
Folding Repeated Instructions for Improving
Token-based Code Clone Detection

Hiroaki Murakami, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University,

1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

Email: {h-murakm,k-hotta,higo,igaki,kusumoto}@ist.osaka-u.ac.jp

Abstract—A variety of code clone detection methods have been
proposed before now. However, only a small part of them is
widely used. Widely-used methods are line-based and token-based
ones. They have high scalability because they neither require
deep source code analysis nor constructing complex intermediate
structures for the detection. High scalability is one of the big
advantages in code clone detection tools. On the other hand,
line/token-based detections yield many false positives. One of the
factors is the presence of repeated instructions in the source code.
For example, herein we assume that there are consecutive three
printf statements in C source code. If we apply a token-based
detection to them, the former two statements are detected as a
code clone of the latter two statements. However, such overlapped
code clones are redundant and so not useful for developers.
In this paper, we propose a new detection method that is free
from the influence of the presence of repeated instructions. The
proposed method transforms every of repeated instructions into
a special form, and then it detects code clones using a suffix array
algorithm. The transformation prevents many false positives from
being detected. Also, the detection speed remains. The proposed
detection method has already been developed as a software tool,
FRISC. We confirmed the usefulness of the proposed method
by conducting a quantitative evaluation of FRISC with Bellon’s
oracle.

Index Terms—Code clone detection, False positive reduction,
Tool comparison

I. INTRODUCTION

No software has no code clones. In order to detect code

clones in the source code automatically, a variety of detection

methods has been proposed in the past [1], [22]. At present,

line-based and token-based detection methods are often used

because of the following reasons:

• line/token-based detections have high scalability because

they neither require deep source code analysis nor con-

struct complex intermediate structures for the detection.

Consequently, they are used in various contexts of soft-

ware development. Also, they are used for detecting code

clones from large-scale software [13], [17], a number

of software [14], [18], [23], a number of consecutive

revisions of software [9], [11], [16], [19];

• implementing line/token-based detection methods for

multiple programming languages is easier than other de-

tection methods like PDG-based ones. Popular line/token-

based tools, CCFinder [13] and Simian [3], can handle

widely-used languages such as C/C++, Java, COBOL.

On the other hand, automatic code clone detections by tools

inherently produce false positives. Every detection method has

its own unique definition of code clones, and it detects code

clones based on the definition. However, developers do not

need all code clones detected by tools.

Bellon, et al. compared recall and precision of seven de-

tection tools by using oracle, which is a reference set of code

clones [7]. As a result, they revealed the followings:

• high recall tools detect many code clones which implies

that the detection results of those tools include many false

positives [5], [13];

• high precision tools have low recall [6], [21]. Detecting

a small number of false positives is their advantages but

they miss many real code clones.

To summarize the above points, line/token-based detections

have high scalability, and they can be applied to various

contexts of software development. However, they yield many

false positives. The authors think that the presence of repeated

instructions in source code is a large factor of false positives

detection based on our experiences of code clone related

research. For example, if we detect code clones from the

following example using a token-based approach with a suffix

tree or suffix array algorithm, we will obtain a clone pair: one

consists of the 1-2 lines code fragment; the other consists of

the 2-3 lines code fragment. Both the code fragments in the

clone pair are overlapped with each other. Detecting such a

clone pair is meaningless.

1: unsigned char division mask;

2: unsigned int division offset;

3: unsigned int division size;

The above example is a repetition of consecutive vari-

able declarations. If we tailor detection to ignore repeated

instructions, the clone pair becomes undetected. Authors have

revealed that there are various kinds of repeated instructions

in the source code, and many code clones are detected in them

with a token-based approach [10]. Consequently, ignoring

repeated instructions prevents many false positives from being

detected. This paper proposes a new code clone detection

method focusing on not detecting false positives in repeated

instructions. The contributions of this paper are as follows:

• this paper proposes a new code clone detection method

producing less false positives, and it has been developed

as a software tool, FRISC;

• we evaluated the proposed method on multiple open

source software systems, and confirmed that ignoring

2012 IEEE 12th International Working Conference on Source Code Analysis and Manipulation

978-0-7695-4783-1/12 $26.00 © 2012 IEEE

DOI 10.1109/SCAM.2012.21

64

�����������������������������
��������	
��
���������
����������
����������������������� !"##����
��$������������%�&&�'(�����)�*��)����
����*�+�
��,������������%'��-+�
��.���������������"/#�0���
��1������������%�&&�'(�����)�*"2��'�*�+�
���������������%'��-+�
��3���������������"!��0!45��
��6������������%�&&�'(�����)�*"���'�����'�%��2*�+�
��7������������%'��-+�
�3����������������#4�849���
�3�������������%�&&�'(�����)�*#��-�:�*�+�
�3$������������%'��-+�
�3,���������������;40"4<5���
�3.������������%�&&�'(�����)�*9��%�����'
�%��*�+�
�31������������%'��-+�
�3�����=�
�����

�����
$,1�������	
��
�2���
/�)����
$,�����������������>4���/4��?���
$,3��������������%�&&�'(�����)�*�@����2���
A�*�+�
$,6��������������%'��-+�
$,7���������������#0�B">�/4��?���
$.���������������%�&&�'(�����)�*�'�&
@�2���
A�*�+�
$.���������������%'��-+�
$.$���������������#4���0!�/4��?���
$.,��������������%�&&�'(�����)�*�����'��2���
A�*�+�
$..��������������%'��-+�
$.1������=�
�����

�������
��0�����(C���� B
��)0�&�'����#����'�(C����

�

�
�

��������>4���/4��?��
%�&&�'(�����)�*�@����2���
A�*�+�

������%'��-+�
�������#0�B">�/4��?���

%�&&�'(�����)�*�'�&
@�2���
A�*�+
�����%'��-+�
������#4���0!�/4��?���

%�&&�'(�����)�*�����'��2���
A�*�+
�����%'��-+�

��������������� !"##����
%�&&�'(�����)�*��)����
����*�+

�����%'��-+
��������"/#�0���

%�&&�'(�����)�*"2��'�*�+�
�����%'��-+

�
�

�
�
� �
�
=

�
�

�
������������;40"4<5���
�������� %�&&�'(�����)�*9��%�����'
�%��*�
���������%'��-+

�
�

�
� ;40"4<5�

����������#4�849���
%�&&�'(�����)�*#��-�:�*�+�

�������%'��-+

�
� #4�849�

��������"!��0!45�
%�&&�'(�����)�*"���'�����'�%��2

������%'��-+ $..�������
$.1������=�
���

�
=
�

2*2

$.��������
$.$�������
$.,�

$. �
�
�
�

+�+�+�*�**

$.��$.��

6

�

$
,
.

�

$�
,���
.����

���
���

���

�1
��
�3
�6

1�
���
3�
6

��
�
��

����

1

��)��������

��������
'�'����
���

��

Fig. 1. Motivating example, which shows that many code clones are detected in repeated instructions

���������������������������
�����������������	
��
��������	����
����������������	�����������������
������������������
��	� ���	�!�*��!	������	�*�"�
�������������������	�#"�
���������$�
�����

�����
����������������%����&�!	���
����������������	��'(���&(��)���
������������������
��	� ���	�!�*	*����%����A�*�"�
�������������������	�#"�
���������$�
�����

�
��
�����+	�
�� ,�
�� -�	�!+	�	�	��	����	�� ,�
��

��!	�����	� ����	�������	�����������

���

���

�

�
./���!��0�

����

$

1/���!��0�

��
�

�
$

������	����������������
�
��	� ���	�!�*��!	������	�*�"�

���������	�#"

�

$

������	��'(���&(��)��
�
��	� ���	�!�*	*����%����A�*�"�

��������	�#"��������
1/���!��0

�
$
�

Fig. 2. Source code transformed from the one of Figure 1 by the folding operation

repeated instructions achieves higher recall and precision
than not ignoring them;

• we compared FRISC with multiple existing tools, and we

confirmed that FRISC has higher recall and precision than

existing line/token-based detection tools.

II. RESEARCH MOTIVATION

Figure 1 shows actual code clones detected from repeated

instructions. In the left-side source file, there are five case

entries and three case entries exist in the right-side one. If we

detect code clones with using line/token-based detection tools,

we will obtain six clone pairs. Every detected code clone is

a hatching part in Figure 1. As shown in this example, many

code clones are detected from repeated instructions.

Code clones in repeated instructions have the following

characteristics:

1) both the code clones forming a clone pair are overlapped

with each other. There is no reason to detect such a clone

pair because both the code clones forming it point almost

the same locations of the source code;

2) both the code clones forming a clone pair overlap with

both the code clones forming another clone pair. We

need not both the clone pairs because they point almost

the same locations of the source code.

Detecting all code clones having the above characteristics

enlarges detection results, so that we become unaware of code

clones in other parts of the target system.

The proposed method can resolve the problem. Intuitively,

the proposed method firstly folds repeated instructions, and

then it detects code clones. By the folding operation, the source

code in Figure 1 is transformed to the source code in Figure

2. Consequently, the proposed method detects only a single

clone pair: one is a code clone from the 161th line to the

175th line of the left-side source file; the other is a code clone

from the 236th line to the 243th line of the right-side source

file. The proposed method identifies the two switch-statements

as duplicated code without detecting code clones having the

characteristics 1 and 2.
Also, Figure 3 shows an example of real code clones judged

manually in the Bellon’s experiment [7]. As shown in this

figure, humans prefer code clones covering a whole of the

repeated instructions rather than ones covering a part of them.

In other words, human does not care the differences of the

number of repetitions between the code fragments.
Herein, we define the following research question in order to

confirm that the proposed method detects fewer false positives,

and it detects more preferable code clones.

RQ1: Does folding repeated instructions improve precision
and recall of detection results?

Currently, there is a variety of detection tools. In order to

show the usefulness of the proposed method by comparing

them, we define the following research question.

RQ2: Does code clone detection with folding repeated

instructions have higher accuracy than existing tools?

III. CODE CLONE DETECTION WITH FOLDING REPEATED

INSTRUCTIONS

The proposed method consists of the following five steps.

STEP1: Lexical Analysis and Normalization

65

�����
����������	�
����@
���	���		���	���*������	*������	����	��������������		�����
������
����
����>	��	�������� �!��>	!@�������""��
�#��>	��	�������� �!��>	!��������""��
����>	��	�������� �!��>	!	��	$��%&�����""��
�'��>	��	�������� �!��>	!$���$	��%�����""��
�(��>	��	�������� �!��>	!��	����)*���$	��&����""��
'���>	��	�������� �!��>	!��	����)+��	$���&����""��
'&��>	��	�������� �!��>	!������+��	$��������""��
'%��>	��	�������� �!��>	!$����,��	��-���������""��
'���>	��	�������� �!��>	!����*��������	��		������""��
'���>	��	�������� �!��>	!)��	����>	
$���5��	�����""��
'���>	��	�������� �!��>	!���$	���>	
$���5��	����""��
'#��>	��	�������� �!��>	!	�.�����>	
$���/�.������""��
'���>	��	�������� �!��>	!��		����>	
$���/�.���""��
''���-�)�
>	
���	�/������+����	�*5���)*�����+����	
)���������	����	����������
'(����
����
�����

�����
&�'��>	���
�))��-0���		���>	!-�))��-0���>	
�))��-01��-��������2��	���
&�(���������>	1���	�������������@���
&'����
���
&'&��>	��	�������� �!��>	!������+��	$��&���""���
&'%��>	��	�������� �!��>	!)��	����>	
$���5��	���""��
&'���>	��	�������� �!��>	!���$	���>	
$���5��	���""���
&'���>	��	�������� �!��>	!	�.�����>	
$���/�.���""��
&'���>	��	�������� �!��>	!��		����>	
$���/�.���""��������
&'#��>	��	�������� �!��>	!����3��	���		�����""��
&'��������
�>	
���	�/������+����	�*����*������+����	
)��������������@������������
&''�������������
����@
���	�5���)�	���4���/��D�������E#�5���)���)6��	+��	$��
�����

��
�
�
�
�
�
�
�
�
�
�
�
�
�
��
� �
 ��

��
���
>	��	�������� �!� >	!@�������""�
>	��	�������� �!� >	!��������""��
>	��	�������� �!� >	!	��	$��%&�����""�
>	��	�������� �!� >	!$���$	��%�����""��
>	��	�������� �!� >	!��	����)*���$	��&����""��
>	��	�������� �!� >	!��	����)+��	$���&����""��
>	��	�������� �!� >	!������+��	$��������""�
>	��	�������� �!� >	!$����,��	��-���������""�
>	��	�������� �!� >	!����*��������	��		������""�
>	��	�������� �!� >	!)��	����>	
$���5��	�����""�
>	��	�������� �!� >	!���$	���>	
$���5��	����""��
>	��	�������� �!� >	!	�.���� >	
$���/�.������""�
>	��	�������� �!� >	!��		��� >	
$���/�.���""��
�-�)�
>	
���	�/������+����	�*5���)*�����+����	
)���������	����	����������

���
�

%�
���

���
'� �� �������
 �� @
���	�5���)�	���4���/��D ���� #�5��)���)6��	+��	$

�
���
>	��	�������� �!��>	!������+��	$��&���""���
>	��	�������� �!��>	!)��	��� >	
$���5��	���""��
>	��	�������� �!��>	!���$	�� >	
$���5��	���""���
>	��	�������� �!��>	!	�. ��� >	
$���/�.���""��
>	��	�������� �!��>	!��		��� >	
$���/�.���""��������
>	��	�������� �!��>	!����3��	���		�����""��
�����
 >	
���	�/������+����	�*����*� ����+����	
)��������������@� ���������

�4 D

-����-)����

-)����.������)�	����$�.�

&'�
&'�
&'#

��
��
#��

>
>
>

������.)	�$	7-� �������7-�

Fig. 3. Motivating example, which shows that human regards whole the repeated instructions as a code clone

��������	
��
������������
�������	
��

��������������
�����
����
��������������
����

������������
�����
����
���������
�����	��	������	���

������ �	
��
������������
�������	
�

������� �������
�����
����
��������������
���

������ �����
�����
����
���������
�����	��	������	��

�	�������
���

���

 �
� � �
�
	
��
�
����
�!�	���	"�
���

��

 �#� � �
�
� �
���
�
�����
�!�	������� �
����

�
	
��������

����$��%�
�����
������� �
�������

����&��
�#���
��
�
'�����
��
	� �
�(���	
�

� ��

Fig. 4. Overview of the proposed method

STEP2: Generating Statement Hash

STEP3: Folding Repeated Instructions

STEP4: Detecting Identical Hash Sequences

STEP5: Mapping Identical Subsequences to Source Code

The proposed method takes the followings as its inputs:

• source code;

• maximum elements length (number of statements);

• minimum clone length (number of tokens).

The proposed method outputs a set of detected clone pairs.

Figure 4 shows an overview of the proposed method. The

remainder of this section explains every of the steps in detail.

STEP1: Lexical Analysis and Normalization

In STEP1, all the target source files are transformed into

token sequences. User-defined identifiers are replaced with

special tokens to detect similar code fragments as code clones

even if they include different variables.

STEP2: Generating Statement Hash

In STEP2, a hash value is generated from every statement

in the token sequences. Herein, we define a statement as every

subsequence between “;”, “{”, and “}”. STEP2 transforms

token sequences into hash sequences. Note that every hash

has a weight, which means the number of tokens included in

its statement.

STEP3: Folding Repeated Instructions

STEP 3 is the core of the proposed code clone detection

method. Firstly, repeated subsequences are identified. Every

of the identified repeated subsequences is divided into the first

repeated elements and its subsequent repeated elements. Then,

the subsequent repeated elements are removed from the hash

sequences. The weights of deleted elements are added to the

weights of their first repeated elements. Algorithm 1 shows

the algorithm used for folding repeated subsequences. In the

algorithm, seq is a hash sequence, and max elmt length is

a maximum elements length. As a result of the algorithm

application, all the repeated subsequences whose elements

length is equal to or less than the threshold (the maximum

elements length) are folded. Figure 5 shows how input source

code is transformed into folded hash sequences. Why we use

the threshold is that, if elements of repetitions are large, users

might not want to treat them as repetitions. Using the threshold

realizes more configurable code clone detections.

STEP4: Detecting Identical Hash Subsequences

Identical subsequences are detected from the folded hash

sequences. If the sum of weights in an identical subsequence

is smaller than the minimum token length, it is discarded.

