
A Metric-based Approach for Reconstructing Methods in
Object-Oriented Systems

Tatsuya Miyake Yoshiki Higo Katsuro Inoue
Graduate School of Information Science and Technology, Osaka University

{t-miyake,higo,inoue}@ist.osaka-u.ac.jp

ABSTRACT
Refactoring is an important activity to improve software quality,
which tends to become worse through repetitive bug fixes and func-
tion additions. Unfortunately, it is difficult to perform appropriate
refactorings because a refactoring needs certain costs, and its ef-
fects should be greater than the costs. This paper describes an ap-
proach for appropriate refactorings. The approach identifies spots
to be refactored and it suggests how they should be improved. More-
over, the approach estimates the effects of the refactorings. The ap-
proach requires a lightweight source code analysis for measuring
several metrics, so that it can be applied to middle- or large-scale
software system. The approach can make the refactoring process
more effective and efficient one.

Keywords
Refactoring, Software maintenance, Source code analysis

1. INTRODUCTION
Quality of a software system is a key factor whether its develop-
ment and maintenance succeed or not. Regrettably, software qual-
ity grows worse by project creep, repetitive bug fixes, function ad-
ditions and so on. It is not realistic that quality of a software system
doesn’t become worse through its life cycle.

Refactoring is an activity to improve the internal structure of a soft-
ware system without changing the external behavior of it [5], and
it can regain software quality. A refactoring itself requires certain
costs, and the effects should be greater than the costs. But the ef-
fects is ambiguous before performing it, so that we can say that it
is difficult to perform appropriate refactorings.

In this paper, we propose an approach for performing appropriate
refactorings. The approach focuses on the internal structures of
methods in object-oriented systems. Firstly, the approach identi-
fies spots to be refactored, and then it suggests how they should
be improved. Moreover, the approach estimates the effects of the
refactorings that it suggested. The approach is metric-based, and it
requires a lightweight source code analysis, so that it can be applied

middle- or large-scale software systems.

As of now, we are implementing a software tool which realizes the
approach. This paper describes the details of the approach and a
case study with the partially implemented tool. After The software
tool is completed, we will do more case studies.

2. REFACTORING
Refactoring is a set of operations to improve maintainability, under-
standability, extendability or other attributes of software systems
without changing the external behavior of it [5], and it is getting
much attention recently. Usually, refactoring is performed on the
following process [7].

STEP1 : Identifies spots that should be bottlenecks of develop-
ment or maintenance of the software system. For example,
too long methods, complicated control structures, or dupli-
cated code should be refactored [5].

STEP2 : Determines how the spots should be improved. Before
now, many refactoring patterns have been proposed [2, 5].

STEP3 : Estimates the costs and the effects of the refactoring de-
termined in STEP2. If the effects will be greater than the
costs, the refactoring should be really performed.

STEP4 : Changes the source code based on the refactoring deter-
mined in STEP2. Recently, IDEs like Eclipse [4] or Net-
Beans [1] have functions changing source code automati-
cally.

STEP5 : Conducts regression test to ensure that the refactoring
didn’t change the external behavior of the software system.

A problem of refactoring is that STEP1 and STEP2 need rich knowl-
edge and experiences to identify spots to be refactored and to de-
termine how the spots are improved. In practice, there are many
developers having limited knowledge and low experiences, so that
they spend too much time in STEP1 and STEP2. Another prob-
lem is that it is difficult to estimates the effects of a refactoring
before performing it. Developers don’t tend to be aware that the
refactoring has side-effects before they actually perform it. Thus
inappropriate refactorings often may be performed.

In this paper, we propose an approach to support STEP1, STEP2,
and STEP4 of the refactoring process. By using the approach, the
users can perform appropriate refactorings efficiently.

Table 1: Attribute encapsulation and local variable capsulation
Name Attributes encapsulation Local variable encapsulation

Summary Encapsulates attributes for preventing them Encapsulates local variables for preventing them
from being accessed from other classes. from being accessed from other spots in the method.

