for ($ $ = $; $ < $ $. ; $ + +) {

$. $ ($ [$]) ; }

if ($ % $ = = $) { $. $ ($) ; } }

$ $ = $. $ () ;

}

return $;

$

for ($ $ = $; $ < $ $. ; $ + +) {

$. $ ($ [$]) ; }

$ $ = $. $ () ;

$ = new $ () ;

$. $ ($) ;

$. $. $ ($) ;

if($) {

for($$=$; $<$.$; $++) {

$.$($[$]) ; }

$$=$.$() ;

else } {

if($%$==$) { $.$($) ; } }

}

return$;

$$=new$() ;

$.$($) ;

$.$.$($) ;

for($$=$; $<$.$; $++) {

$.$($[$]) ; }

$$=$.$() ;

for($$=$; $<$.$; $++) {

$.$($[$]) ; }

$$=$.$() ;

0(4) {

10(6) ; 20(5) ; 30(4) {

40(9) ; }

50(8) ;

60(1) } {

60(9) { 70(6) ; } }

}

80(2) ;

90(7) ;

70(6) ;

100(8) ;

10(6) ; 20(5) ; 30(4) {

40(9) ; }

50(8) ;

10(6) ; 20(5) ; 30(4) {

40(9) ; }

50(8) ;

0 10 20 30 40 50 60 10 20 30 40 60 70 50 80

4 6 5 4 9 8 1 6 5 4 9 9 6 8 2

90 10 20 30 40 70 50 100

7 6 5 4 9 6 8 8

Hash sequence1

of tokens sequence1

Hash sequence2

of tokens sequence2

- 90 10 20 30 40 70 50 100

- 0 0 0 0 0 0 0 0 0

0 0

10 0

20 0

30 0

40 0

50 0

60 0

10 0

20 0

30 0

40 0

60 0

70 0

50 0

80 0

- 90 10 20 30 40 70 50 100

- 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10 0 0 1 0 0 0 0 0 0

20 0 0 0 2 1 0 0 0 0

30 0 0 0 1 3 2 1 0 0

40 0 0 0 0 2 4 3 2 1

50 0 0 0 0 1 3 3 4 3

60 0 0 0 0 0 2 2 3 2

10 0 0 1 0 0 1 1 2 1

20 0 0 0 2 0 0 0 1 0

30 0 0 0 1 3 2 1 0 0

40 0 0 0 0 2 4 3 2 1

60 0 0 0 0 1 3 2 1 0

70 0 0 0 0 0 2 4 3 2

50 0 0 0 0 0 1 3 5 4

80 0 0 0 0 0 0 2 4 4

- 90 10 20 30 40 70 50 100

- 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10 0 0 1 0 0 0 0 0 0

20 0 0 0 2 1 0 0 0 0

30 0 0 0 1 3 2 1 0 0

40 0 0 0 0 2 4 3 2 1

50 0 0 0 0 1 3 3 4 3

60 0 0 0 0 0 2 2 3 2

10 0 0 1 0 0 1 1 2 1

20 0 0 0 2 0 0 0 1 0

30 0 0 0 1 3 2 1 0 0

40 0 0 0 0 2 4 3 2 1

60 0 0 0 0 1 3 2 1 0

70 0 0 0 0 0 2 4 3 2

50 0 0 0 0 0 1 3 5 4

80 0 0 0 0 0 0 2 4 4

0 10 20 30 40 50 60 10 20 30 40 60 70 50 80

90 10 20 30 40 70 50 100

Hash sequence1

Hash sequence2

30: if(flg){
31: for(int i = 0; i < tokens.length; i++){
32: buffer.append(tokens[i]);}
33: String result = buffer.toString();
34: }else{
35: for(int j = 0; j < tokens.length; j++){
36: buffer.append(tokens[j]);
37: if(j % 2 == 0){buffer.append(",");}}
38: String result = buffer.toString();
39: }
40: return result;

52: StringBuffer buffer = new StringBuffer();
53: for(int i = 0; i < tokens.length; i++){
54: buffer.append(tokens[i]);}
55: buffer.append(">");
56: String result = buffer.toString();
57: System.out.println(result);

...
...

