
How Often Do Unintended Inconsistencies Happen?

— Deriving Modification Patterns and Detecting Overlooked Code Fragments —

Yoshiki Higo and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University,

1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

Email: {higo,kusumoto}@ist.osaka-u.ac.jp

Abstract—It is difficult to keep consistent source code.
Unintended inconsistencies occur unless we recognize all the
code fragments that need to modify in a given bug fix or
functional addition. Before modifying source code, keyword-
based search tools like grep or code clone detection tools can
be used to prevent code fragments from being overlooked.
However, once inconsistencies occur in the source code, such
tools cannot help us adequately. In this paper, we propose
a new method to identify unintended inconsistencies in source
code automatically. The proposed method analyzes source code
modifications in a repository to derive modification patterns.
A modification pattern indicates what kind of code and how it
was modified. The derived modification patterns are queries to
identify unintended inconsistencies from the latest version of
source files. We implemented the proposed method and applied
it to FreeBSD and Apache HTTPD. As a result, we identified
many overlooked code fragments for bug fixes, functional
enhancements, and refactorings. The precisions were 73.4%
and 88.9% for the two systems, respectively.

Keywords-Inconsistency detection, Modification patterns,
Static analysis

I. INTRODUCTION

In order to complete a task of source code modification

like bug fix or functional enhancement, similar code frag-

ments that needs to be changed in a similar/same way should

be recognized. If we overlook one or more such code frag-

ments, the modification raises unintended inconsistencies.

The overlooked code fragments become factors of faults in

the future, which means they not only reduce the availability

of the system but also require further modification cost.
When we identify a code fragment to be modified and

we do not modify it yet, keyword-based search tools such

as grep or code clone detection tools will be a considerable

help to identify other code fragments to be modified simulta-

neously. For example, Higo et al. applied grep and a token-

based code clone detection tool, CCFinder [1] to an actual

modification task for fixing a buffer overflow problem [2].

The result showed that both tools are useful for preventing

code fragments from being overlooked.
However, these techniques are not suited for identifying

already existing inconsistencies. We need keywords repre-

senting inconsistencies for using grep, still we have no way

to get such keywords for inconsistencies already existing

because we do not know where inconsistencies exist. Li

et al. developed a code clone detection tool, CP-Miner [3]

for inconsistencies identification. Although CP-Miner detects

inconsistencies such as including wrong variables, other

kinds of inconsistences such as including wrong statements

or missing necessary statements are not detected. Moreover,

code clone detection techniques detect a code chunk as a

code clone, so that only variable inconsistencies in detected

code chunks are detected. If code surrounding inconsisten-

cies is not duplicated to its correspondents, they will not be

detected by code clone detection tools. For these reasons,

existing code clone detection techniques are not sufficient

to be applied to detect overlooked code fragments.
In this paper, we propose a new method identifying

inconsistencies automatically. The proposed method firstly

analyzes past revisions of a target software system and ex-

tracts modification patterns hidden in its evolution. Then, it

scans the target version of the system and detects overlooked

code fragments by using the patterns. The proposed method

does not suffer from the mentioned problems, and it has the

following features:

• it can detect not only variable-level inconsistencies but

also statement-level inconsistencies,

• it can detect inconsistencies even if they are not in

duplicated code chunk,

• it does not require deep analysis of source code, and so

it is easy to apply it to many programming languages,

• it has high scalability, less than an hour is required for

analyzing million lines of code and its history.

This paper revealed the following facts by experiments on

two open source software systems.

• Most of past revisions contain unintended inconsisten-

cies. They are finally modified in later revisions and

kept consistent again.

• A revision of a system contains many unintended

inconsistencies, which arose from modifications of bug

fixes, functional enhancements, and refactoring.

The remainder of this paper is organized as follows:

Section II shows an actual example to motivate this research;

Section III presents some previous studies related to this

research; Section IV proposes a new method to tackle the

problem shown in Section II; Section V describes some

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

2012 28th IEEE International Conference on Software Maintenance (ICSM)

222

:
354
355 for (lr = head_listener; lr ; lr = lr->next) {
356 ap_get_os_sock(lr->sd, &nsd);
357 if (FD_ISSET(nsd, main_fds)) {
358 head_listener = lr->next;
:
380 num_listeners++;
381 if (lr->sd != NULL) {
382 ap_get_os_sock(lr->sd, &nsd);
383 FD_SET(nsd, &listenfds);
384 if (listenmaxfd == INVALID_SOCKET || nsd > listenmaxfd) {
:

1083 /* Associate each listener with the completion port */
1084 for (lr = ap_listeners; lr != NULL; lr = lr->next) {
1085 ap_get_os_sock(lr->sd, &nsd);
1086 CreateIoCompletionPort((HANDLE) nsd, //(HANDLE)lr->fd,
1087 AcceptExCompPort,
:

1313 ap_log_error(APLOG_MARK, APLOG_NOERRNO | APLOG_INFO, server_conf,
1314 "Parent: Duplicating socket %d and sending it to child process %d.", lr->sd);
1315 ap_get_os_sock(lr->sd,&nsd);
1316 if (WSADuplicateSocket(nsd,
:

Figure 1. server/mpm/winnt/mpm winnt.c (revision: 83,955)

implementation details of the proposed method; Section

VI shows evaluation results on two open source software

systems; Section VII discusses the validity of the evaluation

results; Section VIII concludes this paper.

II. RESEARCH MOTIVATION

Figure 1 is a source file of the Apache HTTP project.

