
Move Code Refactoring with Dynamic Analysis

Shuhei Kimura, Yoshiki Higo, Hiroshi Igaki and Shinji Kusumoto
Graduate School of Information Science and Technology

Osaka University
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

Email: {s-kimura, higo, igaki, kusumoto}@ist.osaka-u.ac.jp

Abstract—In order to reduce coupling and increase cohesion,
we refactor program source code. Previous research efforts for
suggesting candidates of such refactorings are based on static
analysis, which obtains relations among classes or methods
from source code. However, these approaches cannot obtain
runtime information such as repetition count of loop, dynamic
dispatch and actual execution path. Therefore, previous ap-
proaches might miss some refactoring opportunities. To tackle
this problem, we propose a technique to find refactoring
candidates by analyzing method traces. We have implemented
a prototype tool based on the proposed technique and eval-
uated the technique on two software systems. As a result,
we confirmed that the proposed technique could detect some
refactoring candidates, which increase code quality.

Keywords-refactoring; dynamic analysis; Move Method
refactoring; software maintenance

I. INTRODUCTION

In the case of a large project, it is difficult to keep
high quality of software design because many programmers
develop code to satisfy various requirements [1]. To solve the
problem, we apply refactoring to source code. Refactoring
is a technique for improving software quality of design and
is defined as “does not alter the external behavior of the
code, yet improves its internal structure” [2]. Until now,
many refactoring support techniques have been proposed,
and they are based on static analysis [3], [4].

Dynamic analysis is a technique that analyzes the data
gathered during “program executions”, instead of analyzing
its source code. Through executing a program, we can obtain
an actual program behavior, which cannot be obtained from
its source code. For example, the number of invocations of
every method, results of dynamic dispatch, actual method
invocation sequences, and so on.

In this paper, we propose a technique to detect refactoring
candidates by analyzing method traces. A method trace is
a log containing sequential method invocations in program
execution. Our proposed technique detects irregular methods
in the same class as refactoring candidates. Herein, an irreg-
ular method means that it appears in different phases [5]. The
quality of source code increases by moving these methods to
appropriate classes because they cooperate with one another
in a program execution. In other words, static structure of
source code correspond to dynamic functionalities.

We have implemented a prototype tool based on the pro-
posed technique and evaluated it on two software systems.
As a result, we confirmed that the proposed technique can
detect some refactoring candidates which can increase code
quality by moving them. This paper makes the following
contributions:

• A new refactoring support technique. Our technique
analyzes method traces to detect refactoring candi-
dates. This approach enables us to detect refactoring
candidates based on the relationship between methods
in program executions. It means that we can refactor
elements detected in a program execution (e.g. types,
methods actually called).

• Visualization. We visualize the phase data of methods
to find refactoring candidates easily. The visualization
also makes possible to understand characteristics of
refactoring candidates.

II. BACKGROUND

Tsantalis et al. proposed a methodology to identify Move
Method refactoring opportunities by solving many common
Feature Envy bad smells from source code [3]. They defined
the Jaccard distance between an entity (attribute or method)
and a class enabling the direct extraction of refactoring
suggestions. Besides, Tip et al. proposed refactoring method-
ology based on type constraint [4]. This technique calculates
relations between types of variables in source code. They
present the Extract Interface, Generalized Declared Type,
Infer Generic Type Arguments refactorings in the paper.

Like those works, previous approaches detect refactoring
candidates by analyzing source code. However, those meth-
ods, which are based on static analysis, did not consider
how program elements cooperate with one another in pro-
gram execution, so that those techniques might miss some
refactoring opportunities. For example, there is a problem
that we cannot obtain results of dynamic dispatch by using
static analysis. We show an example code of this problem
in Figure 1, which is a piece of code that a dynamic
dispatch appearing in a clone detector. This code shows a
problem of static analysis that we cannot get information of
“which instance of class Comparator〈T〉 is assigned to s”.