...
...

Similar hash sequences

Figure 7: An Example of Detection Process Using the Proposed Method.

14

4 Overview of Investigation

We have developed a software tool,CDSW based on the proposed method described in Section

3. We have conducted two investigations to answer the following research questions.

RQ 1: Does evaluatingprecision andrecall by using the information where gaps are have higher

accuracy than using only the information where code clones start and where they end?

RQ 2: Does the proposed method have higher accuracy than existing methods?

RQ 3: Does the proposed method finish detecting code clones in practical time?

Experiment A investigates RQ 1. Experiment B investigates RQ 2 and RQ 3.

In order to calculaterecall andprecision, we need the relevant code clones. Herein we use

freely available code clone data in literature [24] as a reference set (a set of code clones to be

detected). The reference set includes code clones information of eight software systems. Table

1 shows an overview of the target systems. In the remainder of this thesis, we use the following

terms.

Clone candidates:code clones detected by clone detectors.

Clone references:code clones included in the reference.

We use theok value to decide whether every clone candidates matches any of the clone ref-

erences or not. In this investigation, We use 0.7 as the threshold, which is the same value used in

literature [1]. We calculaterecall andprecision for evaluating the detection capability. Assume

thatR is a detection result,Srefs is the set of the clone references, andSR is a set of the clone

candidates whoseok values with an instance of the clone references is equal to or greater than the

Table 1: Target Software Systems

Name Short name Language Lines of code# of references

netbeans-javadoc [25] netbeans Java 14,360 55

eclipse-ant [26] ant Java 34,744 30

eclipse-jdtcore [26] jdtcore Java 147,634 1,345

j2sdk1.4.0-javax-swing [27] swing Java 204,037 777

weltab weltab C 11,460 275

cook [28] cook C 70,008 440

snns [29] snns C 93,867 1,036

postgresql [30] postgresql C 201,686 555

15

threshold inR. Recall andprecision are defined as follows:

Recall =
|SR|
|Srefs |

. (5)

Precision =
|SR|
|R|

. (6)

This evaluation has a limitation onrecall andprecision. The clone references used in the

experiments are not all the relevant code clones included in the target systems. Consequently, the

absolute values ofrecall andprecision are meaningless.Recall andprecision can be used only

for relatively comparing detection results. Moreover, we have to pay a significant attention to

precision. A low value ofprecision does not directly indicate that the detection result includes

many false positives. A low value means that there are many clone candidates are not matching

any of the clone references; however, nobody knows whether they are truly false positives or not.

The execution environment in these experiments was 2.27GHz Intel Xeon CPU with 16.0GB

main memory.

The details of each experiment are described in Section 5 and 6, respectively.

16

5 Experiment A

The purpose of Experiment A is to reveal howprecision and recall are changed by our

defined formula. In Bellon’s benchmark [1], in order to determine whether a candidate matches a

reference,overlap(CF1, CF2), contained(CF1, CF2), good(CP1, CP2) andok(CP1, CP2) are

used, whereCP1 andCP2 are clone pairs,CF1 andCF2 are code fragments.

However, these formulae do not consider the gapped fragments included in code clones. There-

fore, we remade the clone references with information of gapped lines and made it public on the

website1. Furthermore, we put the file format of our clone references on the same website.

Figure 8 shows an example of Bellon’s clone references, and Figure 9 shows an example of

our clone references. In Figure 9, left source file has gapped lines 358-359. On the other hand,

right one has no gapped lines.

If recall and precision are calculated by using the clone references with the information

of gapped lines, these values probably would be more precise. In the case of Bellon’s clone

references, some Type-3 code clones contain gapped lines because Bellon’s clone references have

only the information of where code clones start and where they end. Meanwhile, in the case of

our clone references, All the code clones do not contain gapped lines. In other words, our clone

references consist of true code clones. Thus, evaluations using our clone references enable us to

obtain truerecall andprecision.