The 356th, 382th, 1,085th, 1,315th lines include the same

instruction. Three of them (the 356th, 382th, and 1,085th

lines) were changed to ap_get_os_sock($nsd, lr->sd)

in revision 83,956. Then, in revision 83,960 the remaining

1,315th line was modified and the 4 lines code are consistent

again. The commit log of the revision 83,960 describes

that the revision is for modifying the overlooked place in

revision 83,956. These evidences show that: the 4 lines

must be modified simultaneously; however a programmer

overlooked the 1,315th line. This is a typical example of

late propagation [4], [5]. As shown in this example, a

modification task sometimes requires simultaneous changes

on multiple code fragments. Such tasks involve the risk of

overlooking.

Consequently, in this paper, we formulate the following

research question:

Research Question 1: How often do overlooked and

delayed modifications happen?

When we find a code fragment to be modified, we will

identify other code fragments to be modified simultaneously

by using grep. Using grep prevents code fragments from

being overlooked. However, once inconsistencies have oc-

curred, grep is not suited for identifying the inconsistencies.

Li et al. proposed a method to detect inconsistencies with

code clone detection techniques and developed a software

tool, CP-Miner [3]. CP-Miner firstly detects code clones, and

then investigates variables in the code clones. If a pair of

code clones has unmatched variables, the pair is reported

as a candidate of buggy code. This method identifies token-

level inconsistencies in code clones.

On the other hand, the proposed method identifies incon-

sistencies based on past code modifications. In the case of

Figure 1, The 356th, 382th, 1,085th, and 1,315th lines must

be modified simultaneously, still their prior and subsequent

code is not duplicated. That is, every of the 4 lines is a

single line code clone. Detecting single line code clones

with code clone detection technique is unrealistic. We can

detect such small code clones by decreasing the minimum

size of detected code clones. However, we will get an

enormous amount of code clones even if the system is not

so large. Extracting necessary code clones from a huge

amount of ones is a complicated and burdensome task.

Moreover, the bigger inconsistencies are, the more difficult it

is to identify them by code clone detection approaches. For

example, statement-level inconsistencies are more difficult

to be identified than token-level ones.

In this paper, we propose a new method to detect where

inconsistencies exist and how they must be modified. The

proposed method is free from the above problems. Also,

the proposed method can be realized as a fully-automated

processing. The proposed method accumulates how source

code was modified in the past, and derives modification

patterns. For example, by mining modifications between

revision 83,955 and 83,956, the proposed method finds that

the following change happens 3 times:

ap_get_os_sock(lr->sd, &nsd);

↓
ap_get_os_sock(&nsd, lr->sd);

2012 28th IEEE International Conference on Software Maintenance (ICSM)

223

The proposed method treats frequent modifications as mod-

ification patterns. Modification patterns are used for iden-

tifying overlooked code fragments. In the case of Figure

1, by using the above modification pattern, we can auto-

matically suggest that the 1,315th line must be changed

to ap_get_os_sock(&nsd, lr->sd);. In order to evaluate

the usefulness of the proposed method, we formulated the

following research question:

Research Question 2: How many overlooked code frag-

ments can be detected by the mining-based method?

III. RELATED WORK

Code clone detection techniques can be used for identify-

ing inconsistencies in source code. Detection tools normalize

user-defined identifiers in order to ignore their differences.

Hence, code clones including token-level inconsistencies are

detected. Such code clones are candidates of buggy code.

Li et al. developed a token-based code clone detection

tool, CP-Miner [3], which has a functionality to identify

buggy code clones. The recommendations of buggy code

clones are performed by checking variables correspondence

in a pair of code clones. For example, assuming that code

fragment A is a code clone of code fragment B. In A, variable

x is referenced three times whereas variable y is referenced

twice and variable x is referenced once in B. In this situation,

CP-Miner judges that, B is generated by a copy-and-paste

operation from A and one of x reference was overlooked

to be modified. They applied CP-Miner to large scale open

source systems such as Linux and FreeBSD, so that they

found 87 bugs in detected code clones.

Higo et al. developed a wrap tool of CCFinder [1] for

detecting only code clones related to a given code fragment

[2]. When a programmer detects a code fragment to be

modified for fixing a given bug, he/she wants only code

fragments similar to the detected one. In such a situation,

detecting whole the code clones in a system is overkill and

time consuming. The wrapping tool is a reasonable solution

to obtain necessary code clones. They evaluated the tool by

applying it to an actual modification task for fixing a buffer

overflow problem. The tool could identify almost all the

code fragments to be modified simultaneously.

Bazrafshan et al. also developed a tool for identifying

code fragments that are similar to a given code fragment [6].

They realized an approximate code search with the algorithm

developed by Chang and Lawler [7]. Both the approaches

of Higo et al. and Bazrafshan et al. are effective if we know

a code fragment to be modified.

Göde and Koschke investigated how code clones had been

modified in software evolution on 3 open source software

[8]. Their experiment revealed the followings:

• most code clones were modified only one time at most,

• 14.8% modifications on code clones raised unintended

inconsistencies, and

• only 3% modifications on code clones introduced bugs.

Rahman et al. investigated relationships between code

clones and bugs [9]. They identified code fragments modified

for fixing bugs in the past, then checked how much they

were code clones. They revealed that more than 80% bug

fixes were performed on code fragments that do not contain

code clones at all.

Bettenburg et al. investigated inconsistent changes in

code clones at release level [10]. Not all the code clones

exist in source code over a long period [11], which is an

evidence that revision-based investigation is too fine-grained.