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

class SearchFiles{
static class FileSort implements Comparator<File>{

public int compare(File src, File target){
int diff = src.getName().compareTo(target.

getName());
return diff;

}
}
...
private static void ListPath(File dir) {

// dynamic dispatch
if(target.isFile())

s = new FileSort()
else

s = new ArraySort()
Arrays.sort(fs, s);

}
}

Figure 1. An example of code that using dynamic dispatch.

Program
Execution

Syntactic
Analysis

Clone
Detection

Result
Printing

Phase

FileOpen(), BuildingAST(),
CountEachElement(), ...

Figure 2. An image of phase.

In consequence, previous approaches might miss some of
refactoring opportunities.

Our proposed technique uses dynamic analysis for iden-
tification of refactoring candidates. This technique may
identify refactoring candidates, which are hard to be detected
by the technique using static analysis, so our technique is
complementary to previous approaches. The objective of this
research is to reveal the following question:

Research Question: Can we identify refactoring opportu-
nities by using dynamic analysis?

III. PHASE

According to [5], a program execution is composed of
multiple functions, and a gathering of methods that repre-
sents meaningful processing is named phase. Figure 2 is
an image of phases. In this figure, the program execution
divided three phases: Static Analysis, Clone Detection and
Result Printing. Each phase consists of method invocations
which is used for realizing a function. In the case of “Static
Analysis” phase, there are file-open method, AST building
method, element counting method, and so on. The reason
described above, a method appearing in different phases
means that it is used for different functionalities.

There is a tool to detect phases automatically, named
Amida [6]. Amida detects phase-changing-point from a
method trace and divides it into multiple phases. By dividing

Phase Count
View

Phase Count
Data

Executable
Jar

Test Case

Divided
Method

Trace

Step 2 Step 3

Step 4 Step 5
Refactoring
Candidates

2

8

7

9

0 4

0 0

0 0

7 0 0

1 0

Method
Trace

Step 1

Figure 3. Overview of the proposed technique.

method traces, the phases reflect how a program is executed,
such as repetition count and dynamic dispatch.

The large number of divided phases means that each phase
represents detailed functions. According to [6], the precision
of phase detection is over 90% when the number of output
phases is below the actual number of phases in a method
trace. In this research, our technique visualizes phase data, so
too many number of phases prevents us detecting refactoring
candidates. Thus, we adjusted the number of phases to nearly
10, for realizing the two requirements: precise phase division
and number which is easy to see after visualizing.

IV. PROPOSED TECHNIQUE

In this section, we describe steps for obtaining refactoring
candidates. Figure 3 shows the overview of the proposed
technique. The inputs of our technique is an executable Jar
file and a test case. The proposed technique detects Move
Code refactoring candidates with the inputs.

We have to decide test cases in advance because we need
test cases to use dynamic analysis techniques. The more test
cases we prepare, we can obtain results in more detailed.
However, execution of many test cases needs much time.
Thereby, we use only one test case in this paper.

The steps of the proposed technique are as follows.
(Step 1&2) Obtain a method trace and divided method

trace: We obtain a method trace by running the given
program with the given test case. After that, divide it into
multiple method traces which represents a phase.

(Step 3) Count invocations of each method in the same
phase: In a method trace, there are invocations of the same
method repeatedly appears. In this step, we count the number
of appearance of each method per phase by using the divided
method trace which are obtained in the previous step. As a
result, we obtain “phase count data”, which is the sequence
of counted numbers of method invocations per phase.

(Step 4) Visualize phase count data: In this step, we
visualize a phase count data (obtained in Step 3). The
technique how to visualize the phase count data are as
follows.

Figure 4. An example of a part of tool output.