We calculatedrecall andprecision using Bellon’s and our clone references. Figure 10 and

Figure 11 show therecall andprecision of theCDSW using Bellon’s and our clone references.

For all of the software,precision andrecall were improved. In the best case,recall increased by

4.6 % andprecision increased by 4.4 %. In the worst case,recall increased by 0.24 %precision

increased by 0.21 %.

Consequently we answer RQ 1 as follows: Calculatingrecall andprecision using not only

the information where code clones start and where they end but also the information where the

gaps are could evaluate code clones more precisely.

1http://sdl.ist.osaka-u.ac.jp/ ˜ h-murakm/new-reference/

17

355: final public void astore_1() {
356: countLabels = 0;
357: stackDepth--;
358: if (maxLocals <= 1) {
359: maxLocals = 2; }
360: try {
361: position++;
362: bCodeStream[classFileOffset++] = OPC_astore_1;
363: } catch (IndexOutOfBoundsException e) {
364: resizeByteArray(OPC_astore_1); } }

393: final public void baload() {
394: countLabels = 0;
395: stackDepth--;
396: try {
397: position++;
398: bCodeStream[classFileOffset++] = OPC_baload;
399: } catch (IndexOutOfBoundsException e) {
400: resizeByteArray(OPC_baload); } }

eclipse-jdtcore/src/internal/compiler/codegen/CodeStream.java 355 364 eclipse-jdtcore/src/internal/compiler/codegen/CodeStream.java 393 400 3

…

…

…

…

 clonetype
 toline1 toline2
filename1 fromline1 filename2 fromline2

Figure 8: An Example of Bellon’s Clone Reference (Clone Reference No. 1101).

355: final public void astore_1() {
356: countLabels = 0;
357: stackDepth--;
358: if (maxLocals <= 1) {
359: maxLocals = 2; }
360: try {
361: position++;
362: bCodeStream[classFileOffset++] = OPC_astore_1;
363: } catch (IndexOutOfBoundsException e) {
364: resizeByteArray(OPC_astore_1); } }

393: final public void baload() {
394: countLabels = 0;
395: stackDepth--;
396: try {
397: position++;
398: bCodeStream[classFileOffset++] = OPC_baload;
399: } catch (IndexOutOfBoundsException e) {
400: resizeByteArray(OPC_baload); } }

eclipse-jdtcore/src/internal/compiler/codegen/CodeStream.java 355 364 eclipse-jdtcore/src/internal/compiler/codegen/CodeStream.java 393 400 3 358,359 -

gapped lines …

…

…

…

 clonetype gapset2
 toline1 toline2 gapset1
filename1 fromline1 filename2 fromline2

Figure 9: An Example of the Clone Reference We Remade (Clone Reference No. 1101).

0

0.2

0.4

0.6

0.8

1

netbeans ant jdtcore swing weltab cook snns postgresql

Bellon's clone references Our clone references

Figure 10:Recall of CDSW for the Target Software Systems Calculated by Bellon’s and Our

Clone References.

18

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

netbeans ant jdtcore swing weltab cook snns postgresql

Bellon's clone references Our clone references

Figure 11:Precision of CDSW for the Target Software Systems Calculated by Bellon’s and Our

Clone References.

19

6 Experiment B

One purpose of Experiment B is to reveal whetherCDSW detects code clones more accurately

than existing clone detectors or not. The other purpose is to reveal thatCDSW detects code clones

in practical time. In this experiment, we chose the clone detectors shown in Table 2 as targets for

the comparison. All the clone detectors except NiCad and DECKARD were used in the experiment

conducted by Bellon et al, and we calculatedrecall andprecision of all the clone detectors by

using our reference with information of gapped lines. In section 3, we described thatCDSW

outputs gapped lines in code clones. However, if we use the outputs directly in this experiment,

we could not make fair comparisons betweenCDSW and other clone detectors because they do

not output gapped lines in code clones. Therefore, we only use the information where code clones

start and where they end.