Implementation Attributes are defined as private. A spot of a method is extracted as a new method.
If necessary, accessors of them are defined. If necessary, argument and return variable are used.

3. APPROACH
This section describes the proposed approach. In the approach,
Refactoring means that structural blocks in methods of object-oriented
systems are extracted as new methods in the same class or another
class. For example, in the case of Java language, there are 8 types
of strucutral blocks (do, if, for, switch, synchronized, simple-block
({}), try, while).

Section 3.1 describes how the method identifies spots to be im-
proved, and Section 3.2 mentions how the spots to be refactored.
Finally, Section 3.3 presents the effects estimation of the approach.

3.1 Identifies spots to be improved
The proposed approach investigates the internal structures of the
methods of a software system, or several metrics are measured on
structural blocks in the methods. Blocks having bad metrics values
are the targets to be refactored. The following describes metrics
used in the approach.

Cyclomatic complexity : Cyclomatic complexity is the number
of linearly independent paths from the start node to the end
one of a graph [6]. In the case of source code, Cyclomatic
complexity can be represented by the number of conditional
expressions plus 1. It is widely accepted that high value of
cyclomatic complexity of a method implies that it includes
complicated control logics and it is hard to understand and to
conduct enough tests. The proposed approach measures cy-
clomatic complexity of structural blocks in addition to meth-
ods in the target software system.

We assume that there are n expressions in block B, metric
CC(B) can be represented as follows.

CC(B)(CyclomaticComplexity) = n+1

LOC (Lines Of Code) : LOC is the simplest and the most widely-
used metric to measure module size in a software system.
The proposed approach measures LOC of structral blocks
and methods of the target software system.

Additionally, in the case of a structural block, the approach
calculates its occupancy rate for the method including it. The
occupancy rate of a structural block can be a indicator whether
the structural block should be refactored or not.

We assume that the LOC of block B is LOC(B) and the LOC
of method M including the block is LOC(M), metric OR(B)
can be represented as follows.

OR(B)(OccupancyRate) =
LOC(B)
LOC(M)

For example, there are two methods, A and B: method A
consists of 100 lines of code and it includes a 50 LOC block;
method B consists of 60 lines of code and it includes a 50

public void sample () {int i = 0;String str;int j = 0;boolean b;String str2;
while(hoge()) {int k = bar();jar(str);foo(i, k);}

}

…..

…..

6 variables (i, str, j, b, str2, k) are available.

3 variables (j, b, str2) are not used in this block.

public void sample () {int i = 0;String str;int j = 0;boolean b;String str2;
while(hoge()) {int k = bar();jar(str);foo(i, k);}

}

…..

…..

6 variables (i, str, j, b, str2, k) are available.

3 variables (j, b, str2) are not used in this block.
(a) Before refactoring

public void sample () {int i = 0;String str;int j = 0;boolean b;String str2;
newMethod(i, str);

}
void newMethod(int i, String str){while(hoge()) {int k = bar();jar(str);foo(i, k);}}

…..…..

Invokes new method with needful variables (i, str).

3 variables (i, str, k) are available

public void sample () {int i = 0;String str;int j = 0;boolean b;String str2;
newMethod(i, str);

}
void newMethod(int i, String str){while(hoge()) {int k = bar();jar(str);foo(i, k);}}

…..…..

Invokes new method with needful variables (i, str).

3 variables (i, str, k) are available

(b) After refactoring

Figure 1: Refactoring example reduce the number of available
local variables

LOC block; the both blocks have 50 LOC whereas the occu-
pancy rate of A is 50

100 = 0.5, and B is 50
60 = 0.83; in the case

of A, by extracting the block as a new method, A is divided
into two reasonable size methods; in the case of B, extracting
the block means almost all of code of B is moved to the new

public void sample () {int i = 0;String str;while(hoge()) {str = “string”;if(jar(I)) {make(str);}foo(i);for(int j = 0; j < I ; j++) {sam(i);if(log) {System.out.println(i);}}}
while() {bar(i);make(str);}}

…..

public void sample () {int i = 0;String str;while(hoge()) {str = “string”;if(jar(I)) {make(str);}foo(i);for(int j = 0; j < I ; j++) {sam(i);if(log) {System.out.println(i);}}}
while() {bar(i);make(str);}}

…..

