
An Experience Report on Analyzing Industrial Software

Systems Using Code Clone Detection Techniques

Norihiro Yoshida
Graduate School of Infomation Science,

Nara Institute of Science and Technology

Email: yoshida@is.naist.jp

Yoshiki Higo, Shinji Kusumoto, Katsuro Inoue
Graduate School of Information Science and Technology,

Osaka University

Email: {higo, kusumoto, inoue}@ist.osaka-u.ac.jp

Abstract—A variety of application results of code clone de-
tection and analysis has been reported. There are many reports
of code clone detection and analysis on open source software
whereas few reports on industrial systems are open to the
public. This paper reports an experience of code clone analysis
on a governmental project. In the project, a software system
was developed by multiple Japanese vendors. We detected and
analyzed code clones in the system, and found that there were
many code clones in the project, however we concluded that the
presence of the code clones did not have negative impacts on the
maintenance of the system because of the following reasons: (1)
when different modules are similar to each other in the design
document, they also share many code clones in the source code;
(2) code clones located in trusted modules, which are libraries
maintained by one of the companies.

I. INTRODUCTION

It is a general opinion that the presence of code clones

makes software maintenance more difficult. A code clone is a

code fragment that has identical or similar code fragments to

it in the source code. Code clones are introduced by various

reasons such as reusing code by ‘copy and paste’. If we modify

a code clone with many similar code fragments, it is necessary

to consider whether or not we have to modify each of them.

Especially, for large-scale software, such a process is very

complicated and expensive. We sometimes overlook some of

code fragments which should be modified simultaneously [4],

[7], [8]. In order to detect code clones automatically, various

detection techniques have been proposed [1], [11].

Several research efforts have empirically investigated

whether the presence of duplicate code (code clones) is

harmful or not . There are several reports on the experiences of

such code clone analyses on open source software [3], [6], [9],

[10]. Recently, code clone detections and analyses have started

to be applied to industrial software systems in companies [12]:

however, few reports on industrial software systems are open

to the public because of security or other kinds of reasons.

In this paper, we report an empirical study of code clone

investigation on a closed source software. The target system

was developed in a governmental project. The system is a

kind of Probe Information System, which is a system that

regards a vehicle as a moving sensor. The results of sensing

are transformed to the center. The center provides useful

information by analyzing, accumulating and converting the

sensing results.

The system was developed by five Japanese vendors. Every

vendor was assigned a subsystem to be developed. The vendors

hardly communicated one another during the development.

The project manager, who was independent of any of the

vendors, could not see the state of the source code, the number

of man-hour, and the status of development process (e.g.,

outsourcing companies, required human resources) 1. On the

periodic meetings that the project manager held, each vendor

manager reported only the followings:

• a brief summary of current development state, and

• difference between the actual progress and the plan.

For helping such a blind management of the manager, we

conducted a code clone analysis. The purpose was for grasping

the state of the black-boxed source code.

The remainder of this paper is organized as follows: Section

II explains CCFinder and Gemini, which we used for analyzing

the target system; Section III shows the experimental result;

Section IV discusses what we got from the application; Section

V concludes this paper.

II. TOOLS FOR CODE CLONE DETECTION AND ANALYSIS

This section explains the code clone tools that we used in

the case study. Due to space limitation, we cannot describe all

the features of CCFinder and Gemini. If you get interested in

the tools, please refer to [2], [5].

CCFinder detects code clones from source programs, and

it outputs the locations of the code clones on the source

programs [5]. In the detection processing, CCFinder replaces

user-defined identifiers such as variable names with special

tokens, so that it can regard two similar code fragments as code

clones even if they include different user-defined identifiers.

The minimum size of code clones to be detected is set by a

user in advance. CCFinder can complete code clone detection

from systems of millions line scale in a practical timeframe.

Gemini is a code clone analysis tool [2]. Gemini takes an

output of CCFinder, and visualizes the code clones included in

it with several viewers. The followings are its main features.

RNR Metric: We had learned that automatic code clone

detection by tools produces many false positives [2]. Herein, a

1Every of the five vendors are a competitor of the others in the many fields
of home electronics, so that it did not report the details of its process and
products to the project manager.

2012 19th Asia-Pacific Software Engineering Conference

1530-1362/12 $26.00 © 2012 IEEE

DOI 10.1109/APSEC.2012.98

310

� � � � � �� � �� � � � � � �� � �

	
� 	�� 	��

	

�

	
�
�

	
�
�

	�

� ��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

�
�

��

	

�

�

�
� ���

�

�

�
�
�

F1, F2��	���	���������
D1, D2���������������
���
���

Fig. 1. Model of Scatter Plot

false positive means a code clone whose existence information

is useless when using code clone information in software

development or maintenance. For filtering out such code

clones, we developed metric RNR, and concluded that an

appropriate threshold of RNR is 0.5 [2]. If the RNR value

of a code clone is lower than the threshold, it is regarded as

a false positive.