66

���������	��
�����������
�����
�����
����
��	��
���������
�����
���
����
����
��	��
���������
�����
����
����
�����
��	�
����������
�������

���������������������������������
2� �� �� �� �� �� ��

������������������������������������
�� �� �� �� �� �� ��

� ��� ��

�����	�
����
������

����	�������	����	 ������		� �
����
��	�������	��

������������������
�� ��� ��

���
����
�

�� ���� �
�� ��

���
��

� ����
��

���������	����

�
��	��������	�	����	��

�
��
�����	�	����	��	������

������	���� �� ���

�
��	������������	�
�
���
������

!��
����
����	�	�����

������	
�����
��
�
�
	
�������
�����
��
�
�
	
�������
�����
��
�
�
	
�������
��
�� �� �� �� �� �� ��"��� 	�

�	�	����	� �	�	����	� �	�	����	� �	�	����	� �	�	����	� �	�	����	� �	�	����	�

���������	��
�����������
�����
�����
����
��	��
���������
�����
���
����
����
��	��
���������
�����
����
����
�����
��	�
����������
�������

���������	���
������������������
������� !"#� "!$�������%&���������
''�(����	���)�*
����
���+�,����������

���
�������
�����-.�/0�#� "!$�������%&���������
''�(����	��)'��1*��
���+�,��������������
��������
����

- ""�.2#� "!$������%&�������
''�(���	��)'
3��(��
���+�,������������
��������

Fig. 5. Example how input source file is transformed into a folded hash sequence

STEP5: Mapping Identical Subsequences to Source Code

Identified subsequences detected in STEP4 are converted to

location information in the source code (file path, start line,

end line), which are clone pairs.

IV. IMPLEMENTATION

We have developed a software tool, FRISC (Folding

Repeated Instructions in Source Code), based on the proposed

method. Currently, FRISC can handle Java and C. However,

FRISC performs only lexical analysis as a language-dependent

processing, so that it is not difficult to extend FRISC to other

programming languages.

FRISC supports multi-thread processings. All the steps of

the proposed method except STEP5 are processed in parallel.

In STEP1, 2, and 3, every thread takes a source file and

outputs its hash sequence one-by-one. This processing is

performed for all the target source files. In STEP4, every

thread detects identical hash subsequences from a different pair

of hash sequences generated in STEP3. Of course, identical

hash subsequences within a hash sequence are also detected.

Current implementation does not perform STEP5 in parallel

because it is relatively a lightweight processing. Hence, the

detection speed of FRISC can be shortened with multi-thread

processing drastically. FRISC accepts the number of threads

as its command line option.

8��������	��
�

������� � 	
�� ��
������ �� �������� �� ��

�� � �� � �� �� �� �� ��

�� �� �� �� ��� � �

��
���	����

Fig. 6. Example of transformation with heuristics

FRISC uses some heuristics for identifying more significant

code clones. Currently, they are as follows:

Shrinking user-defined identifiers connected with “.”
By shrinking those identifiers, we can detect code clones

even if the number of them are different. Figure 6 shows a

transformation how such identifiers are shrinked.

Removing import and package statements
We do not think that code clones in import and package

statements are useful, and so they are removed in STEP1.

V. OVERVIEW OF INVESTIGATION

We have conducted an investigation to answer the two

research questions described in Section II. The investigation

consists of two experiments.

67

Algorithm 1 Folding repetitions

Require: seq,max elmt length(≥ 1)
Ensure: folded seq

1: seq length← length(seq)
2: for i = 0 to max elmt length do
3: le f t← 0

4: loop
5: f lg← true
6: index← le f t
7: tmple f t← le f t
8: count← 0

9: while count ≤ i and index < seq length do
10: if isSentenceEnd(seq[index]) then
11: if flg then
12: k← index+1; f lg← f alse
13: end if
14: count← count +1

15: end if
16: index← index+1

17: end while
18: if index > seq length then
19: break
20: end if
21: tmp← seq[le f t..index−1]
22: count← 0

23: le f t← index
24: while count ≤ i and index < seqlength do
25: if isSentenceEnd(seq[index]) then
26: count← count +1

27: end if
28: index← index+1

29: end while
30: if index > seq length then
31: break
32: end if
33: tmp2← seq[le f t..index−1]
34: if tmp = tmp2 then
35: seq← seq[0..le f t−1]+ seq[index..seq length]
36: seq length← length(seq)
37: le f t← tmple f t
38: else
39: le f t← k
40: end if
41: end loop
42: end for

• Experiment A: code clones are detected by FRISC with

two settings: one is with the folding operation; the other

is without it. Then, recall and precision of the two

detections are calculated and compared.

• Experiment B: code clones are detected by FRISC and

multiple other tools. Then, recall and precision of all the

detection results are calculated and compared.

In order to calculate recall and precision, we need real code

clones. Herein we use freely available code clone data in

[2] as a reference set (a set of code clones to be detected).

The reference set includes code clones information of eight

software systems. Table I shows an overview of the target

systems. In the remainder of this paper, we use the following

terms:

Clone candidates: code clones detected by tools

Clone references: code clones included in the reference

We use the good value [7] to decide whether every of clone

candidates matches any of clone references or not. In this

investigation, We use 0.7 as the threshold, which is the same

value used in the literature [7].

We calculate recall and precision for evaluating the detec-

tion capability. Assume that R is a detection result, Sre f s is

the set of clone references, and SR is a set of clone candidates

whose good values with an instance of clone references is

equal to or greater than the threshold in R.

Recall of R (RecallR) is defined as follows:

RecallR =
|SR|
|Sre f s| (1)

Precision of R (PrecisionR) is defined as follows:

PrecisionR =
|SR|
|R| (2)

This evaluation has a limitation on recall and precision.

The clone references used in the experiments are not all the

real code clones included in the target systems. Consequently,

the absolute values of recall and precision are meaningless.

Recall and precision can be used only for relatively comparing

detection results. Moreover, we have to pay a special attention

to precision. A low value of precision does not directly

indicate that the detection result includes many false positives.

A low value means that there are many clone candidates not

matching any of the clone references; however, nobody knows

whether they are truly false positives or not.