Figure 12 shows therecall of all clone detectors for the Type-3 clone references. The median

of CDSW is the best in all the clone detectors. Figure 13 shows theprecision of all clone

detectors for the Type-3 clone references. The median of CLAN is the best, and that ofCDSW is

the middle position. Figure 14 shows therecall of all clone detectors for the Type-1 and Type-2

clone references. The median of CCFinder is the best, and that ofCDSW is the next. Figure

15 shows theprecision of all clone detectors for the Type-1 and Type-2 clone references. The

median of CLAN is the best, and that of CloneDR is the next. The medians of the remaining

detectors are almost the same.

We compared the execution time of the existing tool andCDSW. Herein, we selected DECKARD

as a representative of the existing tools because DECKARD are widely used, easy to use and

detects code clones using intermediate representation. Figure 16 shows the execution time of

DECKARD andCDSW. DECKARD detect code clones from the target software systems in about

22 minutes to 2 hours and a half. Meanwhile,CDSW detect code clones from the target software

Table 2: Tools Used for Comparison

Developer Tool Detection method

Baker Dup [31] token-based

Baxter CloneDR [11] AST-based

Kamiya CCFinder [8] token-based

Merlo CLAN [32] metrics-based

Rieger Duploc [33] line-based

Krinke Duplix [16] PDG-based

Jiang DECKARD [14] AST-based

Roy NiCad [34] token-based using LCS

20

systems in a few seconds to a few minutes. Moreover, We appliedCDSW to large-scale software

JDK 7 java packages (1,631 files and 660,698 lines of codes).CDSW could detect code clones

from JDK 7 in about 30 minutes.

Consequently we answer RQ 2 as follows:CDSW could detect as many clone references as

token-based clone detectors. Especially,CDSW could detect the most Type-3 clone references.

However, it detected many clone candidates as well as other clone detectors. Therefore, it might

detect many false positives.

Besides, we answer RQ 3 as follows:CDSW could detect code clones in a practical time on

software systems even if they have over six hundred thousand lines.

21

●

CloneDR CLAN CCFinder Dup Duploc Duplix NiCad DECKARD CDSW

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 12:Recall of All Clone Detectors for the Type-3 Clone References.

●

CloneDR CLAN CCFinder Dup Duploc Duplix NiCad DECKARD CDSW

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Figure 13:Precision of All Clone Detectors for the Type-3 Clone References.

22

●

●

CloneDR CLAN CCFinder Dup Duploc Duplix NiCad DECKARD CDSW

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 14:Recall of All Clone Detectors for the Type-1 and Type-2 Clone References.

●

●

●

●

●

CloneDR CLAN CCFinder Dup Duploc Duplix NiCad DECKARD CDSW

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 15:Precision of All Clone Detectors for the Type-1 and Type-2 Clone References.

23

2049

3133

8245
7620

1325 1453

3146

3966

2 5 134 157 3 21 55 186

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

netbeans ant jdtcore swing weltab cook snns postgresql

DECKARD CDSW
(sec.)

Figure 16: Execution Time of DECKARD andCDSW.

24

7 Threats to Validity

7.1 Clone References

In these experiments, we compared the accuracy ofCDSW and those of other clone detectors

based on Bellon’s clone references. However, they are not identified from all the code clones in

target software systems. Therefore, if all the code clones in target software systems are used as

clone references, we might obtain different results. However, it is almost impossible to make clone

references from all code clones in target software systems.

7.2 Code Normalization

The proposed method replaces every of variables and literals with a specific token as a nor-

malization. This means that the normalization ignores the types of them. If the proposed method

uses more intelligent normalizations, for example, replacing them considering their type names,

the number of detected code clones should be changed. Meanwhile, if the proposed method does

not normalize source code, it cannot detect code clones that have differences of variable names or

literals.