Scatter Plot: Scatter plot is a bird’s eye view visualization

method for code clones. Figure 1 illustrates a model of scatter

plot. Both the vertical and horizontal axes represent token

sequences included in the source files that are sorted alpha-

betically by their file path. Source files in the same directory

are close to each other. A pair of code clones is shown as a

diagonal lime segment. Each dot on diagonal line segments

means the corresponding tokens on the horizontal and vertical

axes are identical. The dots are spread symmetrically with a

diagonal line from the upper left corner to the bottom right.

Using scatter plot, the distribution state of code clones can be

grasped at a glance.

Code Clone Metrics and File Metrics: Gemini charac-

terizes code clones and source files using several quantitative

metrics. Also, Gemini has selective mechanisms of character-

ized code clones and files, so that we can easily select any

of them that has caracteristics that we are interested in. For

example, we used the number of quivalent code clones as a

code clone metric, and the duplicate proportion of source files

as a file metric.

III. EXPERIMENTAL RESULT

Herein, we describe the experimental result. The system

is written in C/C++. The total LOC of the system is about

hundreds thousand lines, and the source code after the com-

��� ���� ���� ���� ���� 	���

��
�����

���
�����

���
�����

���
�����

���
������

�������������������� ����������������

Fig. 2. Transition of the duplicated proportion of company Y

bined test is 20 thousands greater than the one after the unit

test. The analysis was conducted on each vendor’s source

code separately. In this application, we used 30 tokens as the

minimum size of code clones that CCFinder detects. We also

used 0.5 as the threshold of the RNR metric.

The analysis described in Subsections III-B, III-C, and III-D

are for the source code after the combined testing.

A. Duplicate Proportion of Source Code

We analyzed how the amount of code clones after the unit

testing is different from the one after the combined testing.

Table I illustrates the number of code clones and the duplicate

proportion of the subsystems after the unit testing and after

the combined testing. In the subsystem developed by company

Y, the number of code clones after the combined testing is

remarkably greater than the one after the unit testing. Usually,

after unit testing, no new function is added to the system. Thus

we had predicted that the amounts of code clones between

them were not so different.

Figure 2 shows how much source files had duplications. We

can see that the number of high duplicated files was greatly

increased. Also, Figure 3 shows code clones between the two

versions and within each version of the source code of a

subsystem developed by company Y. We can see that a part

of the source files after combined testing is not included in

the source code after unit testing (see area “E” in Figure 3).

There are many code clones within the part of source files

after combined testing (see area “D” in Figure). We thought

TABLE I
AMOUNT OF CODE CLONES IN SUBSYSTEMS

Co.
After unit testing After combined testing

of clones
Duplicate

of clones
Duplicate

proportion proportion
V 259 33.9% 259 33.4%
W 369 27.3% 379 26.2%
X 4,483 55.3% 4,768 50.8%
Y 6,747 42.6% 7,628 46.0%
Z 2,450 56.2% 2,505 56.3%

311

A�
B�
C�

D�

E�

after unit testing�

af
te

r u
ni

t t
es

tin
g�

after combined testing�

af
te

r c
om

bi
ne

d
te

st
in

g�

Fig. 3. Screen shot of Scatter Plot

that it was a very unusual case and interviewed the developers

of company Y: they said that these files were added just before

the combined testing to implement some new functions; the

added files were library code managed in company Y, and

they had used in many software developments; they contained

many code clones but they were very stable because they had

been managed in many projects.

B. Distribution of Code Clones
In Figure 3, there were many code clones in area “A”. These

code clones were shared by different directories (different

modules). These directories treated geographical information

of vehicles, and each directory was for a kind of vehicles.

The above means each directory treated different information,

nevertheless, the logics were the same, which were detected

as code clones.

In area “B”, we found that there were many operations

related to database. Statements building SQL queries became

code clones. Also, in area “C”, a large number of code clones

were detected. In area “C ”, there were several directories,

each of which included initialization function and finalization

functions of a certain functionalities. Such initialization and

finalization functions shared many code clones.

C. Subjective Evaluation by Project Manager

We herein introduce some discriminative code clones.

1) Longest code clone: In a subsystem, we detected a pair

of code clones whose length (the number of tokens included

in the code clone) is 154 lines. One is in file “AAXXBB.cpp”

and the other is in “AYYBB.cpp”. In the code fragment of

AAYYBB.cpp, some method names and comments included

312

string “XX”. This implies that a ‘copy and paste’ from

AAXXBB.cpp to AAYYBB.cpp is performed, and forgot to

modify some of names.
2) Most occurrence code clone: In all subsystems, most

occurrence code clones are data validity check code (checking

by using if-statement, and if not valid output error). The data

formats are different from vendor to vendor, however the

processes of validity checking were the same logic.
3) Code clone occurred in most source files: In a subsys-

tem, we detected a set of code clones occurred in 8 source

files. The code clones are implementations checking whether

the target string ends with NULL or not. If not, Null is added

to its end. These code clones deemed to be merged easily

hence each of them is a whole function.

