
Verification of Safety Property of Line Tracer Program
using Timed Automaton Model

Kozo Okano†, Toshifusa Sekizawa‡, Hiroaki Shimba†, Hideki Kawai‡, Kentaro Hanada†,
Yukihiro Sasaki†, and Shinji Kusumoto†

†Graduate School of Information Science and Techlology, Osaka University, Japan
‡Faculty of Informatics, Osaka Gakuin University, Japan

{okano, h-shimba, k-hanada,y-sasaki, kusumoto}@ist.osaka-u.ac.jp
{sekizawa,09s0100}@ogu.ac.jp

Abstract - Recently reliability of embedded systems has
become very important. Such reliability can be ensured by
formal verification techniques including model checking. We
study such verification technique through a real example of
embedded systems, a line tracer. This paper mainly describes
how to model the behavior of the line tracer in a network of
timed automata, as well as experimental results of verifica-
tion. Using the model, several safety properties are success-
fully verified with a model checker, UPPAAL. The line tracer
is built with LEGOMindstorms kit. This paper also describes
the implementation using LeJOS, a Java development envi-
ronment for LEGO Mindstorms kit.

Keywords: Embedded System, Real-time System, Formal
Verification, Timed Automaton

1 INTRODUCTION
Recently, embedded systems have become important in our

society. Embedded systems exist everywhere in our daily
life. Therefore, to ensure safety properties of the embedded
systems becomes much important. In order to ensure such
property, model checking techniques are often used. Most of
model checking techniques are based on finite state machine
model. The behavior of the target systems is modeled in a tu-
ple of automata. In usual, program variables, such as integer
variables are translated into finite state variables. For exam-
ple, a general 32-bit integer variable might be translated into
an 8-bit integer as long as the target program does not use con-
stants with large values greater than 127. Even such model-
ing can detect important faults in design phases. On the other
hand, some of embedded systems require time properties as
their specification. In order to model such systems (real-time
systems), several models have been proposed. Timed automa-
ton is proposed by Alur and Dill[1]. The most interesting
point of timed automaton is that it uses clock variables where
the range of a clock variable is real numbers. Locations and
transitions of timed automaton have constraints on clocks in
limited syntax forms. Timed automaton, therefore, can repre-
sent naturally behavior of real-time systems. The famous ver-
ifier for timed automaton is UPPAAL[2], which is developed
by Wang-Yi’s research group. The timed automaton used in
UPPAAL is a strong extension of the original timed automa-
ton. It can deal with bounded integer variables and guard ex-
pressions on its transitions can express constraints on such
variables. Several success applications of verification have

reported, including verification of audio-video protocols[3],
a gear controller[4], timeliness properties of multimedia sys-
tems [5], and so on.
Embedded systems sometimes control continuous systems.

For examples, water level controller observes level of water
in a certain water tank and controls incoming and outgoing
valve flow associated with the tank. Note that the water level
and the valve flow are usually continuous values. In order
to deal with such a system consisting of discrete sub-systems
and continuous sub-systems, hybrid automaton has been also
proposed. Several studies have proposed simulators for hy-
brid systems.
Our research question is how to verify formally behavior of

such hybrid systems[6]. Our first step of the research is to find
what properties can be verified using conventional verifiers
such as UPPAAL and so on, through a real application. We
use a line tracer as a real application for the following reasons.

• It contains time properties as design specification;

• We can implement a real system with reasonable costs
using LEGO Mindstorms kit [7]; and

• We can freely describe the control program in Java us-
ing LeJOS[8], which is free software for LEGO Mind-
storms.

Through experiments, we have succeeded in verification
of safety properties of a line tracer, using timed automaton
model and UPPAAL.
The rest of the paper is organized as follows. Sec. 2 pro-

vides preliminaries. Sec. 3 and 4 will describe the model and
implementation of our line tracer. Sec.5 and 6 show some
preliminary but promise experiments and discussion. Finally,
Sec. 7 concludes the paper. The final section also provides
future plan of our work.

2 PRELIMINARIES
Here, we will provide several definitions and notions used

in this paper.

