
A Study of Student Experience Metrics for Software Development PBL

Umekawa Kohichi, Hiroshi Igaki, Yoshiki Higo, Shinji Kusumoto

Graduate School of Information Science and Technology
Osaka University

Osaka, Japan
k-umekaw@ist.osaka-u.ac.jp, igaki@ist.osaka-u.ac.jp, higo@ist.osaka-u.ac.jp, kusumoto@ist.osaka-u.ac.jp

Abstract—In recent years, the increased failure originated
in the software defects, in various information systems
causes a serious social problem. In order to build a high-
quality software, cultivation of ICT(Information and Com-
munication Technology) human resources like a software
engineer is required. A software development PBL(Project-
based Learning) is the educational technique which lets
students acquire knowledge and skill spontaneously through
practical software development. In PBL, on the other hand, it
is difficult to evaluate not only the quality of the product but
also the quality of the development process in the project.
In this paper, we propose the student evaluation metrics
to assess the development process in PBL. The student
evaluation metrics represent LOC(Lines of Code) and de-
velopment time for each product developed by a student. By
using online storage, these metrics can be measured and
visualized automatically. We conducted an experiment to
evaluate the accuracy of the metrics about development time.
As a result, we confirmed that development time metrics can
be measured with approximately 20% of error.

Keywords-metrics; PBL; process improvement; visualiza-
tion;

I. INTRODUCTION

In recent years, software problems are increasing, and

it is becoming a serious social problem. It is pointed out

that quality and quantity of talented people for building

good software are insufficient. Training of sophisticated

ICT(Information and Communication Technology) tal-

ented people is required in the industrial world. In the

university, including department of information, education

and learning technique called PBL(Project-based Learn-

ing) based on actual software development are performed

with various forms[1]. The PBL is an educational system

which aims at advanced ICT talented people’s training and

provides an opportunity of autonomous study for students.

Students form a group and tackle several practical tasks.

In this paper, we focus on the software development PBL

in which students develop actual software product. In

such kinds of PBL, students can learn skills of project

management or communication practically through the

software development. Usually, multiple students in the

same group cooperate in the software development. Then,

it is difficult for a teacher to evaluate how much the

individual student contributed to the development group.

We propose a method which collects development logs

of each student in the software development PBL with

using an online storage service. Based on the method,

we realized analysis and visualization environment which

evaluate experiences of the individual student with little

effort of students and teachers. Henceforth, in section 2,

we describe the existing research on evaluation methods

for the software development PBL. Section 3 denotes

about our proposed method including several metrics for

evaluating students’ experience. Section 4 presents imple-

mentation of our system. We write an experiment and a

discussion about our system in section 5 and 6.

II. PRELIMINARY

A. Software Development PBL
In this paper, we call the software development PBL a

SDPBL[2]. The following subjects may be given to the

group of the students who develop a project, in addition

to the feature of common PBL.

T1: Can the product which fulfills given specification

be implemented within a certain period deliber-

ately?

T2: Are the tasks appropriately shared within the

project group?

T3: Can the required tasks fully be carried out in the

group?

The SDPBL is an educational approach which trains

students devising Project Management skills for smooth

software development process spontaneously. Therefore,

the student group needs to manage their development pro-

cess in the viewpoint of time for delivery, task assignment

and software quality. T1 is related to time for delivery.

The student group manages software development process

and must protect the given time for delivery. T2 indicates

that every student should have the same chance to acquire

experience of software development in the SDPBL. The

student group needs to progress software development

efficiently, taking T2 into consideration. T3 is related to

software product quality. In order to develop high-quality

software, students must perform not only implementing

but tests and reviews for products.
ITSpiral[3] contains the SDPBL program. In the

SDPBL program, through the experience of group soft-

ware development, the students learn the difficulty of

working in a group and the importance of all-around

skills such as communications, schedule management, and

project management. Furthermore, through looking the

development process back, the students obtain the further

understanding of the development process and process

improvement.
Shibaura Institute of Technology performs a class about

PBL which is named advanced information practice 1B[4].

2012 13th ACIS International Conference on Software Engineering,  Artificial Intelligence, Networking and Parallel/Distributed

Computing

978-0-7695-4761-9/12 $26.00 © 2012 IEEE

DOI 10.1109/SNPD.2012.76

465



In the class, groups of students develop several kinds

of products such as documents and source codes. This

class aims at training of creativity and the problem-solving

capability for advanced ICT talented people.

