
Practical Application of a Translation Tool from UML/OCL
to Java Skeleton with JML Annotation

Kentaro Hanada1, Kozo Okano1, Shinji Kusumoto1 and Kiyoyuki Miyazawa1
1Graduate School of Information Science and Technology, Osaka University, Japan

{k-hanada, okano, kusumoto, k-miyazw}@ist.osaka-u.ac.jp

Keywords: Model-Driven Architecture, OCL, JML, design by contract

Abstract: In recent years, MDA techniques have been strongly developed. Thus, translation techniques such as UML
to some program languages have gained a lot of attention. Translation techniques such as OCL to JML have
been also researched. OCL is a language to describe detail properties of UML and standardized by OMG,
while, JML is a language to specify properties of Java program. Both OCL and JML are based on DbC and
able to provide properties of classes or methods. There are, however, not many researches on translating
automatically OCL into JML and past researches often pay little attention to collection features, especially
iteration. Our research group has proposed a concrete method which translates UML class diagram with
OCL into Java skeleton with JML. This paper presents an implementation tool based on the technique. To
evaluate the quality of the tool, we applied the tool to two real examples, a warehouse management program
and a syllabus management system. As a result, we found that every OCL constraint described manually was
translated successfully into JML. Also, we found some defects existed in the design of a syllabus management
system.

1 Introduction

In recent years, MDA (Model Driven Architec-
ture) (Kleppe et al., 2003) techniques have been
strongly developed. Thus, translation techniques such
as UML to some program languages have gained a lot
of attention.

Translation techniques such as OCL (Object Man-
agement Group, 2006) to JML (Leavens et al., 1999)
have been also studied. OCL is a language to de-
scribe detailed properties of UML and standardized
by OMG (Object Management Group), while, JML
is a language to specify properties of a Java program.
JML aims for describing more detail properties than
OCL does. Both OCL and JML are based on DbC
(Design by Contract) (Meyer, 1992) and able to pro-
vide properties of classes or methods. There are not,
however, many researches on translating automati-
cally OCL into JML, and past researches often pay
little attention to collection features, especially itera-
tion. The problem should be solved because the iter-
ation feature is necessary and widely used.

We have already proposed a concrete method
which translates a UML class diagram with OCL
into a Java skeleton with JML (Owashi et al., 2010).
This paper presents a tool implementing the method.

The tool is applied to two real examples, a ware-
house management program and a syllabus manage-
ment system, which consist of seven classes and 60
classes, respectively. As a result, we found that ev-
ery OCL constraint described manually was trans-
lated successfully into JML. In addition, 86% of them
are translated into the same form of JML described
manually and independently. The translation time is
less than seven seconds for the syllabus management
system. Consequently we can conclude that our tool
can practically translate OCL statements.

The contributions to the field are the following
three items. The first one is implementation of the
translation tool as an Eclipse plug-in. The tool sup-
ports iteration feature that is not supported by a lot
of existing research of translation from OCL to JML.
The second one is that the proposal method utilizes
external libraries (including Java standard libraries
and third party’s libraries) to improve the utility of
the translation tool. The last one is an evaluation of
the translation tool. We carried out evaluation experi-
ment onto real projects.

The organization of the rest of the paper is as fol-
lows. Sec.2 describes the background of this research
and related work. Sec.3 presents overview of our tool.
Sec.4 and Sec.5 will give experimental results and

discussions, respectively. Finally, Sec.6 concludes the
paper.

2 Background

In this section, we present background of our re-
search such as some techniques and related works.

2.1 OCL and JML

OCL details properties of UML models. It is stan-
dardized by OMG. UML diagram alone cannot ex-
press rich semantics of and all relevant information
about the target design. OCL allows describing pre-
cisely the additional constraints on the objects and en-
tities in a UML model.

JML is a language to detail constraints of Java
methods or objects (Leavens et al., 1999). The con-
straints are based on DbC. It is easy for novices to de-
scribe properties in JML because the syntax of JML
is similar to that of Java.