2.1 Timed Automaton
A timed automaton is an extension of the conventional au-

tomaton with clock variables and constraints for expressing
real-time dynamics. They are widely used in the modeling
and analysis of real-time systems.

136

Definition 1 (constraints) We use the following constraints
on clocks.

1. C represents a finite set of clocks.

2. Constraints c(C) over clocks C are expressed as in-
equality of the following form.

E ::= x ∼ a | x− y ∼ b | E1 ∧ E2,

where x, y ∈ C,∼∈ {≤,≥, <,>,=}, and a, b ∈ R≥0,
in whichR≥0, is a set of all non-negative real numbers.

The above time constraints are used to mark edges and
nodes of the timed automata for describing the guards and
invariants.

Definition 2 (timed automaton) A timed automaton A is a
6-tuple (A,L, l0, C, T, I), where

• A: a finite set of actions;

• L: a finite set of locations;

• l0 ∈ L: an initial location;

• C: a finite set of clocks;

• T ⊆ L× c(C)×A×2C×L is a set of transitions. The
second and fourth items are called a guard and clock
resets, respectively; and

• I : L → c(C) is a mapping from location to clock
constraints, called a location invariant.

A transition t = (l1, g, a, r, l2) ∈ T is denoted by l1
a,g,r→

l2.
A map v : C → R≥0, is called a clock assignment (or clock

valuation). We define (v + d)(x) = v(x) + d for d ∈ R≥0

and some x ∈ C.
For a guard, a reset and a location invariant, we introduce

some notations with regard to clock valuation. For each guard
g ∈ c(C), a function g(v) stands for the valuation of the
guard expression g with the clock valuation v. For each re-
set r, where r ∈ 2C , we shall intorcuce a function denoted
by r(v), and let r(v) = v[x *→ 0], x ∈ r. For each location
invariant I , we shall introduce a function denoted by I(l)(v),
which stands for the valuation of the location invariant I(l) of
location l with the clock valuation v.
Dynamics of a timed automaton can be expressed via a set

of states and their evaluations. Changes of one state to a new
state can be as a result of firing of an action or elapse of time.

Definition 3 (state of timed automaton) For a given timed
automaton A = (A,L, l0, C, T, I), let S = L × RC

≥0 be a
set of whole states of A , where RC

≥0 is a whole set of clock
evaluation on C.
The initial state of A can be given as (l0, 0C) ∈ S.

For a transition l1
a,g,r→ l2, the following two transitions are

semantically defined. The first one is called an action transi-
tion, while the latter one is called a delay transition.

l1
a,g,r→ l2, g(v), I(l2)(r(v))

(l1, v)
a⇒ (l2, r(v))

, ∀d′ ≤ d I(l1)(v + d′)

(l1, v)
d⇒ (l1, v + d)

Semantics of a timed automaton can be interpreted as a la-
beled transition system.

Definition 4 (semantic of a timed automaton) For a timed
automatonA = (A,L, l0, C, T, I), an infinite transition sys-
tem is defined according to the semantics of A , where the
model begins with the initial state. By T (A) = (S, s0,

α⇒),
the semantic model of A is denoted, where α ∈ A ∪ R≥0.

Definition 5 (run of a timed automaton) For a timed automa-
ton A , a run σ is finite or infinite sequence of transitions of
T (A).
σ = (l0, ν0)

α1⇒ (l1, ν1)
α2⇒ (l2, ν2)

α3⇒ · · ·

2.2 UPPAAL
UPPAAL[2] is a famous model checker for extended timed

automata by Wang-Yi et al. It also supports model checking
for the conventional timed automata. UPPAAL allows ver-
ification of expressions described in an extended version of
CTL. In addition, it supports local and global integers and
primitive operations on integers, such as addition, subtract
and multiplication with constants. Such expressions are also
allowed on the guards of transitions. The model of the sys-
tem can be created from multiple timed automata which are
synchronized together via CCS-like synchronization mecha-
nisms.
The important point is that even the extended timed au-

tomaton used in UPPAAL cannot deal with real variables ex-
cept clocks. We, therefore, have to round real values to integer
values when we model the target systems.