It unintentionally considers inconsistencies in short-living

code clones. They address that it is important to investigate

inconsistencies between code clones appearing in release

level, which is a version of software that users use. They

used clone region descriptor[12] to tracking code clones

between versions. Tracking code clones between versions is

much harder than between revisions because consecutive two

versions include much more differences than consecutive

two revisions. Their investigation revealed that only 4% of

code clones are factors of bugs related to inconsistencies.

As described in Section II, unintended inconsistencies can

occur in code fragments that are difficult to be detected as

code clones. The experiment in this paper is a complemented

study of Göde and Koschke, Rahman et al., and Buttenburg

et al. experimental results.

Li and Zhou proposed a method to detect violations of

coding rules from source code and developed a tool, PR-

Miner [13]. PR-Miner uses the frequent itemset mining tech-

nique to detect a sequence of method calls that frequently

appears. Their method requires only a single version of

source code, which is the target of violation detection. Their

method is tailored to detect inconsistencies on method calls

and their related program elements such as variables of

actual parameters. On the other hand, the proposed method

requires past revisions of the target source files, but it can

detect any kinds of violations if the same violations were

fixed in the past.

Livshits and Zimmermann also proposed a method to de-

tect coding patterns and error patterns [14]. In their method,

firstly, past revisions of the target system were analyzed to

extract method calls that were added simultaneously. In their

method, a set of the method calls is a coding pattern. Then,

dynamic analysis is performed to check whether the coding

patterns are included in the execution traces. If included, the

coding pattern is regarded as useful.

IV. PROPOSED METHOD

Herein, we proposed a new method to tackle the problem

shown in Section II. Firstly, we describe an overview of

the proposed method (Subsection IV-A), and secondly we

define some terminologies used in the proposed method

(Subsection IV-B). Then, we explain the details of two

processings of the proposed method (Subsections IV-C and

IV-D).

2012 28th IEEE International Conference on Software Maintenance (ICSM)

224

A. Overview

This paper proposes a new method that automatically

suggests code fragments to be modified. It consists of

two processings: one is mining processing that analyzes

historical information to derive modification patterns; the

other is detection processing that identifies code fragments

to be modified. In the remainder of this section, firstly

Section IV-B defines some terminologies that are used in

the proposed method. Then Sections IV-C and IV-D explain

mining processing and detection processing, respectively.

Note that, we assume that the proposed method is for

software systems managed with version control systems such

as CVS or Subversion.

B. Definition

Firstly, we define code fragment.

Definition 1 (Code Fragment) A character sequence of a

code chunk (one or more lines of code) in source code. Its

length is 0 or more.

Then, we define modification pattern, which represents

that a code fragment is changed to another one.

Definition 2 (modification pattern) Assume that, a code

fragment before modification is c fbe f ore, a code fragment

after modification is c fa f ter, and the modification occurred

in revision r, then, modification pattern is formalized with

a tuple (c fbe f ore,c fa f ter,r). In this tuple, c fbe f ore must be

different from c fa f ter. That is, no modification pattern occurs

if the c fbe f ore of a modification is textually identical to the

c fa f ter of the modification.

Next, we define two quantitative metrics to prioritize

modification patterns. The first one is support.

Definition 3 (Support) This is a numerical metric to rep-

resent the number of equivalent modification patterns

of a given pattern plus one. Herein, two modifica-

tion patterns, mp1 = (c f1be f ore,c f1a f ter,r1) and mp2 =
(c f2be f ore,c f2a f ter,r2), are equivalent if the following two

conditions are satisfied:

• c f1be f ore is textually identical to c f2be f ore,

• c f1a f ter is textually identical to c f2a f ter.

The other one is confidence.

Definition 4 (Confidence) This is a probability that a given

code fragment (CF) is changed to another code fragment

(CF’). Confidence is represented with a fraction, m
n

. Herein, n

is the number of modification patterns whose c fbe f ore are CF,

and m is the number of modification patterns whose c fbe f ore

are CF and whose c fa f ter are CF’. The latter modification

patterns is a subset of the former ones, so that m ≤ n is

always satisfied.

C. Mining Processing

Firstly, we describe the input and output.

Input: source code repository of the target system,

Output: a set of modification patterns with support and

confidence values.

The mining process consists of three steps:

STEP1: identifies revisions where at least one source file

was modified,

STEP2: extracts modification patterns between every of

two consecutive revisions,

STEP3: quantifies modification patterns by calculating

support and confidence.

In STEP1, the mining processing identifies revisions

where one or more source files were modified. Source code

repository contains not only source files but also other kinds

of files such as manual or copyright files. There are revisions

that no source files are modified. Consequently, the purpose

of STEP1 is eliminating revisions to be ignored because we

focus on only modifications on source files.

In STEP2, the mining processing extracts modification

patterns from every of two consecutive revisions identified

in STEP1. If we obtain n revisions, {r1,r2, · · · ,rn} in STEP1,

we extract modification patterns between r1 and r2, r2 and r3,

· · · , rn−1 and rn. Modification pattern extraction is performed

by using unix diff command.

In STEP3, the mining processing quantifies the extracted

modification patterns by calculating support and confidence.

D. Detection Processing

The inputs of the detection processing are the followings:

• source files of a revision of a target system,

• a set of modification patterns with their support and

confidence values,

• thresholds of support, confidence, and place.

The output are locations of overlooked code fragments and

ways to modify them.

If a code fragment is matched in many places of the

system, the matched places are unlikely to be overlooked

code fragments. The authors think that the number of

overlooked code fragments is usually a small value like

1 or 2. Consequently, we introduce a threshold to specify

an upper limit of matched places. In the detection process,

if a code fragment is matched more often than the place

threshold, the matched places are not output.