2.2 Related Work

Hamie (Hamie, 2004) proposed a method which
translates from OCL into JML based on syntax con-
version techniques. Rodion and Alessandra (Ro-
dion and Alessandra, 2006) enhanced the technique
of Hamie (Hamie, 2004). They proposed translation
techniques of Tuple type operations and a part of Col-
lection type operations. Moreover, they implemented
these techniques. Specifically, OCL operations that
do not correspond operations of JML or Java directly
such assetO f Sets−> f latten() were solved by defin-
ing generalized libraries like expression (1)

JMLTools.flatten(setO f Sets) (1)

Avila et al. (Avila et al., 2008) proposed a method
which reduces differences of collection operations
among OCL and JML. They also provide a Java class
library which interprets some of OCL statements.
These methods, however, do not enough support an
iterate feature that is the most basic operation among
collection loop operations. An iterate feature is an
operation which applies an expression given as its ar-
gument to each element of a collection which is also
given as its another argument.

Set{1,2,3}−> iterate(i: Integer;

sum: Interger= 0 | sum+ i) (2)

Expression (2) defines an operation that returns a
value which represents a sum of all elements in Set.

private T1 mPrivateUseForJML01(){
µ(init);
for (T2 e: µ(c1))

res =µ(body)
return res;

}

Figure 1: General Java Template of the Method for Iterate
Feature

In expression (2), the first argument (i : Integer) de-
fines an iterator variable. The second argument (sum:
Integer= 0) defines a variable which is used to store
the return value and its initialization. The third argu-
ment (sum+ i) stands for an expression that is exe-
cuted iteratively in the loop.

Our research group proposed a technique to re-
solve this problem by inserting a Java method that is
semantically equal to each OCL loop feature (Owashi
et al., 2010). It is worthful that the algorithm deals
with the iterate feature because an iterate feature is
widely used.

Expression (3) shows the general format of an iter-
ate feature. The variablese, init , bodyandc mean an
iterator variable, a declaration of the return value and
its initialization, an expression executed in the loop,
and a Collection type variable respectively.

c−> iterate(e; init | body) (3)

Figure 1 shows a general format of our newly created
method. The keywordsµ(), T1, T2 and the variableres
mean a function which translates an OCL expression
into a Java expression, a variable declared ininit , a
variablee, and the name of a variable declared ininit
respectively.

3 Implementation

In this section, we will present the implementa-
tion of our translation tool. Figure 2 shows a brief
overview of our translation tool. We have imple-
mented the tool as an Eclipse plug-in. In this sec-
tion, firstly, we show the detailed explanation about
the implementation of the parser of OCL. Secondly,
we explain in detail about how to support the external
type information. Finally, we list parts of translation
rules from OCL statements to JML statements.

3.1 Translation from UML to Java

We utilize an existing resource to translate from UML
to Java. Papyrus UML (Eclipse Foundation, 2012a) is
used as roles of drawing UML and translation from

Figure 2: Brief overview of our translation tool

UML to Java. Papyrus UML is an open-source UML
CASE tool. It is developed as one of Model Develop-
ment Tools (MDT) projects in Eclipse Foundation. It
is available as an Eclipse plug-in. Its input and output
files are compliant with XMI, the standard UML file
format by OMG.

3.2 Implementation of OCL Parser

Firstly, we describe the parser generator. We
use ANTLR (Parr, 2007) for the parser generator.
ANTLR automatically generates a parser using LL(k)
parsing. ANTLR supports Java as an output language.
It generates not only a parser but also its associate
lexical analyzer. Paper (Object Management Group,
2006) defines EBNF of OCL. It contains some mod-
ification in EBNF. Therefore, we modify the EBNF.
As a result, the grammar of OCL statements is con-
structed by EBNF with the size of 50 non-terminal
symbols and 100 generation rules.

Secondly, we describe a method to support for
external libraries. We designed the OCL parser to
parse only two kinds of types. One is a defined type
by a user. The other is a standard type in OCL.
It is, however, difficult to design without using the
standard library of Java and external packages devel-
oped by third parties. For this reason, the translation
tool needs to use information on types of external li-
braries and the standard library. There are several ap-
proaches. One approach is that the translation tool is
applied to UML class diagrams with extra diagrams

that have enough information on standard library and
third parties libraries. These extra diagrams are pre-
pared by a user in advance. The other approach is
that the OCL parser accepts directly information on
such extra types. There are, however, vast amounts of
classes in the standard library. Also, flexible accep-
tance of external libraries seems difficult. For these
reasons, we choose the first approach. In order to ob-
tain UML class diagrams with extra diagrams, we use
Java2UML (Atos Origin TOPCASED Team, 2006).
The input is a Java project or a package folder. The
output is UML diagrams corresponding to the Java
files in the input directory. We improved Java2UML,
so that it can read a single Java file specified in the
input. It also obtains super classes of the input class.
From the information, a user can specify a subset of
super classes that are needed for further analysis.