3 MODEL
The term “line trace” means that a vehicle traces a course

starting from a certain point. The point might be on the course
or not. The course is assumed to be painted in black color on
white background with the same width. For example, an oval
course (the same as the track used in an athletic field) is used.
A model for a line tracer consists of the following three

models:

• Controller Behavior,

• State Transition of Environment, and

• Disturbance.

Controller behavior can be modeled using a state machine.
Usually, controller program changes values of some of state
variables based on values of some state variables.
For example, the state variables of a line tracer will be the

location of the tracer, the locations of the right and left sen-
sors, the output values of the right and left sensors, direction
of the line tracer, the rotation speed of left and right wheels,
and so on.
The output values of the right and left sensors are used as

inputs of the controller. The rotation speed of left and right
wheels are used as outputs of the controller

137

Table 1: State Variables of a Line Tracer
variable description
x: x-coordinate of the center of a line tracer
y: y-coordinate of the center of a line tracer
θ: direction of a line tracer
slx: x-coordinate of the left sensor of a line tracer
sly: y-coordinate of the left sensor of a line tracer
srx: x-coordinate of the right sensor of a line tracer
sry: y-coordinate of the right sensor of a line tracer
wl: revolution speed of the left wheel of a line tracer
wr: revolution speed of the right wheel of a line tracer
sl: the sensed value of left sensor
sr: the sensed value of right sensor

Table 2: Constants
constant description
w : width between left and right wheels of the line tracer
los: offset to the left sensor from the vehicle center
ros: offset to the right sensor from the vehicle center

los, ros are tupple of (l, a), where l and a are the distacbe
and angle by the center of the vehicle, respectively.

State transition of environment can be normally represented
in differential equations on state variables. In a hybrid sys-
tem, such equations are used, while in a finite sate model,
differential-difference equations are used as approximation.
For a line tracer, the principle state variables are summa-

rized in Table 1.
We need some other constants to model, especially con-

stants on the size of the line tracer. Table 2 shows some of
them. Figure 1 also illustrates the relations on the state vari-
ables and constants.
Let assume that a line tracer turns with the speed of left and

right wheels at hs and ls. Then equations of motion can be
given as follows.

dθ

dt
=

hs − ls
w

(1)

dx

dt
= −rc · sin θ ·

dθ

dt
(2)

dy

dt
= rc · cos θ ·

dθ

dt
(3)

!", $%

&

!'(", '($%

!')", ')$%

(*'

)*'

+

+(, +)

Figure 1: Constants and State Variables

Table 3: Conversion Table for Sine Function
domain of x (degree) round of 100× sin(x)
[0, 10) 8
[10, 20) 26
[20, 30) 42
[30, 40) 57
[40, 50) 71
[50, 60) 82
[60, 70) 91
[70, 80) 96
...

...
[350, 360) -9

rc =
w

2
· hs + ls
hs − ls

(4)

Disturbance can be modeled as uncertain error for each of
observation variables. For example, a line tracer has sensors.
The value s, the output of the sensor may change with uncer-
tain value as like the following equation:
so = sr + ε(s), where variables so, sr, and ε(s) represent the
observed value, ideal value and error in observation, respec-
tively.

3.1 Quantization
The timed automaton used in UPPAAL can model the con-

troller behavior. It, however, uses integer variables only. As
we know, most of state variables must have values in real.
Therefore, we have to approximate such variables into inte-
ger variables.
Most of state variables use trigonometric functions (see

equations (2) and (3)). Thus, we have to approximate the
functions to round up into integers as long as we use finite
models. Though, the values of trigonometric functions range
in [-1,1], it is not a good idea that we use only three values
-1, 0, and 1. Therefore, we assume that trigonometric func-
tions range in [-100, 100]. Also we adopt degree as unit for
angle. Table 3 shows an approximation conversion table for
sine function.

3.2 Sampling
Yet another problem is that we cannot deal with functions

on time. Usually state variables can be represented as func-
tion on time, however, even UPPAAL does not provide func-
tions on time. Therefore, we have to regard state variables as
discrete signals.
Sampling is a great tool to reduce a continuous signal into a

discrete signal. For a discrete signal, we can model its change
on time as an timed automaton with update functions.
Let’s consider again state variables, x, y, θ, slx, sly, srx,

sry, wl, wr, sl, and sr. In usual, slx and sly are calculated
using x and y with some parameters in Table 2. The values
of sl and sr are also determined from the value of x, y, los,
ros, and a course model, which consists of some parameters
and the equations of the course. The values of wl and wr are
determined by the controller.