The remainder of this section summarizes the two ex-

periments for investigating the RQs. The details of each

experiment are described in Section VI and VII, respectively.

A. Summary of Experiment A

The precision with folding repeated instructions is averagely

higher than the one without it by 29.8%. On the other hand,

TABLE I
TARGET SOFTWARE

Short name Language Lines of code # of references
netbeans Java 14,360 55

ant Java 34,744 30
jdtcore Java 147,634 1,345
swing Java 204,037 777
weltab C 11,460 275
cook C 70,008 440
snns C 93,867 1,036

postgresql C 201,686 555

68

���������
����������
��	��
���
����
������
���
���������������������������
�����
������������������������� ��������������
��!�������������"���������������#����
�$%�����������������������������
�$&������������������������'�*(�
��!�)�*'�**�*'�
����
�$����������
���
����
����'��&���*�����+
�
���)���+�����*����
�$$���������,��!�-./012/3��,�4�
�$5�������
�$������������
������
���
�$	�����������������������
�����
������

������
&&������������������
����
&&	����������)�������
&&����������
����)���
�'�)��������
&&����������������������������� �������������
&&!�������������������"���������������#����
&�%�����������������������������������
&�&������������������������������'�*(�
��!�)�*'�**�*'�
����
&��������������������������������'�*!�)���*'�*%*�*'�)������
&�$���������������
���
����
����'��&���*��)���+
�
���)��+)�����+�����*����
&�5���������������,��!�-./012/3��,�4�4�
&����,��
&�	�����!0//�
������

������
���� �
�����������
����������

� �
�

�
�
�

,� !�-./012/3 �, 4

���� ������������� �������������
��� " ��������������#����

���� �������������������
���� ���������������'�*(�
��!�)�*'�**�*'�
���
����
���
����
����'��&���*�����+
�
���)���+�����*���

� � ' �� �
�

�
�

,� !�-./012/3 �, 4 4

�������������������� ������������
��� " ��������������#���

���������������������������
����������������������'�*(�
��!�)�*'�**�*'
����
����������������������'�*!�)���*'�*%*�*'�)�����

���
����
����'��&���*��)�� +
�
���)��+)�����+�����*����

&�%�������
&�&

��

����6�� ��))���6��

Fig. 8. A clone candidate newly detected by using the folding operation

��

������

������

������

������

������

�	
�	��
� ��
� ��
���	�
����� �	�
��� �����
��
� ��

��	
���

��
���������� ��
���
���������

(a) Number of clone candidates

��

�����

�����

�����

�����

���	�

��
��
�� �
�� �������� ���
�� �����
� ����� �

�� �����������

����������
�� �������������
��

(b) Precision

��

����

����

����

����

��

	
��

	��
	�� ������
� ���	�� �
��
�� ����� �		�� ������
����

����������	�� �������������	��

(c) Recall
Fig. 7. Number of clone candidates, precision, recall of Experiment A

the folding averagely decreased recall by 2.9%. The degree of

precision increasing is about 10 times of the degree of recall
decreasing. The execution time with the folding is almost the

same as the execution time without it.

B. Summary of Experiment B

FRISC detected more clone references than any of the

comparison tools in most cases. Especially, for five out of

the eight systems, both the precision and recall of FRISC are

greater than those of CCFinder, which is one of the most

widely-used detection tools. Still, the precision of FRISC is

lower than those of CloneDR [6] and CLAN [20] for all the

target systems.

VI. EXPERIMENT A

The purpose of Experiment A is to reveal how the number

of clone candidates, precision, and recall are changed by

folding repeated instructions. In this experiment, we used the

following thresholds.

Maximum elements length: 5 is for detection with the

folding operation, and 0 is for detection without it.

Minimum clone length: 30

Figure 7(a) shows the number of clone candidates. The

folding decreases the number of clone candidates for almost

all the target software. Especially, for jdtcore, which is the

software where most clone candidates were detected, the num-

ber of clone candidates dropped by about 54%. We browsed

the source code of jdtcore, and found that it includes a large

number of consecutive if-else-statements, consecutive case

entries in switch-statements, and consecutive catch-statements.

The folding prevented code clones from being detected from

those repetitions in the source code.

Average decreasing rate of clone candidates was about 32%,

and we found that, in the case of cook, the number of clone

candidates was slightly increased. Figure 8 shows a clone

candidate newly detected by using the folding operation. If

we do not use the folding operation, the code fragment from

the 28th line to the 31st line of the left-side source file is a code

clone of the code fragment from the 118th line to the 121st line

of the right-side source file. However, the length of the code

fragment is 26 tokens, which is less than the minimum token

length, 30. Hence, the clone pair was discarded. On the other

69

hand, when we used the folding operation, the code fragment

from the 28th line to the 32nd line of the left-side source file

was a code clone of the code fragment from the 118th line to

the 123rd line of the right-side source file. The code fragments

are greater than the minimum token length, so that the clone

pair was output. This is a pair of gapped (type-3) code clones.

In cook, there are many of those clone pairs, so that the number

of clone candidates with the folding operation is greater than

the number of clone candidates without it. We expect that there

are such clone pairs in the other target systems too.
Figure 7(b) shows the precision of the detections with and

without the folding. For all of the software, precision was

improved. Concretely, we confirmed the followings:

• in the best case, precision increased by 53.8%,

• even in the worst case, precision increased by 2.6%,

• averagely, precision increased by 29.8%.