Finally, we describe translation rules of OCL
statement to JML statement. The set of the transla-
tion rules is defined in Owashi (Owashi et al., 2010).
We, however, defined new translation rules due to the
set of the translation rules are not sufficient. Table 1
is a set of new translation rules. The number of whole
rules is about 150.

A translation function of an OCL statement to a
JML statement is expressed byµ in the same manner
as (Hamie, 2004). Any Integer, Real and Boolean are
expressed byai . Any Collection is expressed byci .

4 Experiments

This section will explain experiments in detail.
We conducted two experiments. The first experiment
uses a small project (Experiment 1). The second ex-
periment (Experiment 2) is larger than Experiment 1.

4.1 Preparation of Experiment

We need OCL statements and ideal JML statements
for reference. OCL statements are used to generate
JML statements by our translation tool. Ideal JML
statements are used to compare and analyze generated
JML statements by our translation tool as references.
The project of Experiment 1, however, does not have
OCL statements. In order to perform Experiment 1,
we described OCL statements. The OCL statements

Table 1: newµ translation

a1.oclIsKindOf(a2) = µ(a2).class.isAssignableFrom
(µ(a1).getClass())

a1.oclIsTypeOf(a2) = µ(a1).getClass().equals(µ(a2))
a.oclIsUndefined() = µ(a) == null

are syntactically identical and logically equivalent to
ideal JML statements.

The project used in Experiment 2 does not have
not only OCL statements but also JML statements.
We, however, need both data in order to perform an
Experiment 2. Therefore, firstly, we described JML
statements on the basis of the specification which is
read from the codes and comments of javadoc. Sec-
ondly, we checked the correctness of the JML state-
ments by running test cases with a runtime assertion
checker, JMLrac. Finally, we described OCL state-
ments that are syntactically identical and logically
equivalent to ideal JML statements.

In order to evaluate the quality of JML statements
generated by the translation tool, we measured three
items, coverage, recall ratio, and execution time of the
runtime assertion checker.

Here, firstly we provide a metric for the coverage.
We define the coverage by Expression (4), whereCall
andCtranslatableare the number of pre-conditions and
post-conditions, and the number of statements trans-
lated by the translation tool, respectively.

Coverage=Ctranslatable/Call (4)

Secondly, we provide the recall ratio. We de-
fine the recall ratio by Expression (5), whereCequal is
the number of statements which are translated by the
translation tool and are identical to the corresponding
ideal JML statement. Here, “corresponding” stands
for syntactical and logical equivalence.

recallratio=Cequal/Ctranslatable (5)

Finally, we compare execution times of runtime
assertion checker, JMLrac by applying source codes
with JML statements generated by the translation tool
and that with ideal JML statements. We use JML4c
(Sarcar and Cheon, 2010) and JML4rt (Sarcar and
Cheon, 2010) as a JML compiler and a runtime asser-
tion checker, respectively. As far as we know, JML4c
is the only compiler that supports enhanced for-loop
and generics. Also for a given executable file gener-
ated by JML4c, JML4rt checks consistency between
runtime values of variables and the constraints given
by the JML statements. When some of constraints of
JML statements violate to the runtime values of vari-
ables, JML4rt outputs the location of violated point
and the values of variables at the location.

4.2 Environment of Experiments

Evaluations have been performed on an Intel(R)
Core(TM)2 Duo E7300 2.66GHz 2.67GHz HP Com-
paq dx7500 Microtower with 4GB RAM running
Windows Vista 64bit.

4.3 Experiment 1

In Experiment 1, we evaluated the quality of the trans-
lation using the warehouse management program. It
consists of seven classes. Table 2 shows components
of the warehouse management program in details. It
(Owashi et al., 2008) has correct JML statements by
the past research. In Experiment 1, we add OCL state-
ments for 20 methods.

In Experiment 1, as we described, JML statements
have already been fully annotated. We selected three
core classes and annotated OCL statements. For the
three classes, we can translate every OCL statements
into correct JML statements. Consequently, Cover-
age and recall ratio are both 100 %, which indicates
the power of the tool. Also, we observed execution
times of both cases. The results show that there is no
distinguishing execution time of manual JML state-
ments from that of JML statements by the translation
tool.