SDPBL environment differs for every school. Defini-

tions of the environment which is used in many SDPBLs

are shown below.

P1: Development environment to work on the devel-

opment project is used by the students.

P2: Development support environment supports the

development process.

P3: Teaching support environment facilitates the

analyses of the development process by instruc-

tors.

B. Evaluation for Each Student and Group in SDPBL

Evaluation in SDPBL is performed for each group and

each student. An instructor in SDPBL usually adopts the

evaluation approach shown below.

E1: Evaluation by an instructor’s subjectivity

E2: Evaluation by an examination or a report about

SDPBL by each student

E3: Evaluation by a questionnaire by each student

and group

In E1, an instructor observes and estimates the progress

of development of each group and student. The instructor

evaluates subjectively, and load of the evaluation is so

heavy. In E2, an instructor gives a report or an examination

based on the group development in SDPBL to the students

and evaluates by the result. Although the report and the

examination are essential in the view point of estimation

of comprehension about the group development, it is

necessary to examine carefully whether the examination

or the report are in agreement with the contents of the

SDPBL. The E3 contains a group questionnaire and a

student questionnaire. The questionnaires are significant

in the meaning of grasp of students’ subjective evaluation

qualitatively.

As a result, almost all conventional evaluation approach

aims at estimating students and groups qualitatively. The

software management method PSP(Personal Software Pro-

cess) is one of the method which evaluates a student

quantitatively[5]. In the PSP, individual development data

are recorded based on strictly-defined metrics. The de-

velopment process based on the PSP enables evaluation

using recorded individual development data. However, the

development data collected by each developer manually

may often be inaccurate. Then, we propose the metrics

which enables evaluation of each student development

experience in the SDPBL.

III. STUDENT EXPERIENCE EVALUATION METRICS

FOR SOFTWARE DEVELOPMENT PBL

Our proposed student experience evaluation metrics

consists of the following key ideas.

K1: Automatic collection of development logs by

using an online storage service.

K2: Detailed development experience metrics for ev-

ery student based on the development logs.

K3: Contribution evaluation method by the compar-

ison of development experience metrics in a

group.

We use the online storage service ”Dropbox”[6]. Dropbox

shares data in a user’s HDD between two or more PCs

through the online storage service on the Internet.

We share students’ working directories with an in-

structor using the online storage. The online storage has

the function of Version Control System, and the storage

records contents of files whenever a user saves files. Our

system collects contents of files recorded by the storage as

the user’s fine-grained development log. Based on the col-

lected development log, our system measures experience

of each student such as development time and lines of

code. Comparing an individual’s measured quantitative

experience within a group indicates contribution degree to

a project for each student. Henceforth, we explain these

key ideas in detail.

[
{

"rev": "40000000d",
"bytes": 0,
"modified": "Wed, 20 Jul 2011 22:41:09 +0000",
"path": "/hi2",
"is_dir": false,
"mime_type": "application/octet-stream"

},
{

"rev": "10000000d",
"bytes": 3,
"modified": "Wed, 20 Jul 2011 22:40:43 +0000",
"path": "/hi2",
"is_dir": false,
"mime_type": "application/octet-stream"

}
]

Figure 1. Version information examples by the API of the storage
service

A. Collecting Development Log using Online Storage Ser-
vice

The online storage service ”Dropbox” has the following

features.

F1: The data in a folder specified by a user are saved

automatically at the storage on the service.

F2: The storage service has a feature of Version

Control System.

F3: The folder specified by a user is sharable with

other users.

F4: APIs for accessing the storage service are exhib-

ited.

By using the online storage service, whenever a user

updates any file, time stamp, and the contents of files

are recorded. All history of the recorded files can be

accessed through the APIs by users. The API of the

storage service returns version information for every file

as shown in the figure1. In the version information, ”rev”,

”bytes”, ”modified”, ”path”, and ”mime type” indicate a

version number, a size of the file, an updated time, path

information of the file, and a type of the file respectively.

466



Figure 2. Example of the accumulated LOC

Figure 3. Example of the accumulated development time

By using such online storage service and APIs, the

fine-grained development log than the existing version

control system is collectable for each user. In the following

section, we describe our metrics using this development

log.

B. Development Experience Metrics of Each User

Development Experience Metrics contains two kinds of

metrics. The 1st metrics is an accumulated LOC of a

product implemented by a student until a certain time.