The detection processing consists of the following steps:

STEP1: selects modification patterns,

STEP2: detects overlooked code fragments.

In STEP1, the detection processing selects modification

patterns to be used for detecting overlooked code fragments

with the thresholds of support and confidence. If both

the support and confidence values of a given modification

2012 28th IEEE International Conference on Software Maintenance (ICSM)

225

pattern are equal to or greater than the thresholds, it is used

for detecting overlooked code fragments.

In STEP2, every source file is checked whether it contains

any of selected modification patterns. Before checking,

source files are normalized with the same rules used in

the mining processing, which means that a long character

sequence is generated from each file. Assuming that there

are a source file f in a revision r1 and a selected modification

pattern (c fbe f ore,c fa f ter,r2). If the character sequence of

f contains c fbe f ore, the proposed method regards that f

has an overlooked code fragment and output the following

information:

• location of the matched code fragments (file path, start

line, and end line),

• c fa f ter, which is a suggestion how the code fragments

should be modified.

V. IMPLEMENTATION

We have implemented the proposed method as a tool.

Currently, the tool handles only Subversion repositories.

The tool includes both the mining and detection processing

functionalities. The inputs of the system are the followings:

• source code repository of a target system,

• a revision number that overlooked code fragments are

searched,

• thresholds of support, confidence, and place.

It outputs information related to detected code fragments

(see Section IV-D).

We use SVNKit for operating Subversion repositories.

In order to realize the mining and detection processings,

we use ‘svn log’ and ‘svn diff’ commands. In the mining

processing, the tool normalizes source code for discarding

trivial modifications. Sometimes differences between two

revisions include trivial modifications, such as changing

indents, adding/removing white spaces, moving braces the

next/previous line. Considering such trivial modifications

extracts trivial modification patterns, so that the tool yields

false positives. To avoid generating false positives, we derive

modification patterns in the following way:

1) obtains all the differences between two revisions by

using diff command,

2) normalizes the code fragments in diff outputs. The

normalization includes deletion of white space, tabs,

and new-line characters,

3) extract a modification pattern from a given diff output

if the normalized code fragment before modification

is different from the one after normalization.

By normalizing and checking the code fragments in diff

output, we can avoid generating trivial modification patterns.

In the detection processing, the tool performs a special

handling for modification patterns that the code fragments

before modification is entirely included in the code frag-

ments after modification. Figure 2 shows such an example.

- cam_release_devq(done_ccb->ccb_h.path,
+ if ((done_ccb->ccb_h.status & CAM_DEV_QFRZN) != 0)
+ cam_release_devq(done_ccb->ccb_h.path,

Figure 2. An example that code fragment before modification is completely
included in code fragment after modification. This modification pattern is
for fixing a bug and it occurred in 3 places between revisions 199,278 and
199,279.

In the example, an if-statement for executing a method call

is added. If we simply use this modification pattern for

detecting overlooked code fragments, we will unintention-

ally find all cam_release_devq calls even if they already

have the if-statements. Detecting all of those instances yields

many false positives. Consequently, after the implemented

tool detects places matching with code fragments before

modification of modification patterns, it checks whether each

of the detected places is surrounded by the code fragments

after modification of the modification patterns or not. If it

is surrounded, the tool does not output it as an overlooked

code fragment.

VI. EVALUATION

We selected two open source software systems as experi-

mental targets. The overview of the targets is shown in Table

I. The first target is Apache HTTPD. The target period is

before creating branch 1.3.x. The 1.3.x branch is the first

one in the development of HTTPD. In other words, before

creating branch 1.3.x, new features additions and bug fixes

for releasing version 1.3.0 were performed.

The second target is FreeBSD Kernel. The target period

is 9-CURRENT kernel. The period started by making the

branch of 8-STABLE, and it ended by making the branch of

9-STABLE. In the period of 9-CURRENT, a variety of new

functionalities were added for FreeBSD 9.0-RELEASE. In

the closing span of the period, new functionality addition

is prohibited and developers concentrated on making the

source code stable. The period includes 7,689 revisions

where at least one .c file was modified, and the revisions

are the target of this experiment. For the two systems, we

targeted only .c source files, however it is possible to treat

.h header files.

In this experiment, we specified the following thresholds:

• support: 3

• confidence: 1.0

• place: 1

As a result, we obtained 737 and 983 modification patterns

from HTTPD and FreeBSD, respectively. The execution time

were 4 minutes 58 seconds for HTTPD and 12 minutes

16 seconds for FreeBSD. The remainder of this section

describes the investigation results of RQ1/RQ2 with those

patterns and comparison results with clone detection tools.

A. Investigation for RQ1

We found that 145 modification patterns out of 737 on

HTTPD and 94 out of 983 on FreeBSD appeared in two or

2012 28th IEEE International Conference on Software Maintenance (ICSM)

226

Table I
OVERVIEW OF TARGET SOFTWARE

Software Start revision (date) End revision (date) # of target revisions LOC of end revision

HTTPD 81,442 (1998-06-02 07:18:44) 90,607 (2001-08-24 11:30:27) 2,784 131,675
FreeBSD 196,121 (2009-08-12 19:44:13) 225,533 (2011-09-14 00:57:29) 7,689 3,570,021

more revisions. We carefully checked every of the 145 and

94 modification patterns one-by-one and classified them into

the 4 categories as shown in Table II1. The columns of the

table show the followings:

• “Bug”: the number of code fragments where bug fixes

must be applied,

• “Refactoring”: the number of code fragments where

refactoring should be applied. Herein, refactoring in-

cludes very simple operations such as changing variable

names or adding or deleting braces of if-statement,

• “Enhancement”: the number of code fragments that

functionality enhancements or expansions must be ap-

plied to,

• “Comment”: the number of comments where consisten-

cies must be maintained with other comments. This is

mainly for changing copyright statements.