Execution time of translation from OCL state-
ments to JML statement is 20ms. Also, execution
time of translation from abstract tree of OCL to ab-
stract tree of JML is 1ms. Therefore, if we describe
OCL statements to all attributes and all methods of the
program, perhaps execution time of translation from
these OCL statements (about one hundred statements)
to JML statement will be about 2 sec.

4.4 Experiment 2

In Experiment 2, we evaluated the quality of transla-
tion tool by data of educational material of IT-Spiral
(Ministry of Education, Culture, Sports, Science and
Technology, 2010). The project is a syllabus manage-
ment system of Wakayama University. The system
consists of 200 classes, and we choose core 60 classes
and annotate 400 methods in the chosen classes. Ta-
ble 3 shows parts of OCL statements and JML state-
ments.

Table 4 shows the result of translation from OCL
statements of the syllabus management system to

Table 2: Components of warehouse management program

Class Name # of methods # of lines
ContainerItem 12 224

Customer 10 156
Item 7 110

ReceptionDesk 8 162
Request 16 245

StockState 0 9
Storage 10 258
TOTAL 63 1164

/*@ requires this.getDAO(UserDAO.class)
!= null;@*/

public void save(final User user)
throws ServiceException{

getDAO(UserDAO.class).save(user);
}

Figure 3: Save method of UserServiceImpl class

JML statements. It shows that the coverage and the
recall ratio are 89.9% and 86.0%, respectively. All
OCL statements are translated to JML statements.
The JML statement that is not identical to ideal JML
statement is constraints with iteration feature.

Half of JML statements are not translated due to
following two cases.

1. JML statements including class literal

2. JML statements including an array expression

For example, JML statement includes class literal
shown in Figure 3. We could not describe the state-
ment as OCL statements. We described “requires
this.getDAO(UserDAO.class) != null;” as JML in the
save method because the method must check that
DAO is not null as pre-condition. UserDAO class is,
however, the class literal; we could not describe the
corresponding OCL statements.

Figure 4 shows the example statements includ-
ing arrays. The post-condition checks that values in
this.kyoukasho have the same values in the array of
parameter. OCL, however, uses Sequence instead of
the array; we cannot describe the corresponding OCL
statements. We will explain the details in Section 5.

5 Discussions

5.1 Some Observations on the Results

The translation tool can translate 90 percent out of all
OCL statements in 60 classes into JML statements.
We, however, could not translate the following JML

Table 3: The number of classes and methods which are an-
notated in OCL

Class # of classes # of methods
ServiceImpl 13 74

DAO 11 64
Util 6 29
DTO 2 25
Entity 30 216

TOTAL 62 408

/*@
ensures kyoukasho != null ?

(\forall int i4; i4>=0
&& i4<this.kyoukasho.length;
kyoukasho[i4] == null ||
this.kyoukasho[i4].equals(kyoukasho[i4]))
&& this.kyoukasho.length == kyoukasho.length
: this.kyoukasho == null;

@*/
public void setKyoukasho

(final JugyouShousaiKyoukasho[] kyoukasho){
this.kyoukasho = kyoukasho;

}

Figure 4: JML statements of the method which contains
arrays

statements to OCL statements: assignable keyword,
class literal, and arrays.

There is not a keyword corresponding to
“assignable” in OCL. Also, there is not concept of
class literal in OCL because class literal is a proper
concept in Java language. OCL does not define ar-
rays, but Sequence type is provided to represent a list
structure. Sequence is an indexed bag (multi-element
set). It supports insertAt() and prepend() features,
thus Sequence can be translated into List in Java. Our
tool also translates in the above manner. On the other
hand, there are few demands to translate sequence
feature into an array. It is, however, arguable that it
supports translation from sequences to multi dimen-
sion arrays for some reasons such as efficiency.

5.2 Threats to Validity

Here, we simply summarize threats to validity. As
external threats to validity, we can say the number
of experiments is not enough. Therefore, we cannot
generalize the results and discussion. We, however,
choose real examples; the tendency can be inferred.
Of course, to obtain more precise data, we have to
apply the tool to more applications.