We define a class as c, and methods belonging to class c
as m0,m1, ...,mn, the number of phases as N , the number
of invocations of mi in the phase a as pia . Additionally, the
sum of all counts of a method as Pi, given by

Pi =
N∑

k=0

pik (1)

We convert the number of methods invocations per phase
into the depth of color. When the number of invocation of
phase a in mi is pia , the ratio of the color depth (p′ia) is
given by

p′ia =
pia
Pi

(2)

We render p′i0 , p
′
i1
, ..., p′iN in the same line as cells which

are filled with each color depth. We repeat this step with
incrementing i from 0 to n.

As a result, we obtain “phase count view”. An example
of this output is Figure 4. As we can see, a method name
and a sequence of colored cells are displayed in each line.
Additionally, deep color represents many invocations of
the method in the phase, so the method is specialized the
function of the phase.

(Step 5) Detect refactoring candidates: We detect refac-
toring candidates by using the phase count view (obtained
in Step 4). The detailed step how to detect refactoring
candidates are as follows.

First, we classify methods in a class with their pattern
of the depth of color. For example, there are four methods
in Figure 4. “makeList”, “convertPhase”, “adjust” have a
similar pattern, and the pattern of “detectClone” is different
from those three methods. Thus, there are two classification:
one is a pattern that P3-P5 are filled, and another is a pattern
that only P1 is filled. Next, we detect minority classification
as irregular methods, and they are refactoring candidates.
In Figure 4, “detectClone” is an irregular method and a
refactoring candidate of Move Method refactoring.

Methods which have different patterns are used in differ-
ent functionalities, thus, they should be moved to different
classes if they are minority in a class. We discover irregular
methods in terms of appearance of the phase count view,
and each of them is regarded as a refactoring candidate.

Figure 5. The output for FRISC.

After the technique: If the candidates which have a unique
pattern of all patterns, they should be moved to a new
package. If the pattern of the candidates exists in other class,
the candidates should be moved to the class which has the
same pattern (Move Method refactoring). The candidates
are methods, but if all methods in a class are the same
candidates, the class should be moved to other package (that
is to say, Move Class refactoring). Additionally, when all
classes in a package are the same candidates, it can say
the same thing (that is to say, Move Package refactoring).
Like this, our technique supports detecting candidates of
refactorings which moves a piece of code (Move Code
refactoring), and the unit of moving is method, class or
package.

V. EVALUATION AND DISCUSSION

A. Experimental Design

The proposed technique has been evaluated on two soft-
ware systems, “FRISC” [7] and “MASU” [8]. FRISC is
a code clone detector written in Java language. That is a
relatively small software which has 8 files, 846 lines of
code, and 21 methods. On the other hand, MASU is a
metrics measurement tool written in Java language. That is a
larger software than FRISC, which has 1,153 files, 133,045
lines of code, and 3,957 methods in the newest version.
We prepared one test case for each target with their basic
functionality. We suggest refactoring candidates detected by
our technique to developers, and questioned whether the
refactoring candidates are appropriate.

B. Result

Figure 5 is a visualization result of our technique for
FRISC. We found 7 methods in FRISC and 58 methods
in MASU as refactoring candidates.

1) FRISC: According to Figure 5, there are four groups:
classes used only in P0 (green), classes used only in P1
(blue), classes used in P2-P6 (red), methods only using in
P6 (yellow). Blue pattern has 11 members of 18 methods, so
other groups (7 methods) are judged minority and refactoring
candidates. For example, “SearchFiles.java” showed as green
in Figure 5 is a refactoring candidate, and suggest moving
them into a new package to separate functionalities. We
suggested those refactoring candidates to the developers, as
a result, we obtained developers’ consent to our refactoring
candidates. Note that we remove “main” method from refac-
toring candidates because it is called only once in program
execution.

2) MASU: We found various refactoring candidates for
MASU. In this paper, we discuss detected refactoring can-
didates only in a package “main.data.target.unresolved”.
In this package, we found 5 refactoring candidates.
Three candidates are classes, “JavaUnresolvedExternalField-
Info”, “JavaUnresolvedExternalClassInfo”, and “JavaUnre-
solvedExternalMethodInfo”. The residual candidates are
methods, “addModifier” and “getModifiers”. We discuss
them as a special feature of class names of this package.