138

Table 4: Logic for Color Sensors
RightSensor

black white
LeftSensor black go straight turn left

white turn right go straight

Therefore, we need calculate the current value of x, y and
θ like as equations (1)∼ (4).
Using sampling and update functins, we can model that the

values of variables are updated every some fixed unit of time
using small deltas. We will explain concrete update expres-
sions in Sec. 5.

4 IMPLEMENTATION
LEGO Mindstorms NXT[9] is a kit for assembling robots

with various actuators and sensors by LEGO R©. Users can
program its behavior. The actuators include stepping motors
which users can accurately control rotation angles. The sen-
sors include color sensors, touch sensors, sound sensors and
so on. Various programming languages are provided for con-
trol of the NXT kit. The famous languages are NXC (Not
eXactly C)[10] and LeJOS. LeJOS is a development environ-
ment for Java. NXC and LeJOS have classes for the above
sensors and actuators.
This research uses LeJOS for developing the line tracer.

Our line tracer has two color sensors locating left front and
right front of the tracing car.
Table 4 shows the logic for the sensors. For example, if

LeftSensor and RightSensor sense white and black colors, re-
spectively, then the controller issues the turn right command
to motors.
The output of sensors is a bounded integer value. If the

value is greater than some threshold, then controller treats it
as white. For the command, left and right wheel motors react
independently. For example, “turn left” command makes left
and right wheel motors speed up and dowm, respectively
Figure 2 shows the controller in LeJOS. Figure 3 shows the

implemented line tracer.

5 EXPERIMENTS
Here, we deal with an ideal model. Therefore, we ignore

disturbance. Figures 4 and 5 corresponds to controller be-
havior model and state transition of enviroment model. In
this experiment, we use a simple controller program, where
revolution speed of wheels has only two values, hs and ls.
Moreover we assume that sensors only tell white and black
colors on the track. In other words, the values of sl and sr
are determined by only the position of the line tracer. On
the other hand, we model the delay of sensors and actuators.
Concretely, we have parameters ds, da, and dt for delay be-
tween the time when program senses color and the time when
the sensors obtain the values of colors, delay between the time
when program issues a command and the timewhen themotor
reacts, and sleeping time for next sense-act loop, respectively.
This modeling represents real behavior of a line tracer.
Figure 4 shows the control behavior model of the program.

import lejos.nxt.Button;
import lejos.nxt.ColorSensor;
import lejos.nxt.SensorPort;
import lejos.nxt.ColorSensor.Color;
import lejos.nxt.LCD;
import lejos.nxt.Motor;
public class Controller {

public static void main(String[] args)
throws Exception {

int rid,lid;
final int HS = 420, LS = 120, BLACK = 7,
MS = 360, HSEC = 500;
Color colorR ,colorL;
ColorSensor sensorR =

new ColorSensor(SensorPort.S3);
// 1(S3):right

ColorSensor sensorL =
new ColorSensor(SensorPort.S4);
// 2(S4):left

Motor motor = new Motor();
motor.B.setSpeed(MS);
motor.C.setSpeed(MS);
Thread.sleep(HSEC);
// wait for devices to be stable

motor.B.forward();
motor.C.forward();
while(true) {
rid = sensorR.getColorID();
lid = sensorL.getColorID();
if (rid == BLACK)
motor.B.setSpeed(LS);

else motor.B.setSpeed(HS);
if (lid == BLACK)
motor.C.setSpeed(LS);

else
motor.C.setSpeed(HS);

if (Button.readButtons()
== Button.ENTER.getId())
break;