(a) Source code of a method

sample()
while while

if
if
for

horizontal couplingvertical coupling

sample()sample()
whilewhile whilewhile

ifif
ifif
forfor

horizontal couplingvertical coupling
(b) Tree structure of the method

Figure 2: Horizontal Coupling and vertical Coupling

method. The refactoring of B should not be appropriate.

Number of Available Variables : In object oriented systems, at-
tributes of classes shouldn’t be able to access outside the
class. If we want to uses an attribute of a class in another
class, we use accessor method for the attribute. Attribute
encapsulation can reduce the number of available attributes,
and it can make the source code more robust.

Here, we propose local variable encapsulation, which is the
same concept as attribute encapsulation. If we encapsulate
local variables that are not used in some spots of the method,
the maintainability of the method should be improved. Lo-
cal variable encapsulation can prevents encapsulated local
variables from being accessed accidentally by changing the
source code. Table 1 illustrates a summary of attribute en-
capsulation and local variable encapsulation.

We defined a new metric ALV (B) as follows.

ALV (B) (Available Local Variable) is the number of local

public void sample () {
while(hoge()) {int i = 0;String str = “string”;foo(i);}

}

…..
…..

public void sample () {
newMethod();

}private void newMethod () {while(hoge()) {int i = 0;String str = “string”;foo(i);}}

…..…..

Extracts without change

Before refactoring After refactoringpublic void sample () {
while(hoge()) {int i = 0;String str = “string”;foo(i);}

}

…..
…..

public void sample () {
newMethod();

}private void newMethod () {while(hoge()) {int i = 0;String str = “string”;foo(i);}}

…..…..

Extracts without change

Before refactoring After refactoring

(a) Week coupling

public void sample () {int i = 0;boolean bool ;String str;
while(hoge()) {str = “string”;foo(i);bar(bool);}
return str;}

…..
…..

public void sample () {int i = 0;boolean bool ;String str;
str = newMethod(i, bool);
return str;}private String newMethod(int i, boolean bool) {String str;while(hoge()) {str = “string”;foo(i);bar(bool);}return str;}

…..…..

Extracts with arguments and return value

Before refactoring After refactoringpublic void sample () {int i = 0;boolean bool ;String str;
while(hoge()) {str = “string”;foo(i);bar(bool);}
return str;}

…..
…..

public void sample () {int i = 0;boolean bool ;String str;
str = newMethod(i, bool);
return str;}private String newMethod(int i, boolean bool) {String str;while(hoge()) {str = “string”;foo(i);bar(bool);}return str;}

…..…..

Extracts with arguments and return value

Before refactoring After refactoring

(b) Strong coupling

Figure 3: Extraction based on vertical coupling

variables that are defined outside block B and that can
be accessed in the block.

We think that, spots to be refactored have higher value of the
number of available local variables than spots not to have to
be refactored. Figure 1 illustrates a sample refactoring re-
ducing the number of available local variables. Before refac-
toring, there are 6 available local variables (i, str, j, b, str2,
k) in the hatching part. But 3 local variables (j, b, str2) of
them are not used in the part. If the part were changed be-
cause of bug fix or function addition, these 3 variables might
be used carelessly and some new bugs may be yielded. In
this situation, extracting the part as a new method like Figure
1(b) can prevents these local variables from being accessed
accidentally.

The metrics described above are used to identify spots to be im-
proved. Because this study is in progress, we have not known rea-
sonable thresholds of these metrics yet.

public void sample () {int i = 0;String str;
while(hoge()) {str = “string”;foo(i);}
while() {bar(i);make(str);}

}

…..

…..

…..

data flow

…………………..

public void sample () {int i = 0;String str;
while(hoge()) {str = “string”;foo(i);}
while() {bar(i);make(str);}

}

…..