This package has 99 classes, and 58 classes appeared in
the method trace. 3 classes have a prefixed string “JavaUn-
resolvedExternal”, 54 classes have a prefixed string “Unre-
solved”, and the last is “NameResolver”. We have detected
all files prefixed “JavaUnresolvedExternal” as refactoring
candidates, and we obtained developers’ consent to these
candidates. However, we also detected getter and setter
methods as refactoring candidates. In general, setter methods
are invoked in the initial stage of program execution, and
getter methods are invoked in the latter half of program
execution. Such methods separately appearing in method
trace, but it is better design to gather them in the same class.
Hence, such methods deem to be refactoring candidates by
using our technique, but they are false positive.

C. Answer to the research question

We discuss the research question, which is mentioned in
Section II. In the proposed technique, we use a method
trace which represents program behavior. In the evaluation,
we found 7 (7) methods in FRISC and 58 (39) methods in
MASU as refactoring candidates. Note that the numbers of
refactoring candidates consented by developers are paren-
thesized. Thus, our proposed technique is effective in the
detection of refactoring candidates.

D. Threats to Validity

In the evaluation, we use only one test case. However,
method traces depend on test cases; thus, we obtain different

method traces by running different test cases. Additionally,
the number of phases affects the detection of refactoring
candidates. Thus, the precision of detecting refactoring can-
didates depends on how to detect phases.

VI. CONCLUSIONS AND FUTURE WORK

This paper addresses the question whether we can detect
refactoring candidates by using dynamic analysis. To answer
this question, we proposed the technique and evaluated it
on two real software. As a result, we confirmed that our
proposed technique could detect refactoring candidates.

Our future work focuses on four directions. First, we will
have quantitative comparison to the other result based on
static analysis. Second, we will create a tool to combine
results which can be obtained by using multiple test cases,
for improving the precision of our technique. Third, we will
apply dynamic analysis to other execution traces (e.g. access
trace of variables). Finally, we will experiment with large
open source software.

ACKNOWLEDGMENT

This study has been supported by Grants-in-Aid for
Scientific Research (A) (21240002), Grant-in-Aid for Ex-
ploratory Research (23650014, 24650011), and Grand-in-
Aid for Young Scientists (A) (24680002) from the Japan
Society for the Promotion of Science.

REFERENCES

[1] S. Eick, T. Graves, A. Karr, J. Marron, and A. Mockus, “Does
code decay? assessing the evidence from change management
data,” IEEE Trans. Software Eng., vol. 27, no. 1, pp. 1–12,
Jan/Feb 2001.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code. Pearson
Education, 1999.

[3] N. Tsantalis and A. Chatzigeorgiou, “Identification of move
method refactoring opportunities,” IEEE Trans. Software Eng.,
vol. 35, no. 3, pp. 347–367, May/June 2009.

[4] F. Tip, R. M. Fuhrer, A. Kiezun, M. D. Ernst, I. Balaban,
and B. D. Sutter, “Refactoring using type constraints,” ACM
TOPLAS, vol. 33, no. 3, April 2011.

[5] S. P. Reiss, “Dynamic detection and visualization of software
phases,” in WODA, May 2005, pp. 1–6.

[6] T. Ishio, Y. Watanabe, and K. Inoue, “Amida: a sequence dia-
gram extraction toolkit supporting automatic phase detection,”
in ICSE, May 2008, pp. 969–970.

[7] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto,
“Folding repeated-instructions for improving token-based code
clone detection,” in SCAM, Sep 2012, to be published.

[8] Y. Higo, A. Saitoh, G. Yamada, T. Miyake, S. Kusumoto, and
K. Inoue, “A pluggable tool for measuring software metrics
from source code,” in IWSM/MENSURA, Nov 2011, pp. 3–12.