Figure 7(c) shows the recall of the detections with and

without the folding. The changes of recall varied from the

target software, unlike precision. For system cook, recall was

improved by the folding. More clone references were detected

with the folding operation. Also, for two systems, swing and

weltab, recall remained unchanged. However, for the other five

systems, recall was decreased. Averagely, recall dropped by

2.9%.
We investigated code clones that were detected without

the folding but not detected with the folding to know why

they became undetected. Table II shows the proportion of

self-overlapping code clones that became undetected. It is

easy to remove self-overlapping code clones even if the

folding operation is not applied. For example, after detecting

code clones, checking whether locations of code fragments

of a clone pair is overlapped or not is a simple way. The

proportions of self-overlapping code clones are very different

from software systems, which means that checking the self-

overlapping as a post processing of code clone detection is not

enough to reduce false positives.
We also investigated the execution time of FRISC with and

without the folding. Figure 9 shows the investigation result.

Using the folding operation increased execution time of the

sum of STEP1, STEP2, and STEP3; however, the difference

was negligible. On the other hand, using the folding operation

decreased execution time of STEP4. This is because hash

sequences, which is the target of the STEP4 operation, were

shortened by the folding operation.
In order to check the effective of the multi-thread imple-

mentation, we investigated the execution time with 1, 2, 4, 8

threads. Figure 10 shows the investigation result. We can see

that, multi-thread processing could reduce the execution time

drastically if the execution time with a single thread exceeded

10 seconds.
Consequently we answer RQ1 as follows: using the folding

operation decreased the number of clone candidates by about
32 % averagely. The decreasing caused the improvement of
precision, averagely 29.8%. However, it also caused missing
some clone references. the average of decreasing recall is
2.9%. We can conclude that the folding is a useful approach

��

��

��

��

��

��

��

��

�	
�	��
� ��
� ��
���	�
����� �	�
��� �����
��
� ��
��	
���

��
���������� ��
�������������

(a) sum of STEP1, STEP2, and STEP3 (sec.)

��

��

��

��

��

��

��

��

��

 �

�	
�	��
� ��
� ��
���	�
����� �	�
��� �����
��
� ��
��	
���

��
���������� ��
���
���������

(b) STEP4 (sec.)
Fig. 9. Execution time of normalization (STEP1, STEP2, STEP3) and
detection (STEP4)

��

��

���

���

���

���

���

��	
����� ��	�
�	����� ������ ���	�
� ����� ����� ����������

��	������ ��	������� ��	������� ��	�������

Fig. 10. Execution time with 1, 2, 4, and 8 threads (sec.)

to prevent false positives from being detected meanwhile it

misses some clone references.

VII. EXPERIMENT B

The purpose of Experiment B is to reveal whether FRISC
detects code clones more precisely than existing tools or not.

TABLE II
RATE OF SELF-OVERLAPPING CODE CLONES THAT BECAME UNDETECTED

BY USING THE FOLDING OPERATIONS

Software Self-overlapping
netbeans 75.2%

ant 15.1%
jdtcore 43.8%
swing 37.8%
weltab 52.7%
cook 89.1%
snns 75.5%

postgresql 79.5%

70

TABLE IV
THE NUMBER OF CLONE CANDIDATES. EVERY “-” MEANS THAT THE DETECTION TOOL COULD NOT FINISH CODE CLONE DETECTION BECAUSE

SCALABILITY ISSUE.

Software FRISC Dup CloneDR CCFinder CLAN Duploc Duplix Nicad

netbeans 1,636 344 33 5,552 80 223 - 24
ant 1,992 245 42 865 88 162 - 19

jdtcore 21,007 22,589 3,593 26,049 10,111 710 - 1,142
swing 19,115 7,220 3,766 21,421 2,809 - - 1,804
weltab 1,968 2,742 186 3,898 101 1,754 1,201 160
cook 7,200 8,593 1,438 2,964 449 8,706 2,135 159
snns 11,925 8,978 1,434 18,961 318 5,212 12,181 352

postgresql 15,356 12,965 1,452 21,383 930 - - 352

In this experiment, we chose the detection tools shown in Table

III as targets for the comparison. All the tools except Nicad
were used in the experiment conducted by Bellon et al. [7],

and we used their experimental result in this experiment.

The remaining tool, Nicad, is a detection tool developed

by Roy and Cordy [21]. Nicad detects code clones on block-

level or function-level. It identifies duplicated token sequences

from every pair of blocks/functions by using LCS (Longest

Common Subsequence) algorithm. If the rate of detected

duplications of a pair is greater than a threshold, the pair is

regarded as a code clone pair.

Table IV shows the number of clone candidates detected by

the tools. The number of clone candidates considerably varies

from tool to tool. Also, we can see that line/token-based tools

found many more clone candidates than the other tools.

Figure 11 shows precision and recall of all the tools on all

the target systems. The recall of FRISC is the best in all the

tools for five out of the eight systems. FRISC could detect most

clone references for the systems. For two of the remaining

systems, ant and snns, FRISC placed the second position. In

the worst case, cook, FRISC placed the third position.

In order to reveal what kinds of clone references detected

by the comparison tools were not detected by FRISC, we

extracted all of those clone references from all the target

systems. Then, we randomly selected 100 instances from

them, and we browsed their source code. As a result, they

were categorized as follows (the numbers in parentheses mean

number of clone pairs falling into the category):

• A(71): clone references including some gaps;

• B(17): clone references being less than 30 tokens;

• C(11): clone references locating in repeated instructions;

• D(1): clone references including unmatched modifiers.