…..

…..

data flow

…………………..
(a) Before refactoring

public void sample () {int i = 0;String str;
str = newMethod1(i);
newMethod2(i, str);

}
public String newMethod1(int i) {String str;while(hoge()) {str = “string”;foo(i);}return str;}
public void newMethod2(int i, String str){while() {bar(i);make(str);}}

………

public void sample () {int i = 0;String str;
str = newMethod1(i);
newMethod2(i, str);

}
public String newMethod1(int i) {String str;while(hoge()) {str = “string”;foo(i);}return str;}
public void newMethod2(int i, String str){while() {bar(i);make(str);}}

………

(b) Extracted as different methods

public void sample () {int i = 0;
newMethod3(i);

}
public String newMethod3(int i) {String str;while(hoge()) {str = “string”;foo(i);}

while() {bar(i);make(str);}}

…

…

………...

……….

public void sample () {int i = 0;
newMethod3(i);

}
public String newMethod3(int i) {String str;while(hoge()) {str = “string”;foo(i);}

while() {bar(i);make(str);}}

…

…

………...

……….

(c) Extracted as a single method

Figure 4: Refactoring example based on horizontal coupling

3.2 Determines how the spots to be refactored
In this process, couplings of blocks with their surrounding code
are measured. The coupling metrics are used to determine how to
refactor the blocks.

Vertical coupling : Vertical coupling means a coupling of a block
with its outer block. This coupling is measured based on
how the block uses local variables that are defined outside it.
Henceforth, we call such variables outer variables.

When a block is extracted as a new method,

• if a block refers to outer variables, their values have to
be passed to the new method as arguments,

• if a block assigns some values to outer variables, the
new methods returns the variables as return value.

Figure 3 presents two examples: one is a case that the target
block has week coupling with its outer block; the other is a
case that the target block has strong coupling. In the case of
Figure 3(a), the target block uses no outer variable, so that
the block can be extracted as a new method simply. On the
other hand, in the case of Figure 3(b), the target block refers
to and assigns a value to outer variables, so that extracting
the block requires to add arguments and a return statement to
the new method.

Two metrics NRV (B) and NAV (B) can be defined as follows.

NRV (B) (Number of Referred Variables) of block B is a
number of outer variables that are referred to in the
block.

NAV (B) (Number of Assigned Variables) of block B is a
number of outer variables that are assigned to in the
block.

Horizontal coupling : Horizontal coupling means a coupling of
two blocks in the same scope. If the coupling is strong, the
blocks should be extracted as a new method. Otherwise the
blocks should be extracted as different new methods. The
metric HC(Bs,Bt) can be defined as follows.

HC(Bs,Bt) (Horizontal Coupling) is a number of outer vari-
ables used (referred or assigned) in both block Bs and
Bt .

Figure 4 represents a sample refactoring based on horizon-
tal coupling. Before refactoring (Figure 4(a)), there are two
blocks in the method and these blocks have a certain horizon-
tal coupling because there are two data flows between them.
If these blocks are extracted as different methods (Figure
4(b)), they have to have complicated signature (arguments
and return value) because the data have to be passed through
the new methods. On the other hand, if the blocks are ex-
tracted as a single method (Figure 4(c)), the signature of the
new method become simple because the data flows are com-
pleted within the new method.

But, from the view point of the modularity, Figure 4(b) may
be better than Figure 4(c) because each functionality is di-
vided into different methods. This is very sensitive problem,
so that we cannot say which is the best solution. However,
we believe that the horizontal metric should be a indicator
how blocks should be refactored.

In the current definition of metric HC, we don’t differentiate
assignment from reference. For more precisely representing
how blocks can be refactored, it is vital to distinguish be-
tween assignment and reference. Moreover, other techniques
of source code analysis like program slicing should be used.
In the current definition of horizontal coupling, the following
coupling cannot be grasped.