We found that 42 modification patterns were bug fixes.

The presence of them indicates that developers were not

aware of all the code fragments to be fixed. When a

developer committed a revision where such a pattern firstly

appeared, he was misled into thinking that he had completely

fixed the problem. However, that was not true. The developer

himself or another one subsequently would recognize that

the program behaves in the wrong way. He would investigate

the factor of the wrong behavior, and he would find out that

the previous fixes were not enough and there is one or more

code fragments to be fixed in the same way.

Unintended inconsistencies by functional enhancement

are also critical. They become latent bugs in the future. The

investigation found that totally 117 enhancement patterns

appeared in multiple revisions. The presence of bug and

enhancement modification patterns has seriously negative

impacts on software development.

Also, 61 modification patterns were classified into refac-

toring. Those patterns do not directly have influences on

development. However, in the viewpoint of lack of consis-

tencies, they are unwelcome.

1In this experiment, we checked commit logs in the repository, surround-
ing code of modification patterns, and modifications after the target period.

Table II
CATEGORIES OF MODIFICATION PATTERNS IN RQ1

Software Bug Refactoring Enhancement Comment Total

HTTPD 19 22 93 11 145
FreeBSD 23 39 24 8 94

re
v
is
io
n

modifica-on pa0ern

㻤㻟㻟㻠㻟

㻥0㻢0㻡

(a) HTTPD

re
v
is
io
n

modifica.on pa0ern
㻝9㻢㻝㻞㻝

㻞㻞㻡㻡㻟㻟

(b) FreeBSD

Figure 3. Appearance period of modification patterns where inconsistences
arised provisionally (Investigation for RQ1)

We got 19 modification patterns related to comments. All

of them are about changing western calendar in copyright

statements. The presence of them does not affect the behav-

ior of the system. However, from the viewpoint of software

license, they should be modified consistently.

Figure 3 shows the appearance span of the 145 and 94

modification patterns. In X-axis, the patterns are arranged

in the ascending order of the first appearance revision. In

Y-axis, there is a line segment for every pattern. A line

segment starts at the first appearance revision of a given

pattern, and it ends at the last appearance revision. For

example, in the case of FreeBSD, the leftmost modification

pattern appeared between revisions 196,386 and 203,049

(see Figure 3(b)). The figure shows that most of the target

revisions include at least one inconsistency. The proportions

of including consistencies are 92.7% for HTTPD and 98.4%

for FreeBSD.

Figure 4 shows the longest-period modification patterns

found in HTTPD and FreeBSD, and Table III shows lists

of revisions that those patterns appeared. Both the patterns

are very simple. In the pattern of HTTPD, the conditional

predicate of an if-statement was modified. In FreeBSD, a

2012 28th IEEE International Conference on Software Maintenance (ICSM)

227

writev(c->fd,out, outcnt);
#else

write(c->fd,request,reqlen);
- if (posting) {
+ if (posting>0) {

write(c->fd,postdata,postlen);
totalposted += (reqlen + postlen);

}

(a) HTTPD

if (ste_newbuf(sc, cur_rx) != 0) {
- ifp->if_ierrors++;
+ ifp->if_iqdrops++;

cur_rx->ste_ptr->ste_status = 0;
continue;

}

(b) FreeBSD

Figure 4. Modification patterns that appears over the longest period (In
HTTPD, the modification pattern appears in revisions 83,946 and 88,628. In
FreeBSD, the modification pattern appears in revisions 200,965, 213,438,
218,832, 223,648, and 223,951)

variable to be increased was modified. In both the software,

the last revision that the patterns appeared is about 1 year

and a half later than the first revision. Both the patterns deem

to be bug fixes. That is, latent bugs of the overlooked code

fragments lasted 1 year and a half longer than the same bugs

in the other places.

As a result of this investigation, we answer RQ1 as

follows: About 19.7% and 9.6% of the detected modification

patterns are ones appearing in multiple revisions in the tar-

get systems; About 92.7% and 98.4% of the target revisions

included at least one of the inconsistencies that we detected.

B. Investigation for RQ2

In order to answer RQ2, we identified overlooked code

fragments from the entire source code of revisions 90,607

of HTTPD and 225,533 of FreeBSD by using the 737 and

983 modification patterns. The numbers of code fragments

Table III
LIST OF REVISIONS WHERE THE LONGEST-PERIOD MODIFICATION

PATTERN OCCURRED

(a) HTTPD
Revision Date Modified file

83,946 1999-10-08 06:53:46 support/ab.c (2 places)
88,628 2001-04-02 15:19:45 support/ab.c

(b) FreeBSD
Revision Date Modified file

200,965 2009-12-25 05:43:31 sys/dev/ste/if ste.c
213,438 2010-10-05 08:25:38 sys/dev/usb/net/usb ethernet.c
218,832 2011-02-19 11:47:10 sys/dev/dc/if dc.c
223,648 2011-06-29 01:16:43 sys/dev/gem/if gem.c
223,951 2011-07-12 22:22:17 sys/dev/cas/if cas.c (2 places)

Table V
EXECUTION TIME OF THE MINING AND DETECTION PROCESSINGS

Software Mining processing Detection processing

HTTPD 4 min. 58 sec. 12 sec.
FreeBSD 12 min. 16 sec. 7 min. 57 sec.