25

8 Conclusion

In this thesis, the authors proposed a new method to detect not only Type-1 and Type-2 but

also Type-3 code clones by using the Smith-Waterman algorithm. The proposed method was

developed as a software tool,CDSW. Furthermore, the authors remade the clone references used

in Bellon’s benchmark by adding information of gapped lines. The authors appliedCDSW to eight

open source software systems and calculatedprecision andrecall by using the clone references

remade by the authors. The authors confirmed the followings.

• The accuracy of evaluation of clone detection results improved by using not only the infor-

mation where code clones start and where they end but also the information where the gaps

are.

• CDSW detected as many relevant code clones as any other clone detectors used in Bellon’

s benchmark. Especially,CDSW detected the most relevant Type-3 code clones in them.

• CDSW might detect as many false positives as the other token-based clone detectors might

detect.

• CDSW detected code clones in practical time for even large-scale software that has over six

hundred thousand lines.

As described in section 6, in this experiment, The authors did not use the gapped lines that

CDSW outputs for accuracy comparison of clone detectors. In the future, the authors are going to

conduct experiments using the information where gaps are. If we use the information where gaps

are for evaluating code clones, more accurate results would be obtained.

26

9 Acknowledgement

During this work, I have been fortunate to have received assistance from many people. This

work could not have been possible without their valuable contributions.

First, I wish to express my deepest gratitude to my supervisor Professor Shinji Kusumoto at

the Osaka University, for his continuous support, encouragement and guidance of the work. I also

thank him for providing me an opportunity to do this work.

I am grateful to Kozo Okano, Associate Professor at the Osaka University for his helpful

comments.

I am also deeply grateful to Hiroshi Igaki, Associate Professor at the Osaka University for

his encouragement, practical advice, valuable suggestions, helpful comments and discussions

throughout this work.

I would like to express my sincere gratitude to Yoshiki Higo, Assistant Professor at the Osaka

University for his adequate guidance, valuable suggestions and discussions throughout this work.

Without his supports, this work would never have reached completion.

I am deeply grateful to Keisuke Hotta, a doctoral course student at the Osaka University, for

his valuable helps and discussions throughout this work. I am also thankful to him for reading my

thesis, commenting on my views and helping me understand and enrich my ideas.

I thank greatly, Tomoya Ishihara, Shuhei Kimura, Yukihiro Sasaki, Hiroaki Shimba and Ji-

achen Yang, a master course student at the Osaka University for their constant encouragements.

Their support and care helped me to overcome many difficulties.

Finally, I would like to thank all of my friends in the Department of Computer Science at

the Osaka University, especially the members in Kusumoto Laboratory, for their helpful advices,

suggestions and assistance.

27

References

[1] S. Bellon, R. Koschke, G. Antniol, J. Krinke, and E. Merlo. Comparison and evaluation of

clone detection tools.IEEE Trans. on Software Engineering, Vol. 31, No. 10, pp. 804–818,

Oct. 2007.

[2] Clone Detection Literature. http://www.cis.uab.edu/tairasr/clones/

literature/ .

[3] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.Journal

of Molecular Biology, Vol. 147, No. 1, pp. 195–197, Mar. 1981.

[4] K. Inoue, T. Kamiya, and S. Kusumoto. Code-clone detection methods.Computer Software,

Vol. 18, No. 5, pp. 529–536, Sep. 2001. (in Japanese).

[5] Y. Higo, S. Kusumoto, and K. Inoue. A survey of code clone detection and its related tech-

niques. IEICE Trans. on Information and Systems, Vol. 91-D, No. 6, pp. 1465–1481, June

2008. (in Japanese).

[6] J.H. Johnson. Substring matching for clone detection tools. InProc. of the 10th International

Conference on Software Maintenance, pp. 120–126, Sep. 1994.

[7] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting

duplicated code. InProc. of the 15th International Conference on Software Maintenance,

pp. 109–118, Aug. 1999.