D. File Metrics Analysis
Herein, we describe some discriminative source files.
1) Source file containing most code clones: In a subsystem,

we detected a source file containing 358 code clones. The code

clones were scattered all over the file. They are both within-file

code clones and across-files code clones. These code clones

deemed not to be particularly problematical, nevertheless we

thought that the maintainability of the file is not good.
2) Most duplicated source file: The duplicated ratio of

two source files included in a subsystem was 96%. One is

for online process, and the other is for offline process. We

interviewed the developers of the system: they decided to

separate implementations of the two processes before coding,

and so they know the existence of the code clones.
3) Source files sharing code clones with most other source

files: There was a source file sharing code clones with

other 13 source files. The files included various input/output

processings, each of which was duplicated with a part of the

other files. Code clones were well understood logics, and they

were not problematic.

IV. DISCUSSION

This section describes what we got from the analysis of the

industrial software system. Code clone analysis can be utilized

for checking outsourced source code. If the amount of money

to the outsourcing company is decided based on the size of

the source code, the developers in the company may increase

the size unnecessarily by using ‘copy and paste’. There may

be fully duplicated source files: we actually expose such a

case in the past. If the scale of a software system is large,

manual checking is unrealistic. However, automated code

clone detection by tools can easily detect such inappropriate

duplications.
Another usage is regarding duplicated modules as wrong

designed parts, and utilizing the information so as not to repeat

the same mistakes in the future. We think that we have to pay

particular attentions to code clones that we didn’t know their

existences. Revealing why the code clones were created is an

important activity for the next project.
We described two usages of code clones analysis, however

there are other usages. Code clone analysis has a high general

versatility because all it requires is only the source code.

V. CONCLUSION

In this paper, we reported a case study of code clone analysis

on an industrial software system. We detect code clones from

two versions of source code of the target system: one was

source code after unit testing; the other was source code after

combined testing. We found that 20 thousands LOC code

was added to the system, and the added code included a

large number of code clones: however, the added code was

very stable (the code was a library used in the company)

and the developers said that there was no problem in the

added code. Also, we identified that there were many code

clone from the source code after combined testing. Due to

time limitation of analyzing code, we could not investigate

all the detected code clones. Alternatively, we investigated

some code clones that had discriminative features: however,

we could not find problematic code clones that had a negative

impact on software development. Currently, we conduct joint

research on other companies. In the current research, we found

some problematic code clones. Consequently, we are going to

investigate characteristics of problematic and non-problematic

code clones.

REFERENCES

[1] Clone Detection Literature. http://www.cis.uab.edu/tairasr/clones/
literature/.

[2] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method and Implemen-
tation for Investigating Code Clones in a Software System. Information
and Software Technology, 49(9-10):985–998, Sep. 2007.

[3] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is Duplicate Code More
Frequently Modified than Non-duplicate Code in Software Evolution?:
An Emprical Study on Open Source Software. In Proc. of the 4th
International Joint ERCIM/IWPSE Symposium on Software Evolution,
pages 73–82, Sep. 2010.

[4] K. Inoue, Y. Higo, N. Yoshida, E. Choi, S. Kusumoto, K. Kim, W. Park,
and E. Lee. Experience of Finding Inconsistently-Changed Bugs in Code
Clones of Mobile Software. In Proc. of the 6th International Workshop
of Software Clones, pages 94–95, June 2012.

[5] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE Transactions on Software Engineering, 28(7):654–670, July
2002.

[6] J. Krinke. Is Cloned Code more stable than Non-Cloned Code? In
Proc. of the 8th IEEE International Working Conference on Source Code
Analysis and Manupulation, pages 57–66, Oct. 2008.

[7] J. Li and M. D. Ernst. CBCD: Cloned Buggy Code Detector. In Proc.
of the 34th International Conference on Software Engineering, pages
310–320, June 2012.

[8] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding Copy-Paste
and Related Bugs in Large-Scale Software Code. IEEE Transactions on
Software Engineering, 32(3):176–192, Mar. 2006.

[9] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluating the relation
between changeability decay and the characteristics of clones and
methods. In Proc. of the 23rd International Conference on Automated
Software Engineering, pages 100–109, Sep. 2008.

[10] M. Modal, C. K. Roy, M. S. Rahman, R. K. Saha, J. Krinke, and K. A.
Schneider. Comparative Stability of Cloned and Non-cloned Code: An
Empirical Study. In Proc. of the 27th ACM Symposium on Applied
Computing, Mar. 2012.

[11] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming, 74(7):470–495, May 2009.

[12] K. Yoshimura. Visualizing Code Clone Outbreak: An Industrial Case
Study. In Proc. of the 6th International Workshop of Software Clones,
pages 96–97, June 2012.

313