}
}

}

Figure 2: Controller in LeJOS

Figure 3: The Implemented Line Tracer

139

sleepState
t <= sleep

goStraight
t <= cd

unwanted
t <= cd

turnRight
t <= cd

turnLeft
t <= cd

start
t <= sd

t == sleep
t := 0,
lsensorL = lsensor,
lsensorR = rsensor

t == cd
lws=hs,
rws=hs,
dir=STRAIGHT,
t:=0

t==cd
lws=hs,
rws=hs,
dir=STRAIGHT,
t :=0

t == cd
lws=hs,
rws=ls,
dir=RIGHT,
t:=0

t == cd
lws=ls,
rws=hs,
dir=LEFT,
t:=0

lsensorL==white &&
lsensorR==white &&
t == sd

t := 0

lsensorL==black &&
lsensorR==black &&
t == sd

t := 0

lsensorL==white &&
lsensorR==black &&
t == sd
t := 0

lsensorL==black &&
lsensorR==white &&
t == sd

t := 0

Figure 4: Timed Automaton Representing the Controller

t <= 1

x = updateX(x,theta,hs,ls,dir,S,L),
y = updateY(y,theta,hs,ls,dir)

lsensor = updateL(theta, dangle),
rsensor = updateR(theta, dangle)

theta = updateT(theta,da,dir)

t == P
t := 0

Figure 5: Timed Automaton Representing Update

Figure 5 shows the timed automaton which updates period-
ically state variables every unit of time. The automaton pe-
riodically calls functions updateX, updateY, updateT, up-
dateL, and updateR which update state variables x, y, θ, sl,
and sr, respectively. The automaton first updates the value of
θ, and then values of x and y. Finally it updates values of sl
and sr based on the values of x, y, and θ.
The following equations are equations for θ, x, and y used

in update functions.

θ′ = θ + α (5)

x′ = x+
wl + wr

2
cos θ (6)

y′ = y +
wl + wr

2
sin θ (7)

α = 90 · wr − wl

w · π (8)

If we assume that the unit of time is small then the moving
distance of the vehicle can be approximated to (hs + ls)/2.
The above equations uses this fact.
Please note that we actually use not sin but pseudo sin /100

defined in Table 3. Also we let the values of the parameter p
range in [0, 360] by using an expression (p+ 360)%360.
We also assume that the course is a straight line along with

x-axis.
We can verify the following queries:

1. E♦(900 < x).

2. E♦(C.turnRight).

3. E♦(C.turnLeft).

4. E♦(C.unwanted).

Table 5: Parameters under Verification
params value description
wc: 100 width of the track line
w: 120 width between left and right wheels of

the line tracer
los: (180, 30◦) offset to the left sensor from

the vehicle center
ros: (180,−30◦) offset to the right sensor from

the vehicle center
hs: 12 high speed
ls: 6 low speed
x0: -200 initial value of x-coordinate of the center

of the vehicle
y0: 200 initial value of y-coordinate of the center

of the vehicle
θ0: 340◦ initial value of direction of the vehicle
ds: 1 time delay of sensors
da: 1 time delay of actuators
ds: 2 periodical sleeping time

5. A"¬(C.unwanted).

6. E♦(C.goStraight).

7. A"((x > 280) ⇒ (−100 < y < 100)).

8. A"((x > 280) ⇒ (θ < 10 ∨ 350 < θ)).

9. E♦((x > 280) ⇒ C.turnRight).

10. E♦((x > 280) ⇒ C.turnLeft).

The first query (1) means that the line tracer will reach the
area x > 900. Queries (2) and (3) mean that the controller
eventually reach state C.turnRight and C.turnLefit. Queries
(4) and (5) mean that the controller eventually reach state
C.unwanted and that the controller never reach stateC.unwanted,
respectively, where both of sensors detect black color. Query
(6)means that the controller eventually reach stateC.goStraight.
Queries (7), (8), (9) and (10) uses the assumption that a

line tracer is in stable state. Please note that we think after the
point x = 280, the tracer is in stable. We can observe it from
several traces of simulation. The traces can be obtained from
the UPPAAL using the simulation mode view.
Queries (7) and (8) mean that the line tracer roughly keeps

the track and appropriate direction, respectively, in the stable
state.
The last two queries mean that the line tracer eventually

turns left or right even if the tracer is in stable state.
Every of the verifications (except the query (4)) has suc-

ceeded with the parameters in Table 5. Every verification is
performed within one sec. using UPPAAL ver. 4.0.13 aca-
demic licence on Windows 7 64 bit OS, Intel Core i7 960
3.20GHz, with 12 GB memory.
Query (4) passed if we change the parameter los and ros

as (170, 30◦) and (170, -30◦). In this time, of course, Query
(5) changes to false.
We assume that if the value of x becomes greater than 1000

then the value of x is reset to 50. This device let a line tracer
run infinitely in the finite state model.
Figure 6 shows verification process using UPPAAL.