Table 2: The target systems
Name Version # Files LOC Analysis Time

JHotDraw 5.4b2 289 40,986 3.7 secs
Ant 1.6.5 674 166,295 12.6 secs

Antlr 3.0.1 142 44,032 4.1 secs

• Firstly, in block B1, a value is assigned to variable V1.

• Then, a value is calculated using variable V1, and it is
assigned to variable V2 (these operation are performed
outside B1).

• Finally, in the block B2
1, variable V2 is referred to.

Moreover, in this process, the approach suggests where the refac-
tored blocks should moved to. The suggestion is based on attribute
usages and method invocations in the target blocks.

• If the blocks mainly use attributes and methods of its own
class, the blocks are extracted in the same class.

• If the blocks use members of only its super class, the blocks
are extracted and moved to the super class.

• If the blocks use members of other classes, the blocks are
extracted and moved to the class whose members are used
by the blocks or utility class.

3.3 Estimates the effects of the refactoring
The method estimates the effects of the refactoring by using metrics
described in Section 3.1 and 3.2. The metrics values after refactor-
ing can be estimated from the source code of before refactoring
and refactoring operations. The estimated effects can be used for
checking whether the refactoring lead to side-effects or not.

4. CASE STUDY
We have conducted simple case studies on open source software
systems with the partially implemented tool. The target systems
are JHotDraw, Ant, and Antlr, which are implemented in Java lan-
guages. Table 2 represents the names, the versions, the numbers of
source files, and LOCs of the target software systems.

As you can see in the table, the tool could complete the source code
analysis at short times despite the targets are middle-scale software
systems2. The current implementation doesn’t include program
slicing. If we implement a program slicing function in the tool, the
detection speed becomes much lower. Applying program slicing is
one of the future works. Section 5.1 describes about it.

For the reason of the partial implementation of the tool, we cannot
conduct a fully quantitative evaluation of the proposed approach at
present time. In the following of this section describes two case
examples detected in Ant and Antlr. We would like you to under-
stand that we cannot describes the results of vertical coupling due
to limitations of space.

1Blocks B1 and B2 are in the same scope in a method.
2The tool was executed on the PC workstation with 3.00 GHz CPU
and 2.00 GB Memory.

00:private void parsePackages(Vector pn, Path sp) {01: Vector addedPackages = new Vector();02: Vector dirSets = (Vector) packageSets.clone();・・・・・・・・・08: if (sourcePath != null && packageNames.size() > 0) {・・・・・・・・32: for (int i = 0; i < pathElements.length; i++) {・・・・・・・・37: dirSets.addElement(ds);38: }39: }・・・・・・・・・・・・41: Enumeration e = dirSets.elements();42: while (e.hasMoreElements()) {・・・・・・・・49: for (int i = 0; i < dirs.length; i++) {・・・・・・・・60: if (files.length > 0) {・・・・・・・・64: if (!addedPackages.contains(packageName)) {65: addedPackages.addElement(packageName);66: pn.addElement(packageName);67: }68: }69: }70: if (containsPackages) {・・・・・・・・73: sp.createPathElement().setLocation(baseDir);74: } else {・・・・・・・77: }78: }79:}

if1

while1

00:private void parsePackages(Vector pn, Path sp) {01: Vector addedPackages = new Vector();02: Vector dirSets = (Vector) packageSets.clone();・・・・・・・・・08: if (sourcePath != null && packageNames.size() > 0) {・・・・・・・・32: for (int i = 0; i < pathElements.length; i++) {・・・・・・・・37: dirSets.addElement(ds);38: }39: }・・・・・・・・・・・・41: Enumeration e = dirSets.elements();42: while (e.hasMoreElements()) {・・・・・・・・49: for (int i = 0; i < dirs.length; i++) {・・・・・・・・60: if (files.length > 0) {・・・・・・・・64: if (!addedPackages.contains(packageName)) {65: addedPackages.addElement(packageName);66: pn.addElement(packageName);67: }68: }69: }70: if (containsPackages) {・・・・・・・・73: sp.createPathElement().setLocation(baseDir);74: } else {・・・・・・・77: }78: }79:}