When a student implements a product, addition, deletion,

and change to the file are performed. Here, we define the

accumulated LOC as the total of the lines of code added

by the student, after the file is newly created. In addition,

the number of change lines is included in the accumulated

LOC as the number of lines is added after deletion.

In order to measure the accumulated LOC, all the

version information of the files implemented by each

student is collected through the API of the online storage

service. As shown in the figure 2, suppose that two or more

versions of a certain file A exist in the online storage. Our

system acquires all the version information of a certain file

through the API and calculates the diff between adjoining

version.

In this example, the diff between ver1 and ver2 of the

file A is add 5(LOC) and change 2(LOC). Similarly, the

diff between ver2 and ver3 is add 10 and change3. As a

Figure 4. Example of comparison about aLOC within a group

result, the accumulated LOC(aLOC) of the file A to ver3

is add 15 and change 5, or simply 20 aLOC.
The 2nd metrics is an accumulated development time

for every file. The online storage records contents of the

file information on the service, whenever a user saves a

file. Then, we measure the accumulated development time

based on the update time of all files saved by a user.

Step1: Collects history of update time of all files which

are saved by a certain user.

Step2: Sorts all versions of all the files in order of

update time.

Step3: Calculates the diff of the update time between

two continuous versions of files.

Step4: Adds the diff of the update time to the file

updated subsequently as the accumulated devel-

opment time of the file, if the diff of the update

time is below predefined threshold.

The figure 3 shows an example of the accumulated

development time. In the figure, all versions of all files are

sorted in order of update time. The diff of the update time

between ver1 of file A and ver 1 of file B is 20 minutes.

Here, suppose that threshold about the diff of update time

is 1hour. The diff of the update time 20 minutes is added

to the accumulated development time of file B. Similarly,

15 minutes and 28 minutes are added to the accumulated

development time of file C and file B respectively. As a

result, the accumulated development time(aDEV) of the

file A, B, C in this example are calculated as 0 minutes,

48 minutes and 15 minutes respectively.
As the above example shows, the online storage service

cannot record the start time of user’s development. We

have to take into consideration the error about the de-

velopment start time, when we measure the accumulated

development time.

C. Evaluating Contribution of Students in Development
Group

We calculated the accumulated LOC and the accumu-

lated development time of each product file which each

467



Figure 5. Example of comparison about aDEV within a group

student has developed on the online storage. Visualization

of comparison about our metrics within a group can

make students recognize the deviation of the work load

of group development. The figure 4 shows an example

of the bar graph about aLOC for every member within a

group. This example indicates that the difference of aLOC

between member 1,5 and member 2,3 and 4 is very large.

Considering that the SDPBL is the educational approach,

it is desirable that the experience which students get to

be qualitatively or quantitatively similar among several

students.

Similarly, the figure 5 shows an example of the pie chart

indicating the percentage of the accumulated development

time in the group. Combining Figure 4 and Figure 5 makes

it easy to grasp the situation of SDPBL. For example,

although the aDEV of member 1 is long, there are few

aLOC of the member. The monitoring result may imply

that the member 1 tackles too difficult problem about his

development.

IV. IMPLEMENTATION

We adopted Java SE 6 update 20 and JavaScript as

development languages for our system and developed on

the Eclipse 3.7 and the NetBeans IDE 7.0.11. We used

Dropbox4j[7] to access Dropbox API using OAuth, and

db4o for saving proposed metrics as DBMS. Furthermore,

DWR framework[8] was adopted for integrating Java and

JavaScript to create our Ajax web application. We used

jQuery and jqplot[9] of the JavaScript library for the

purpose of visualizing our metrics.

V. EXPERIMENT FOR ESTIMATING ERRORS OF THE

ACCUMULATED DEVELOPMENT TIME

Although we can collect the update time of each file, we

cannot know a student’s operation start time. Since exact

operation start time cannot be obtained, the threshold or a

work environment may affect the magnitude of the error

on the aDEV. Therefore, in this research, we conducted an

evaluation experiment for checking the magnitude of the

Figure 6. Magnitude of the error rate in application development

Figure 7. Magnitude of the error rate in paper writing

error about the accumulated development time measured

by our system.

In the experiment, 6 students developed products on

the online storage service. We used an application called

WorkTimer to record actual development log, i.e., opera-

tion start time, and finish time for each development task

manually.

Based on the actual development log for about two days

captured by each student with WorkTimer, we analyzed

the error between aDEV and the actual development log.