140

Figure 6: Verification using UPPAAL

6 DISCUSSIONS

Here, we will describe discussions on the experiments and
hybrid systems.

6.1 Discussions on The Experiments
The results are not enough to convince us that the line tracer

runs safely. The results, however, show that from the theo-
retical point of view, our approach using a verifier for timed
automata, will work.
The parameters used in verification are not the same to the

parameters used in the implementation. This might lessen the
validity of the model. However, the proportional relations of
the parameters are acceptable. For example, the width ws
between the left sensor and the right sensor is 190 and it is
greater than 100, the width of the track.
The value ws is greater than 120, the width of the line

tracer. It is very different from the implementation in Figure
3. The parameters are, however, acceptable. Also the wheel
speed 6 or 12 is acceptable with regard to the size of the line
tracer.
The workload of modeling is in fact not less (it takes over

2 month-persons) due to our limit of know-how on modeling,
especially how to deal with continuous model. Some of pa-
rameters in Table 5 are very sensitive, in other words, if these
values are different by a little, the behavior of the whole sys-
tem differs; consequently, verification will fail. For example,
with the parameters in Table 5 if we change the value of ds as
4, then the verification fails.
You might think that slow wheel speed increases the pos-

sibility of success of verification. In other words, the slower
a line tracer moves, the more successively it keeps the track.
However, due to the quantization, a small wheel speed causes
the delta values per unit of time to be 0 in our model. There-
fore, we cannot set smaller value than 6 as the low speed of
the wheel. Such a problem can be resolved by increasing the
physical sizes in the model. However, such a revise, in turn,
causes so called state explosion in which a model checker

cannot response in a reasonable time or exhausts whole of
the memory space.
Nevertheless such situations, it shows the importance of

design analysis and verification in an early stage of develop-
ment.
During the modeling, we think that there should be an au-

tomated generation tool which translates from an abstract pa-
rameter model to a concrete UPPAAL model, as well as a
simple tool to analysis counter-examples and simulation re-
sults obtained from UPPAAL. They would be very useful to
refine the model.

6.2 Hybrid System
In order to analyze the model more precisely, hybrid sys-

tems seem promise models.
Hybrid system[11] is a system in which continuous dynam-

ics and discrete dynamics are mixed with time progress. Hy-
brid systems are important in many fields such as physics and
control engineering. Several approaches are proposed to deal
with hybrid systems. One of the approaches is hybrid au-
tomaton[12] which is a formal model for describing mixed
discrete-continuous systems. Hybrid automaton consists of
variables, control graph, continuous flow, discrete jump and
events. Amodel checker for linear hybrid automata is HyTech[13].
Another approach is hybrid constraint languages such as Hy-
brid cc[14] and HydLa[15]. These languages are declarative
and provide power to write programs with logical formulas.
Execution environment of these languages are implemented,
Hybrid cc interpreter and Hyrose, respectively.
A line tracer can be a hybrid system by describing its move-

ment using differential equations and its control program in
discrete time. However, there are difficulties if a line tracer is
modeled accurately. For example, modeling with character-
istics of motors and sensors, and disturbances are difficulties.
Fehnker et al. presented a study of verification of behaviors
of a line tracer[16]. In the paper, the authors presented verifi-
cation of a safety property, a line tracer move along a straight
line and never run off the line, by constructing a model using
hybrid I/O automata and correctness proof. However, as the
authors mentioned, some kinds of time is not considered such
as time delay between two motors.