- dump_avail[1] = phys_avail[1] - phys_avail[0];
+ dump_avail[1] = phys_avail[1];

(a) Modification pattern

223 phys_avail[1] = ctob(realmem);
224
225 dump_avail[0] = phys_avail[0];
226 dump_avail[1] = phys_avail[1] - phys_avail[0];
227
228 physmem = realmem;

(b) Detected bug(sys/mips/atheros/ar71xx machdep.c)

Figure 5. An example of bugs detected in revision 225,533 of FreeBSD

- ap.offset = (uap->offsetlo | ((off_t)uap->offsethi << 32));
+ ap.offset = PAIR32TO64(off_t,uap->offset);

(a) Modification pattern

2813 ap.fd = uap->fd;
2814 ap.offset = (uap->offsetlo | ((off_t)uap->offsethi << 32));
2815 ap.len = (uap->lenlo | ((off_t)uap->lenhi << 32));
2816 return (posix_fallocate(td, &ap));

(b) Detected refactoring candidate(sys/compat/freebsd32/freebsd32 misc.c)

Figure 6. An example of refactoring candidates detected in revision
225,533 of FreeBSD

that the tool pointed out were 18 for HTTPD and 94 for

FreeBSD, each of which was carefully checked whether

it was overlooked or not. The identification time were 12

seconds for HTTPD and 7 minutes 57 seconds for FreeBSD.

Table V summarizes the execution time.

Table IV shows the investigation result. We found 15

bugs. Figure 5 shows an example of the bugs in FreeBSD.

In this pattern, the way of calculating an array element,

dump avail[1] was modified. In the log of commit where this

pattern appears, there is a description “dump avail layout

should be sequence of [start, end) pairs, not <start, size>.”,

which means that this pattern is a bug fixing. In revision

225,533, file ar71xx machdep.c has the same code fragment

as the patterns and their surrounding code are similar to each

other, so that we counted this code fragment as “Bug”.

We found 55 refactoring candidates. Figure 6 shows an

instance in FreeBSD. In this pattern, an expression for shift

and logical operations are replaced with a macro. This

macro was added in revision 205,014. It was defined at

file freebsd misc.c. Hence, it is very easy to apply the

suggested replacement. We considered that the suggested

code fragment is an overlooked one of the refactorings

performed in revision 205,014.

We found that 7 code fragments must be modified for

consistent functional enhancements. Figure 7 shows an in-

stance in FreeBSD. Before modification, the code fragment

outputs the status code when SATA connect timeout happen

meanwhile it also outputs actual time for the timeout after

modification. At the detected code fragment (Figure 7(b)),

variable “timeout” is available, so that it is very easy to apply

the suggested enhancement to the detected code fragment.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

228

Table IV
BREAKDOWN OF OVERLOOKED CODE FRAGMENTS THAT WERE POINTED OUT BY THE TOOL (INVESTIGATION FOR RQ2)

Software Total
True positives

False positives Precision
Bug Refactoring Enhancement Comment

HTTPD 18 2 4 10 0 2 88.9%
FreeBSD 94 13 51 2 3 25 73.4%

- device_printf(ch->dev, "SATA connect timeout status=%08x\n",
- status);
+ device_printf(ch->dev,
+ "SATA connect timeout time=%dus status=%08x\n",
+ timeout * 100, status);

(a) Modification pattern

129 if (port < 0) {
130 device_printf(ch->dev, "SATA connect timeout status=%08x\n",
131 status);
132 } else {

(b) Detected code fragment(sys/dev/ata/ata-sata.c)

Figure 7. An example of code fragments overlooked in functional
enhancement in revision 225,533 of FreeBSD

- * Copyright (c) 2005-2010 Pawel Jakub Dawidek <pjd@FreeBSD.org>
+ * Copyright (c) 2005-2011 Pawel Jakub Dawidek <pawel@dawidek.ne

(a) Modification pattern

1 /*-
2 * Copyright (c) 2005-2010 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3 * All rights reserved.
4 *

(b) Detected code fragment(sys/geom/eli/g eli crypto.c)

Figure 8. An example of code fragments overlooked in comment in
revision 225,533 of FreeBSD

There were 3 code fragments requiring modifications in

comments because of copyright issues. Figure 8 shows an

instance that we found. The western calendar and email

address were forgotten to be modified.

Also, we found 2 and 25 false positives from the two

target systems, respectively. They were certainly inconsis-

tencies in the source code. They were regarded not as

unintentional ones but as intentional ones. However, the

numbers of the false positives are relatively small, so that the

presence of the false positives should not be so impeditive to

apply the proposed method to actual software maintenance.

As a result of this investigation, we answer RQ2 as

follows: We detected 16 and 69 unintended inconsistencies

from a version of HTTPD and FreeBSD. In other words,

we found an unintended inconsistency from every 8,229 and

51,739 lines of code in the versions. The precisions were

88.9% and 73.4%, respectively.

C. Comparing with Clone-based Approaches

Clone-based approaches are used for detecting inconsis-

tencies in source code [3]. As described in Section II, the

purpose of the proposed method is detecting unintended

inconsistencies that code clone detection tools cannot de-

tect. In order to check that, we investigated whether the

unintended inconsistencies of RQ2 were detected by code

clone detection tools or not.