In addition, students conducted two kinds of development

task. One is Java application development and another is

paper writing. Figure 6 and 7 show the relation between

the value of the threshold for calculating the aDEV, and

the magnitude of the error in application development and

paper writing, respectively. In the figure, a threshold is

displayed on the horizontal axis, and the magnitude of the

error of aDEV is displayed on the vertical axis.

The result of the figure 6 shows that the error decreased

to about 20.5 %, when we set up the threshold to 50

minutes in application development. Another result of the

figure 7 shows that the error decreased to about 31 %,

when we set up the threshold to 80 minutes in application

development. The magnitude of the error varied with the

kinds of task. This difference is considered to originate

from the difference of development environment. In this

experiment, every student developed the Java application

468



on Eclipse IDE, and wrote the paper using a text editor. In

the development on the Eclipse, the students have to save

the source code files at the time of compile or execution of

the Java application. In the development on the text editor,

the students save files by their decision. That is, in the

application development, files are saved more frequently.

VI. DISCUSSION

In this paper, we proposed two kinds of metrics to mea-

sure and evaluate the experience of the students on group

development in SDPBL. Those metrics can be measured,

merely by setting up the online storage service. In the

experiment, we checked that the accumulated development

time was measurable with about 30 In almost all the

results of the experiment, values smaller than the actual

development time measured by the student manually were

calculated as aDEV. We consider that more exact aDEV

can be measurable by adding the development time in

consideration of the error than our current system.

The experimental result indicated that the adequate

value of the threshold to calculate the aDEV should

be determined based on the development environment

of users. We are planning to propose automatic setting

method of the threshold value, based on the type of files

or a development environment.

Hackystat is a monitoring environment for collecting

development log of each user[10]. This environment can

collect a history of user control such as editing, opening,

and closing of a file by adding a plug-in called ”sensor”

to a development environment, such as eclipse. Although

the hackystat can collect development log more detailed

than our system, there is a problem that the development

environment which can be used, is restricted.

We are going to apply these metrics to the educational

methods in SDPBL in order to improve PM technique.

VII. CONCLUSION

In this research, we proposed two kinds of student

experience metrics, an accumulated LOC and an accu-

mulated development time to visualize and compare the

effort of each student in SDPBL quantitatively. The online

storage service made it possible to collect the development

logs of each student for measuring such metrics at a low

cost. We are planning to improve the accuracy of the

accumulated development time with using an estimation

method of operation start time based on the accumulated

LOC.

ACKNOWLEDGMENT

This research was partially supported by the Japan Min-

istry of Education, Science, Sports, and Culture [Young

Scientists (B) (No.24700030)]

REFERENCES

[1] E. de Graaff and A. Kolmos, Management of Change Imple-
mentation of Problem-Based and Project-Based Learning
in Engineering. Sense Publishers, 2006.

[2] N. Fukuyasu, S. Saiki, Y. Mizutani, H. Igaki, and Y. Man-
abe, “An adaptive teaching on software development PBL,”
Japanese Society for Information and Systems in Education,
vol. 26, no. 7, pp. 169–176, 3 2012, (in Japanese).

[3] IT Spiral, “IT Specialist Program Initiative for Reality-
based Advanced Learning,” http://it-spiral.ist.osaka-
u.ac.jp/index.html.

[4] S. Komiya, “Exercise Class for Software Development
technique based on PBL,” http://www.grace-
center.jp/downloads/itsp/talk7.pdf, 2011, (in Japanese).

[5] M. Unterkalmsteiner, T. Gorschek, A. Islam, C. Cheng,
R. Permadi, and R. Feldt, “Evaluation and measurement
of software process improvement-a systematic literature
review,” IEEE Transactions on Software Engineering,,
vol. 38, no. 2, pp. 398 – 424, 2011.

[6] Dropbox Inc., “Dropbox,” https://www.dropbox.com/.

[7] “Dropbox4j,” https://github.com/Frostman/dropbox4j.

[8] “Dwr - easy ajax for java,”
http://directwebremoting.org/dwr/index.html.

[9] “jqplot,” http://www.jqplot.com/.

[10] P. Johnson, “Requirement and design trade-offs in hack-
ystat: An in-process software engineering measurement
and analysis system,” in Proc. of 1st Int. Symposium on
Empirical Software Engineering and Measurement, IEEE
Computer Society Press, 2007.

469