if1

while1

if1if1

while1while1

(a) A case of week horizontal coupling in Ant00:protected void extractAttribute(String decl) {・・・・・・・・04: boolean inID = false;05: int start = -1;06: int rightEdgeOfDeclarator = decl.length()-1;07: int equalsIndex = decl.indexOf('=');08: if (equalsIndex>0) {・・・・・・・・11: rightEdgeOfDeclarator = equalsIndex-1;12: }・・・・・・・・14: for (int i=rightEdgeOfDeclarator; i>=0; i--) {15: if (!inID && Character.isLetterOrDigit(decl.charAt(i))) {16: inID = true;17: } else if (inID && !(Character.isLetterOr ・・・・・・・・・・・・・・・・22: start = i+1;23: break;24: }25: }26: if (start<0 && inID) {・・・・・・・・28: }・・・・・・・・34: for (int i=start; i<=rightEdgeOfDeclarator; i++) {・・・・・・・・42: if (i==rightEdgeOfDeclarator) {43: stop = i+1;44: }45: }・・・・・・・・60:}

・・・・・・・・・・
if1

for1
if2
for2

00:protected void extractAttribute(String decl) {・・・・・・・・04: boolean inID = false;05: int start = -1;06: int rightEdgeOfDeclarator = decl.length()-1;07: int equalsIndex = decl.indexOf('=');08: if (equalsIndex>0) {・・・・・・・・11: rightEdgeOfDeclarator = equalsIndex-1;12: }・・・・・・・・14: for (int i=rightEdgeOfDeclarator; i>=0; i--) {15: if (!inID && Character.isLetterOrDigit(decl.charAt(i))) {16: inID = true;17: } else if (inID && !(Character.isLetterOr ・・・・・・・・・・・・・・・・22: start = i+1;23: break;24: }25: }26: if (start<0 && inID) {・・・・・・・・28: }・・・・・・・・34: for (int i=start; i<=rightEdgeOfDeclarator; i++) {・・・・・・・・42: if (i==rightEdgeOfDeclarator) {43: stop = i+1;44: }45: }・・・・・・・・60:}

・・・・・・・・・・
if1if1

for1for1
if2if2
for2for2

(b) A case of strong horizontal coupling in Antlr

Figure 5: Examples idenfified in the target systems

4.1 A case of week horizontal coupling
Figure 5(a) illustrates a case example of week horizontal coupling
identified in Ant. The method in the figure includes two blocks,
one is if-block (if1) and the other is while-block (while1).

In (if1), an externally defined variable dirSets is referred to once.
On the other hand, in (while1), 4 externally defined variables e,
addedPackages, pn, and sp are referred to. Thus, The coupling be-
tween (if1) and (while1) is week, they can be extracted as different
methods simply. By extracting (if1) as a new method, three vari-
ables pn, sp, and addedPackage become invisible in it. The source
code will become more robust because unnecessary information are
hidden.

From the view point of size, the method before refactoring has
79 LOC, whereas all of refactored methods have about 10, 30,
and 40 LOC. The refactoring divided the long method into three
reasonable-size methods.

4.2 A case of strong horizontal coupling
Figure 5(b) represents a case example of strong horizontal coupling
identified in Antlr. The method in the figure includes four blocks,
two of them are if-blocks, (if1) and (if2), and the others are for-
blocks, (for1) and (for2).

In (if1), a value is assigned to variable rightEdgeOfDeclator, and
the variable is referred to in (for1) and (for2). It is possible to
extract the three blocks as different methods with adding a return
statement to the method of (if1).

In (for1), variables intID and start are assigned values to, and the
both variables are referred in (if2). Thus, it is difficult to extract
them as different methods, they has a strong horizontal coupling.
For extracting them as different methods, we have to prepare a class
that can store the both data. In this case, it is realistic that (for1)
and (if2) are extracted as a single method with adding an argument
for rightEdgeOfDeclarator to the method.