Herein, we used CCFinder[1] and Nicad[15] instead of

CP-Miner [3] because they are widely used, open to the

public, and easy to use. The characteristics of the tools are

as follows:

• CCFinder: A token-based detection tool developed

more than a decade ago. In the detection process,

CCFinder replaces user-defined identifiers such as vari-

able names or function names with special tokens, so

that it can detect token-level inconsistencies.

• Nicad: Detecting code clones on block-level or

function-level. Nicad identifies duplicated token se-

quences from every pair of blocks or functions by using

LCS (Longest Common Subsequence) algorithm. If the

ratio of detected duplication of a pair is larger than the

threshold specified by the user, the pair is regarded as

a code clone pair. Nicad can detect not only token-level

inconsistencies but also statement-level ones.

In this experiment, we used the default settings of the

tools. Table VI shows the detection results. CCFinder and

Nicad did not detect the most part of the unintended incon-

Table VI
THE NUMBER OF RQ2 UNINTENDED INCONSISTENCIES THAT

CCFINDER OR NICAD DETECTED

(a)HTTPD
Approach Total Bug Refactoring Enhancement Comment

Ours 16 2 4 10 0
CCFinder 2 0 0 2 0

Nicad 2 0 0 2 0

(b)FreeBSD
Approach Total Bug Refactoring Enhancement Comment

Ours 69 13 51 2 3
CCFinder 39 1 38 0 0

Nicad 2 1 1 0 0

Table VII
NUMERICAL DATA OF CCFINDER AND NICAD DETECTIONS

(a)HTTPD
Tool # of clone classes # of code clones Execution time

CCFinder 1,004 3,435 6 sec.
Nicad 117 324 3 sec.

(b)FreeBSD
Tool # of clone classes # of code clones Execution time

CCFinder 47,016 357,353 7 min. 35 sec.
Nicad 3,871 138,233 22 min. 26 sec.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

229

sistencies that the proposed method detected. Why they were

not detected by the tools is that they were not duplicated

code chunk that the tool can detect as code clones. In the

case of FreeBSD, CCFinder detected 38 inconsistencies for

refactoring. All of them were changes of function names,

which are token-level inconsistencies. They were not block-

level duplication, so that Nicad did not detect them.

Table VII shows the numbers of clone classes and code

clones detected by the tools. Both the tools detected many

code clones, however, the detection results include only

a small part of the unintended inconsistencies that the

proposed method detected.

VII. DISCUSSION

A. Normalization

The current tool performs only a simple normalization,

which removes white spaces, tabs, and new-line characters.

For most programming languages, white spaces and tabs are

used only for layout of the source code. That is, removing

them has no impacts on semantics of code fragments.

However, some programming languages such as Python use

them as structural information. If a target system is written

with such a programming language, removing them is not

an appropriate operation.

With only these simple normalizations, we cannot obtain

all the overlooked code fragments. Assuming that there is a

couple of code fragments that have the same operations and

they are modified in the same way. If variable names are

different, they are treated as different modification patterns

in the mining process. The same problem also happens in

the detection process.

If the tool performs more intelligent normalizations such

as replacing variable names and literals with their types,

we will obtain more inconsistencies. However, such normal-

izations require analyzing the entire source files. Currently,

we analyze only code fragments appearing in ‘svn diff’

command, and so the amount of code to be analyzed is very

small comparing to the entire of source code. Consequently,

the tool has a high scalability. If we perform such intelligent

normalizations by scanning all the source code of all the

revisions, the scalability is drastically decreased.

B. No consideration of “added” code fragments

In the detection process, overlooked code fragments are

searched based on text matching using code fragments

before modification. Hence, in this approach, we cannot use

modification patterns that represent code additions. In order

to check how many such addition patterns exist, we extracted

the patterns satisfying the following conditions.

• code fragment before modification is empty,

• there are 3 or more modification patterns whose code

fragments after modification are the same.

As a result, we obtained eight patterns from the two

programs. Four out of them are preprocessor instructions

such as #ifdef and #endif. The other four patterns are the

followings:

• addition of variable declaration,

• addition of label, which is for goto-statement,

• addition of method call, which unlocks semaphore, and

• addition of a closed brace.

A part of them, especially the method call addition, should

be used for detecting overlooked code fragments. The others

are not so valuable. For example, if a closed brace is missing,

the program is not compilable. We can find such an easy

problem with a compiler.

In order to use addition patterns, using surrounding code

is one way. In the mining processing, if we detect code

addition, its pattern is created with its surrounding code.

Including a previous line and a latter one may be reasonable.

C. Number of Detected Unintended Inconsistencies

In this experiment, we found out 16 and 69 unintended

inconsistencies in a single revision of HTTPD and FreeBSD.

In LOC-based consideration, every 8,229 and 51,739 lines

of code has an unintended inconsistency. The values are very

different and the number of the targets is only two, so that we

cannot conclude a general result on frequency of unintended

inconsistency occurrences from the experiment.

On the other hand, the experiment revealed the followings:

• more than 90% target revisions of both programs con-

tain one or more unintended consistencies, and

• the detected unintended inconsistencies by the proposed

method were not detected by the clone detectors.

The above findings indicate that new approaches for detect-

ing unintended inconsistencies are required and the proposed

method can be a useful approach for that.

D. Manual Checking in Evaluation

In this experiment, the authors checked the code frag-

ments detected by the tool. However, we are not developers

of the target system, and the result of the manual checking

may contain mistakes. Consequently, we have to conduct

more experiments that developers check outputs of the tool.