7 CONCLUSION

We have modeled a controller of a line tracer in timed au-
tomata. Also we have verified the model to ensure that the
line tracer keeps the track, using a model checker, UPPAAL.
Future plans are summarized as follows. First, we want to

model a PID controller (proportional-integral-derivative con-
troller), which is a kind of feedback controls. PID control
enables a line tracer to behave more smoothly. PID control,
however, needs some historical data on the past values of state
variables, and also requires complicate calculation, thus hy-
brid modeling becomes more suitable. We want to use hybrid
model, as well as its verifiers and simulators to determine suit-
able parameters for PID control. It is said that to find suitable
parameters for PID control for an instance of problems, is

141

a difficult problem for a long time. We think our approach
might work well.
Another direction of our research is timing analysis of mo-

tor delay. From preliminary experiments, we have found that
motor delay cannot be ignored for design of controller pro-
gram if we want to obtain a high quality controller.

ACKNOWLEDGEMENT
This research is partially supported by Grant-in-Aid for

Scientific Research (C) (21500036).

REFERENCES

[1] R. Alur and D. L. Dill: “A theory of timed au-
tomata,” Journal of Theoretical Computer Science,
126(2), pp.183-235 (1994).

[2] J. Bengtsson and W. Yi: “Timed Automata: Semantics,
Algorithms and Tools,” In Lecture Note in Computer
Science, vol.3098, pp.87-124 (2004).

[3] J. Bengtsson, W. O. D. Griffioen, K. J. Kristoffersen, K.
G. Larsen, F. Larsson, P. Pettersson and W. Yi: “Verifi-
cation of an Audio Protocol with bus collision using UP-
PAAL,” In Lecture Note in Computer Science, vol.1102,
pp.244-256 (1996).

[4] M. Lindahl, P. Pettersson, and W. Yi: “Formal Design
and Analysis of a Gear Controller: An Industrial Case
Study using UPPAAL,” In Lecture Note in Computer
Science, vol.1384, pp.289-297 (1998).

[5] B. Bordbar and K. Okano: “Verification of Timeli-
ness QoS Properties in Multimedia Systems,” In Lec-
ture Note in Computer Science, vol.2885, pp.523-540
(2003).

[6] J. Fitzgerald, P.G. Larsen, K. Pierce, M. Verhoel, and S.
Wolff: “Collaborative Modelling and Co-simulation in
the Development of Dependable Embedded Systems,”
in Proceedings of IFM 2010, pp.12-26 (2010).

[7] B. Bagnall: “Intelligence Unleashed: Creating LEGO
NXT Robots with Java,” Variant Press (2011).

[8] LeJOS Java forLEGOMindstorms:
http://lejos.sourceforge.net

[9] LEGO Mindstorms NXT Official website:
http://www.legoeducation.jp/mindstorms/

[10] NXC Tutorial:
http://bricxcc.sourceforge.net/nbc/
nxcdoc/NXC tutorial.pdf

[11] J. Lunze and F. Lamnabhi-Lagarrigue: “Handbook of
Hybrid Systems Control: Theory, Tools, Applications,”
Cambridge University Press (2009).

[12] T. A. Henzinger: “The theory of hybrid automata,” In
Proc. of Eleventh Annual IEEE Symposium on Logic in
Computer Science, LICS ’96, pp.278-292 (1996).

[13] T. A. Henzinger, Pei-Hsin Ho, and H. Wong-Toi:
“HYTECH: A model checker for hybrid systems,” In
Lecture Notes in Computer Science, vol.1254, pp.460-
463 (1997).

[14] V. Gupta, R. Jagadeesan, V. Saraswat, and D. G. Bo-
brow: “Programming in hybrid constraint languages,”

In Lecture Notes in Computer Science, vol.999, pp.226-
251 (1995).

[15] K. Ueda, H. Hosobe, and D. Ishii: “Declarative seman-
tics of the hybrid constraint language HydLa,” Com-
puter Software, JSSST, 28(1) pp.306-311 (2011). (in
Japanese).

[16] A. Fehnker, F. W. Vaandrager, and M. Zhang: “Model-
ing and verifying a lego car using hybrid I/O automata,”
In Proc. of 3rd Int. Conf. on Quality Software, pp.280-
289. IEEE Computer Society (2003).

142