5. FUTURE WORK
5.1 Applying Program Slicing
The approach described in this paper is work-in-progress and we
have many things to sophisticate it. The biggest problem is that,
we think, the approach cannot identify statements related with the
specified block. In the case of Figure 5(a), the statement in line
41 are related with both (if1) and (while1). The statement refers to
variable DirSets which is assigned to in (if1), and it assigns a value
to variable e which is referred to in (while1).

We are going to apply program slicing technique to identify such
statements. Program slicing is performed from the externally de-
fined variables in the specified block. The program slicing can
identify statements related with the block. Figure 6 illustrates how
(if1) can be extracted with the current approach and the approach
with program slicing. The example is an actual source code iden-
tified in Ant, which is also represented as Figure 5(a). In the cur-
rent approach (Figure 6(a)), the definition of variable dirSets ex-
ists in method parsePackage after extracting (if1). That means the
variable can be accessed in the method, and it may be used in the
method accidentally. In the future approach (Figure 6(b)), the defi-
nition of variable DirSets is moved to the extracted method. Thus,
the variable cannot be accessed in method parsePachages, which
can prevent the variable from begin used in the method acciden-
tally.

00:private void parsePackages(Vector pn, Path sp) {01: Vector addedPackages = new Vector();02: Vector dirSets = getDirSets();40: 41: Enumeration e = dirSets.elements();42: while (e.hasMoreElements()) {・・・・・・・・78: }79:}while1
00:private void parsePackages(Vector pn, Path sp) {01: Vector addedPackages = new Vector();02: Vector dirSets = getDirSets();40: 41: Enumeration e = dirSets.elements();42: while (e.hasMoreElements()) {・・・・・・・・78: }79:}while1while1

(a) Current Extraction00:private void parsePackages(Vector pn, Path sp) {01: Vector addedPackages = new Vector();40: 41: Enumeration e = getDirSetsEnumeration();42: while (e.hasMoreElements()) {・・・・・・・・78: }79:}while1
00:private void parsePackages(Vector pn, Path sp) {01: Vector addedPackages = new Vector();40: 41: Enumeration e = getDirSetsEnumeration();42: while (e.hasMoreElements()) {・・・・・・・・78: }79:}while1while1

(b) Future Extraction

Figure 6: Examples of Current and Future Extraction

5.2 Correlation with other metrics
In this paper, we proposed a new metric ALV (Available Local Vari-
able), which should be a indicator whether or not the block should
be refactored or not. We have to evaluate whether the metrics have
a correlation with the number of bugs or other metrics. We are
going to evaluate correlations with CK metrics suite [3].

5.3 Interview
In addition to quantitative evaluation described in Section 5.3, we
are going to conduct interviews with developers of target software
systems. Interview will provide us information that cannot be pro-
vided from the quantitative evaluation. The targets are both com-
mercial and open source systems, and we will get different com-
ments from the developers.

6. CONCLUSION
In this paper, we described an approach to reconstruct methods in
object oriented systems. The approach performs source code anal-
ysis for (1)identifying spots to be improved, (2)suggesting how the
spots to be improved, and (3)estimating the effects of the refactor-
ings. this information is provided to the users automatically. The
users determines whether the refactoring should be performed or
not by themselves. At the end, we have to say that the approach is
work-in-progress and we have many future works.

7. REFERENCES
[1] NetBeans. http://www.netbeans.org.
[2] Refactoring home page. http://www.refactoring.com/.
[3] S. Chidamber and C. Kemerer. A Metric Suite for Object-Oriented

Design. IEEE Transactions on Software Engineering, 25(5):476–493,
Jun 1994.

[4] Eclipse. http://www.eclipse.org/.
[5] M. Fowlor. Refactoring: improving the design of existing code.

Addison Wesley, 1999.
[6] T. Macabe. A Complexity Measure. IEEE Transactions on Software

Engineering, 2(4):308–320, Dec 1976.
[7] T. Mens and T. Tourwe. A survey of software refactoring. IEEE

Transactions on Software Engineering, 30(2):126–139, Feb 2004.