E. Thresholds used in this experiments

In this experiment, we used only one combination of the

three parameters, support, confidence, and place. If we used

looser thresholds such as support is 2, more inconsistencies

would be detected. In this experiment, we checked all

the detected inconsistencies one-by-one. We are not the

developers of the target systems, so that checking a detected

inconsistency took a very long time. The total time of the

checking was approximately 20 hours. In some cases, we

spent more than an hour to check each of them. Hence, the

number of detected inconsistencies with the thresholds was

acceptable for manual checking by non-developers. If the

inconsistency checking was performed by developers, the

required time would be much shorter.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

230

F. Comparison Tools

In this paper, we used two code clone detection tools,

CCFinder and Nicad, for comparison. We used the default

settings of the tools for detection. If we had used other

settings (e.g., minimal code clone length), their detection

results would have been better. Also, in this experiment, we

only checked whether the tools could detect inconsistencies

that were detected by the proposed method. Authors think

that the proposed method has a complementary relationship

with code clone detection tools for detecting inconsistencies.

Code clone detection tools can identify inconsistencies even

if they do not have the same modifications in the past.

We did not use historical clone-based approaches such as

Saha et al., and Göde and Koschke developed [16], [8]. If we

use such approaches, we can obtain how code clones have

evolved. That is, code clones including inconsistencies are

identified easier. However, note that, even if we use historical

clone-based approaches, inconsistencies not included in code

clones as we showed in Figure 1 are not identified.

VIII. CONCLUSTION

In this paper, we proposed a new method to automati-

cally detect code fragments to be modified for bug fix or

functional enhancement. The proposed method detects over-

looked code fragments by mining how code was modified in

the past. The proposed method is free from issues of existing

methods: (1) requiring a certain size of code chunk to be

detected; (2) only token-level inconsistencies are detected.

The proposed method has been implemented as a software

tool. It was applied to large-scale open source software. As

a result, we obtained many code fragments to be modified

for fixing bugs, functional enhancement, refactoring. Also,

this application showed that the tool is enough scalable to

be applied to large scale software. In the future, we are

going to conduct more experiments that involve developers

of the target systems. Also, we will try more intelligent

normalizations. Those requires much more time to finish

analysis; meanwhile we’ll obtain more suitable results for

eliminating inconsistencies.

ACKNOWLEDGMENT

This study has been supported in part by Grants-in-Aid

for Scientific Research (A) (21240002), Grant-in-Aid for

Exploratory Research (23650014), and Grand-in-Aid for

Young Scientists (A) (24680002) from the Japan Society

for the Promotion of Science.

REFERENCES

[1] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A Mul-
tilinguistic Token-Based Code Clone Detection System for
Large Scale Source Code,” IEEE TSE, vol. 28, pp. 654–670,
2002.

[2] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue, “Simultaneous
Modification Support based on Code Clone Analysis,” in
Proceedings of APSEC ’07, 2007, pp. 262–269.

[3] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: Finding
Copy-Paste and Related Bugs in Large-Scale Software Code,”
IEEE TSE, vol. 32, pp. 176–192, 2006.

[4] L. Aversano, L. Cerulo, and M. Di Penta, “How clones are
maintained: An empirical study,” in Proceedings of CSMR
’07, 2007, pp. 81–90.

[5] L. Barbour, F. Khomh, and Y. Zou, “Late propagation in
software clones,” in Proceedings of ICSM ’11, 2011, pp. 273–
282.

[6] S. Bazrafshan, R. Koschke, and N. Gode, “Approximate code
search in program histories,” in Proceedings of WCRE ’11,
2011, pp. 109–118.

[7] W. I. Chang and E. L. Lawler, “Approximate string matching
in sublinear expected time,” in Proceedings of SFCS ’90,
1990, pp. 116–124 vol.1.

[8] N. Göde and R. Koschke, “Frequency and risks of changes
to clones,” in Proceedings of ICSE ’11, 2011, pp. 311–320.

[9] F. Rahman, C. Bird, and P. T. Devanbu, “Clones: What is that
smell?” in Proceedings of MSR ’10, 2010, pp. 72–81.

[10] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams, Y. Zou,
and A. E. Hassan, “An empirical study on inconsistent
changes to code clones at the release level,” Science of
Computer Programming, vol. 77, no. 6, pp. 760–776, 2010.

[11] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An em-
pirical study of code clone genealogies,” in Proceedings of
ESEC/FSE-13, 2005, pp. 187–196.

[12] E. Duala-Ekoko and M. P. Robillard, “Clone region descrip-
tors: Representing and tracking duplication in source code,”
ACM TOSEM, vol. 20, pp. 3:1–3:31, 2010.

[13] Z. Li and Y. Zhou, “PR-Miner: automatically extracting
implicit programming rules and detecting violations in large
software code,” in Proceedings of ESEC/FSE-13, 2005, pp.
306–315.

[14] B. Livshits and T. Zimmermann, “Dynamine: finding com-
mon error patterns by mining software revision histories,” in
Proceedings of ESEC/FSE-13, 2005, pp. 296–305.

[15] C. K. Roy and J. R. Cordy, “NICAD: Accurate Detection of
Near-Miss Intentional Clones Using Flexible Pretty-Printing
and Code Normalization,” in Proceedings of ICPC ’08, 2008,
pp. 172–181.

[16] R. K. Saha, C. K. Roy, and K. A. Schneider, “An automatic
framework for extracting and classifying near-miss clone
genealogies,” in Proceedings of ICSM ’11, 2011, pp. 293–
302.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

231

	How Often Do Unintended Inconsistencies Happen? Deriving Modification Patterns and Detecting Overlooked Code Fragments
	Yoshiki Higo
	Shinji Kusumoto