In token-based detection, identical subsequences are de-

tected as code clones. Gapped (type-3) code clones are not

TABLE III
TOOLS USED FOR COMPARISON

Developer Tool Detection method

Baker Dup [4] token-based
Baxter CloneDR [6] AST-based

Kamiya CCFinder [13] token-based
Merlo CLAN [20] metrics-based
Rieger Duploc [8] line-based
Krinke duplix [15] PDG-based

Roy Nicad [21] block-based

������
�����������	
���	
�
��
���
�����
�
�������
����
�����
�����
�����������������������������������
��
��
���������
� ��	
����
��
���
�
������!���
�"���������
��#�������$�
�����
%�������� ���!�&���
	
�'
#"��
&(�(�$�
%�)������������
�'
#��
��
*'+,��
%�-�����������������,�����
��"����&(��
%./�������������

������
&(��
%.����������������
����
%.0������������
�'
#��
��
*'+1��
%.��������������������,�����
��"����&(��
%..�������������

������
&(��
%.2���������������
����
%.%������������
�'
#��
��
*'+3��
%.�����������������
����
,�����
��"����&(��
%.)�������������

������
&(��
%.-���������������
����
%2/������������
�'
#��
��
*'+"��
%2�����������������
,�����
��"����&(��
%20�������������

������
&(��
%2����������������
����
%2.������������
�'
#��
��
*'+���
%22���������������
,�����
��"����&(��
%2%�������������

������
&(��
%2����������������
����
%2)������������
�'
#��
��
*'+4��
%2-�����������������,�����
��"����&(��
%%/�������������

������
&(��
%%����������������
����5�5�5�
�����

	 #

�
�
�

�
�
�
�

�
�

���
 '
#��
��
*'+,�
�������������,�����
��"����&(�
���������

������
&(��
�����������
����

���
 '
#��
��
*'+1�
���������������,�����
��"����&(��
���������

������
&(��
�����������
����
��������
�'
#��
��
*'+3��

���
����
,�����
��"����&(��
���������

������
&(��
�����������
����
�

�
�
�
�
�
�
�
�

�

��������
�'
#��
��
*'+"�
���
,�����
��"����&(��

���������

������
&(��
�����������
����
��������
�'
#��
��
*'+���
�����������
,�����
��"����&(�
���������

������
&(��
�����������
����
��������
�'
#��
��
*'+4��
�������������,�����
��"����&(�

������
&(��
�����������
����5�5�5�

' � � *' "

���
�����
�

����
�������
�������!���

Fig. 12. A clone pair located in a repeated instructions

detected by naive token-based detection. Consequently, it is

quite natural that 71 clone references falling into category

A were not detected by FRISC. However, if we adopt some

techniques like Roy et al. [21] or Juergens et al. [12] to detect

such clone references, FRISC may detect some of those clone

references.

Clone references falling into category B are smaller than

30 tokens. In the Bellon’s experiment, the minimum threshold

of clone references is six lines, which is not a token-based

threshold but a line-based one. However, FRISC takes a token-

based threshold. In this experiment, FRISC took 30 tokens

as the minimum clone length. Consequently, some clone

references were not detected by FRISC.

Figure 12 shows a clone reference falling into C category.

There are six case entries in this switch-statement. The former

three entries form a code clone of the latter three entries. The

proposed method folds the six case entries into a single entry,

so that no clone pair is detected. However, it is possible to

detect such a clone pair with the proposed method. If the sum

of weights of a folded sequence is more than twice of the

71

��

�!���

�!���

�!���

�!���

�!��

��

�!��

�!��

�!��

�!��

��

!������� !� 	� /�
�!� !!/��
��� ���� ������� 	���
�

������� ����������

(a) netbeans

��

�����

�����

�����

�����

����

��

����

����

����

����

��

!������� !� 	� /�
�!� !!/��
��� ���� ������� 	���
�

������� ����������

(b) ant

��

�����

�����

�����

�����

����

��

����

����

����

����

��

!������� !� 	� /�
�!� !!/��
��� ���� ������� 	���
�

������� ����������

(c) jdtcore

��

�����

�����

�����

�����

�����

��

����

����

����

����

��

!������� !� 	� /�
�!� !!/��
��� ���� 	���
�

������� ����������

(d) swing

��

����

����

����

����

����

��

����

����

����

����

	�

!
��
��� !� �� /���!� !!/���
�� ���� ���
��� ���
��� ������

�
��

� ��
�������

(e) weltab

��

�����

�����

�����

��	��

��	��

��

����

����

����

����

	�

!
��
��� !� �� /���!� !!/���
�� ���� ���
��� ���
��� ������

�
��

� ��
�������

(f) cook

��

�����

�����

��	��

��	��

����

��

����

����

����

����

	�

!
��
��� !� �� /���!� !!/���
�� ���� ���
��� ���
��� ������

�
��

� ��
�������

(g) snns

��

�����

�����

�����

�����

����

��

����

����

����

����

��

!
��
��� !� �� /���!� !!/���
�� ���� ������

�
��

� ��
�������

(h) postgresql
Fig. 11. Precision and recall of all the detection tools for all the target software systems

minimum token length, there is a clone pair in it.

A clone reference was not detected because there is an

unmatched modifier in it (category D): a code clone has

“final” modifier in a method declaration; the correspondent

does not have. Currently, FRISC does not normalize modifiers.

However, it is not difficult to remove modifiers so as to detect

such a clone reference.

The result shows that precision of the proposed method is

not so high as the other token-based tools. However, we must

notice that clone references used in this experiment is not all

the real code clones in the systems. A low precision using

the clone references does not directly mean that its detection

result includes many false positives.

We answer RQ2 as follows: the proposed method could
detect more clone references than any of the other detection
tools used for comparison in most cases. However, it detects
many clone candidates as well as other token-based detection
tools. Therefore, it may detects many false positives.

72

VIII. RELATED WORK

Koschke proposed using decision tree for filtering out false

positives [14]. In his experiment, the learned decision tree had

the following two metrics as its conditions.

• Parameter Similarity: rate how much both the code frag-

ments in a clone pair use the same variables and literals.

• NR: rate of tokens not included in any repetition in a code

fragment.

In order to build a decision tree, we must prepare training

data. However, in his experiment, its accuracy was very high.