[8] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-linguistic token-based code

clone detection system for large scale source code.IEEE Trans. on Software Engineering,

Vol. 28, No. 7, pp. 654–670, July 2002.

[9] CCFinderX.http://www.ccfinder.net/ccfinderx.html .

[10] Z. Li, S. Myagmar, S. Lu, and Y.Zhou. Cp-miner : Finding copy-paste and related bugs

in large-scale software code.IEEE Trans. on Software Engineering, Vol. 32, No. 3, pp.

176–192, Mar. 2006.

[11] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone Detection Using Abstract

Syntax Trees. InProc. of the 14th International Conference on Software Maintenance, pp.

368–377, Mar. 1998.

[12] CloneDR.http://www.semdesigns.com/Products/Clone/ .

28

[13] R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix trees. In

Proc. of the 13th Working Conference on Reverse Engineering, pp. 253–262, Oct. 2006.

[14] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard : Scalable and accurate tree-based

detection of code clones. InProc. of the 29th International Conference on Software Engi-

neering, pp. 96–105, May 2007.

[15] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code. InProc.

of the 8th International Symposium on Static Analysis, pp. 40–56, July 2001.

[16] J. Krinke. Identifying similar code with program dependence graphs. InProc. of the 8th

Working Conference on Reverse Engineering, pp. 301–309, Oct. 2001.

[17] Y. Higo and S. Kusumoto. Code clone detection on specialized pdgs with heuristics. InProc.

of the 15th European Conference on Software Maintenance and Reengineering, pp. 75–84,

Mar. 2011.

[18] Scorpio. http://www-sdl.ist.osaka-u.ac.jp/ ˜ higo/cgi-bin/moin.

cgi/scorpio .

[19] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function

clones in a software system using metrics. InProc. of the 12th International Conference on

Software Maintenance, pp. 244–253, Nov. 1996.

[20] J. Ossher, H. Sajnani, and C. Lopes. File cloning in open source java projects: The good, the

bad, and the ugly. InProc. of the 27th International Conference on Software Maintenance,

pp. 283–292, Sep. 2011.

[21] Y. Sasaki, T. Yamaoto, Y. Hayase, and K. Inoue. File clone detection for a large scale

software system.IEICE Trans. on Information and Systems, Vol. J94-D, No. 8, pp. 1423–

1433, Aug. 2011. (in Japanese).

[22] N. Göde and R. Kosheke. Incremental clone detection. InProc. of the 13th European Con-

ference on Software Maintenance and Reengineering, pp. 219–228, Mar. 2009.

[23] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index based code clone detection:

incremental, distributed, scalable. InProc. of the 32th International Conference on Software

Engineering, pp. 1–9, Oct. 2010.

[24] Detection of Software Clones.http://www.bauhaus-stuttgart.de/clones/ .

[25] Javadoc.http://javadoc.netbeans.org .

29

[26] Eclipse.http://www.eclipse.org .

[27] Java 2 SDK.http://java.sun.com .

[28] Cook. http://miller.emu.id.au/pmiller/software/cook/ .

[29] The Stuttgart Neuronal Network Simulator. http://www-ra.informatik.

uni-tuebingen.de .

[30] PostgreSQL.http://www.postgresql.org .

[31] B.S. Baker. Parameterized duplication in strings: Algorithms and an application to software

maintenance.SIAM Journal on Computing, Vol. 26, No. 5, pp. 1343–1362, Oct. 1997.

[32] J. Mayland, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function

clones in a software system using metrics. InProc. of the 12th International Conference on

Software Maintenance, pp. 244–253, Nov. 1996.

[33] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting

duplicated code. InProc. of the 15th International Conference on Software Maintenance,

pp. 109–118, Aug. 1999.

[34] C. K. Roy and J. R. Cordy. Nicad: Accurate detection of near-miss intentional clones using

flexible pretty-printing and code normalization. InProc. of the 16th International Confer-

ence on Program Comprehension, pp. 172–181, June 2008.

30