As internal threats to validity, we can enumerate

Table 4: The result of Experiment 2 to the syllabus manage-
ment system

The number of JML statements by hand(Call) 602
The number of OCL statements 541
The number of translated JML statements

by the tool(Ctranslatable) 541
The number of match of translated JML

statements and ideal JML statements(Cequal) 465
The number of match by inserting methods 57

(1) that we have constructed OCL statements man-
ually from JML statements and (2) that we do not
translate all OCL statement of all class in both Ex-
periments.

As for (1), if OCL statements are described by a
person who knows about the detail of translation al-
gorithm of out tool, it may be said that the OCL state-
ments include a problem in our experiments. OCL
statements, however, are described manually by a per-
son who does not know about the detail of our transla-
tion tool. We think this shows the validity of the OCL
statements in our experiments.

As for (2), we choose core classes of both cases.
For example, Experiment 2 uses core classes that are
used to access its database. We analyzed syntactically
all patterns that are covered in the description. Also,
the main objective of the experiments is how many
OCL statements are translated into JML statements.
We think it is not serious problem that we cannot an-
notate to every class.

6 Conclusion

This paper presents a tool which translates OCL
including iteration features into JML. On implemen-
tation of the tool, we enhance our tool to be able to
deal with external libraries that are not included in
design projects such as Java standard library. We ap-
plied our tool to two real examples, a warehouse man-
agement program and a syllabus management system.
As a result, we found that 90% of necessary con-
straints were well translated, and 86% of constraints
were translated into suitable expressions. The trans-
lation time in which about 600 OCL expressions are
translated is less than seven seconds. Consequently
we can conclude that our tool can translate in practi-
cal time.

Future work includes reverse translation from
JML to OCL. Implementing mutual transformation
between OCL and JML by use of Xtext (Eclipse
Foundation, 2012b) is considerable as future work.

7 Acknowledgments

This work is being conducted as Grant-in-Aid for
Scientific Research C (21500036).

REFERENCES

Atos Origin TOPCASED Team (2006). Java to UML.
http://gforge.enseeiht.fr/projects/java2uml/.

Avila, C., Flores, Jr., G., and Cheon, Y. (2008).
A Library-Based Approach to Translating OCL
Constraints to JML Assersions for Runtime
Checking. InInternational Conference on Softw.
Eng. Research and Practice, pages 403–408.

Eclipse Foundation (2012a). Papyrus UML.
http://www.eclipse.org/modeling/mdt/papyrus/.

Eclipse Foundation (2012b). Xtext -
Language Development Framework.
http://www.eclipse.org/Xtext/.

Hamie, A. (2004). Translating the Object Constraint
Language into the Modeling Language. InIn
Proc. of the 2004 ACM symposium on Applied
computing, pages 1531–1535.

Kleppe, A., Warmer, J., and Bast, W. (2003).MDA ex-
plained: the model driven architecture: practice
and promise. Addison-Wesley Longman Pub-
lishing Co., Inc. Boston, MA, USA.

Leavens, G., Baker, A., and Ruby, C. (1999). JML: A
Notation for Detailed Design.Behavioral Speci-
fications of Businesses and Systems, pages 175–
188.

Meyer, B. (1992).Eiffel: the language. Prentice-Hall,
Inc., Upper Saddle River, NJ.

Ministry of Education, Culture, Sports, Science
and Technology (2010). IT Spiral. http://it-
spiral.ist.osaka-u.ac.jp/.

Object Management Group (2006). Ocl 2.0
specification. http://www.omg.org/cgi-
bin/apps/doc?formal/06-05-01.pdf.

Owashi, M., Okano, K., and Kusumoto, S. (2008).
Design of Warehouse Management Program in
JML and Its Verification with Esc/Java2 (in
Japanese).The IEICE Transaction on Informa-
tion and Systems, 91(11):2719–2720.

Owashi, M., Okano, K., and Kusumoto, S. (2010).
A Translation Method from OCL into JML by
Translating the Iterate Feature into Java Methods
(in Japanese). volume 27, pages 106–111.

Parr, T. (2007). The Definitive ANTLR Reference:
Building Domain-Specific Language. Pragmatic
Bookshelf.

Rodion, M. and Alessandra, R. (2006). Implementing
an OCL to JML translation tool. InIn IEICE
Technical Report, volume 106, pages 13–17.

Sarcar, A. and Cheon, Y. (2010). A new Eclipse-
based JML compiler built using AST merging.
Department of Computer Science, The Univer-
sity of Texas at El Paso, Tech. Rep.