The categorization error is below 0.1%.
Higo et al. proposed a metric RNR for filtering out false

positives from a detection result [10]. Intuitively, RNR is an

average of Koschke’s NR value of every code clone in a clone

class. In their experiment, 0.5 was an appropriate value as the

threshold of RNR. By using the value, 2/3 of false positives

were filtered out.
The biggest difference between the proposed method and

their methods should be that: the proposed method transforms

source code to a special form not to detect false positives;

their methods filter out false positives after they are detected.

In other words, the proposed method optimizes source code

for code clone detection, so that there are code clones newly

detected by the optimization. In our experiment, recall with

the folding operation was actually higher than recall without

it. On the other hand, their methods do not improve recall of

detection results.

IX. CONCLUSION

In this paper, we proposed a new token-based code clone

detection method. The proposed method folds repeated instruc-

tions for preventing false positives from being detected. The

proposed method was developed as an actual tool, FRISC. We

applied FRISC to eight open source software systems, and we

confirmed the followings:

• the folding operation reduces false positives;

• there are some real code clones newly detected by the

folding operation;

• detection time with the folding operation is hardly differ-

ent from detection time without it;

• FRISC detects more real code clones than any other

comparison tools used in Bellon’s benchmark in most

cases; and still,

• FRISC detects more false positives the other tools.

In the future, we are going to investigate where tools detect

false positives. We expect that most false positives are detected

from limited kinds of code patterns. If we can ignore code

clones detected from those code patterns, false positives are

drastically decreased.

ACKNOWLEDGMENT

This study has been supported in part by Grants-in-Aid

for Scientific Research (A) (21240002), Grant-in-Aid for Ex-

ploratory Research (23650014), and Grand-in-Aid for Young

Scientists (A) (24680002) from the Japan Society for the

Promotion of Science.

REFERENCES

[1] Clone Detection Literature. http://www.cis.uab.edu/tairasr/clones/
literature/.

[2] Detection of Software Clones. http://bauhaus-stuttgart.de/clones/.
[3] Simian. http://www.harukizaemon.com/simian/.
[4] B. S. Baker. Parameterized Duplication in Strings: Algorithms and an

Application to Software Maintenance. SIAM Journal on Computing,
26(5):1343–1362, Oct. 1997.

[5] B. S. Baker. Finding Clones with Dup: Analysis of an Experiment. IEEE
Transactions on Software Engineering, 33(9):608–621, Sep. 2007.

[6] I. Baxter, A. Yahin, L. Moura, M. Anna, and L. Bier. Clone Detection
Using Abstract Syntax Trees. In Proc. of International Conference on
Software Maintenance 98, pages 368–377, Mar. 1998.

[7] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Compar-
ison and Evaluation of Clone Detection Tools. IEEE Transactions on
Software Engineering, 31(10):804–818, Oct. 2007.

[8] S. Ducasse, M. Rieger, and S. Demeyer. A Language Independent
Approach for Detecting Duplicated Code. In Proc. of the International
Conference on Software Maintenance 99, pages 109–118, Aug. 1999.

[9] N. Göde and R. Koschke. Frequency and Risks of Changes to Clones.
In Proc. of the 33th International Conference on Software Engineering,
May 2011.

[10] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method and Implemen-
tation for Investigating Code Clones in a Software System. Information
and Software Technology, 49(9-10):985–998, Sep. 2007.

[11] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is Duplicate Code More
Frequently Modified than Non-duplicate Code in Software Evolution?:
An Emprical Study on Open Source Software. In Proc. of the 4th
International Joint ERCIM/IWPSE Symposium on Software Evolution,
pages 73–82, Sep. 2010.

[12] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code
clones matter? In Proc. of the 30th International Conference on Software
Engineering, May 2009.

[13] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE Transactions on Software Engineering, 28(7):654–670, July
2002.

[14] R. Koschke. Large-Scale Inter-System Clone Detection Using Suffix
Trees. In Proc. of the 16th European Conference on Software Mainte-
nance and Reengineering, pages 309–318, Mar. 2012.

[15] J. Krinke. Identifying Similar Code with Program Dependence Graphs.
In Proc. of the 8th Working Conference on Reverse Engineering, pages
301–309, Oct. 2001.

[16] J. Krinke. Is Cloned Code more stable than Non-Cloned Code? In
Proc. of the 8th IEEE International Working Conference on Source Code
Analysis and Manupulation, pages 57–66, Oct. 2008.

[17] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding Copy-Paste
and Related Bugs in Large-Scale Software Code. IEEE Transactions on
Software Engineering, 32(3):176–192, Mar. 2006.

[18] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Very-Large Scale
Code Clone Analysis and Visualization of Open Source Program Using
Distributed CCFinder: D-CCFinder. In Proc. of the 29th International
Conference on Software Engineering, pages 106–115, May 2007.

[19] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluating the relation
between changeability decay and the characteristics of clones and
methods. In Proc. of the 23rd International Conference on Automated
Software Engineering, pages 100–109, Sep. 2008.

[20] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the Automatic
Detection of Function Clones in a Software System Using Metrics.
In Proc. of the International Conference on Software Maintenance 96,
pages 244–253, Nov. 1996.

[21] C. K. Roy and J. R. Cordy. Nicad: Accurate detection of near-miss
intentional clones using flexible pretty-printing and code normalization.
In Proc. of the 16th IEEE International Conference on Program Com-
prehension, June 2008.

[22] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach.
Science of Computer Programming, 74(7):470–495, May 2009.

[23] W. Shang, B. Adams, and A. E. Hassan. An Experience Report on
Scaling Tools for Mining Software Repositories Using MapReduce.
In Proc. of the 25th International Conference on Automated Software
Engineering, pages 275–284, Sep. 2010.

73

