
Filtering Clones for Individual User Based on Machine Learning Analysis

Jiachen Yang, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki, Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University

1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
Email: {jc-yang,k-hotta,higo,igaki,kusumoto}@ist.osaka-u.jp

Abstract—Results from code clone detectors may contain
plentiful useless code clones, and judging whether a code clone
is useful varies from user to user based on different purposes of
them. We are planing a system to study the judgment of each
individual user by applying machine learning algorithms on
code clones. We describe the reason why individual judgment
should be respected and how in this paper.

Keywords-filtering, classify, machine learning, code clone
detector, judgment of user, token-based

I. INTRODUCTION

Huge efforts have been made to detect identical or similar
code fragments from source code of software, with these
code fragments called as “code clones” or simply “clones”.
Clone Detection Tools(referred as CDT) usually generate a
long list of clones from source code, among which a small
portion of clones are helpful to user in improving software
quality by applying refactoring or locating similar bugs, but
the rest are not so “interesting”.

Several methods have proposed to filter out those “unin-
teresting” clones such as metric-based method described in
[1]. These methods are useful as they gathered a universal
standard of judging whether a clone is “interesting”, but they
either require professional knowledges from user such as
what all these metrics mean, or hard to fit to individual use
case of users such as filtering only the code clones that can
be applied extracting-method refactoring on. Tairas and Gray
proposed a classification method in [2]. Compared with our
method, they are clustering by identifier names rather than
structure of the identical clone fragments.

According to a survey we conducted, users of CDTs
tend to classify clones differently based on their individual
use cases, purposes or experience about code clones. With
this observation, we are working on the idea of studying
judgments of each user on clones, which results a new clone
classifying method, entitled as Fica, Filter for Individual user
on code Clone Analysis.

II. MOTIVATING EXAMPLE

We conducted a survey on several students1, providing
them 105 clone sets from result of CDT on source codes in
C language detected from bash-4.2, asking them whether

1All of students are from Graduate School of Information Science and
Technology, Osaka University

2717 w c s t r = 0 ;
2718 s l e n = mbstowcs (wcs t r , s , 0) ;
2719 i f (s l e n == −1)
2720 s l e n = 0 ;
2721 w c s t r = (wcha r t ∗) xma l loc (s i z e o f (wcha r t) . . .
2722 mbstowcs (wcs t r , s , s l e n + 1) ;
2723 wclen = wcswidth (wcs t r , s l e n) ;
2724 f r e e (w c s t r) ;
2725 re turn ((i n t) wclen) ;

(a) execute cmd.c

1100 i f (w c h a r l i s t == 0)
1101 {
1102 s i z e t l e n ;
1103 l e n = mbstowcs (w c h a r l i s t , c h a r l i s t , 0) ;
1104 i f (l e n == −1)
1105 l e n = 0 ;
1106 w c h a r l i s t = (wcha r t ∗) xma l loc (s i z e o f (wcha r t) . . .
1107 mbstowcs (w c h a r l i s t , c h a r l i s t , l e n + 1) ;
1108 }

(b) subst.c

Figure 1. Example of source code in bash-4.2

they are willing to perform refactoring. Table I shows a part
of the result. In this table, a code clone set is marked as O
if a student is willing to refactor it or as X if not so. We can
see from this table that their attitudes toward these clones
vary from person to person.

As an example, source of clone with ID 5 is showed
in Figure 1. Because their functions are identical, S and
U thought they could be merge together. But Y and M
considered the fact that Figure 1b is a code fragment in a
larger function which is more than 100 LOC therefore may
be difficult to be refactored.

Also from Table I we can see that Y was more strict
than other three students. In the comment to this survey he
mentioned that only clones that contains an entire body of C
function are candidates for refactoring. This unique standard

Table I
SURVEY OF CLONES IN BASH-4.2

Clone ID Y S M U
1 X O O O
2 X X O O
3 O X X O
4 X O X O
5 X O X O

Count of O 5 24 23 25
Count of X 100 81 82 80

978-1-4673-1795-5/12/$31.00 c© 2012 IEEE IWSC 2012, Zurich, Switzerland76

Figure 2. Overall Workflow of Fica with CDT

was also reflected in all 5 “interesting” clones he has chosen.

III. WORKFLOW

In this section, we propose a workflow of Fica, which
ranks detected clones based on studying historical behavior
of a particular user, as a complement to existing CDTs that
filtering unexpected clones.

A. Overall Workflow

The overall workflow of Fica is described in Figure 2.
1) User submits source code to a CDT.
2) CDT detects a set of clones in the source code.
3) User marks some of these clones as “interesting”

or not according to her/his own judgment, and then
submits these marked clones to Fica as a profile.

4) Fica records marked clones into its own database.
5) Meanwhile Fica studies characteristics of all these

marked clones by using machine learning algorithms.
6) Fica ranks other clones remaining unmarked based on

the result of machine learning, predicting the possibil-
ity of whether they are “interesting” or not to user.

7) User can further adjust the marks on code clones and
re-submit them to Fica to obtain a better prediction.
Fica will also record these patterns that it have learned
into a database associated with the particular user
profile so that further predictions can be made based
on history decisions.

B. Marking Clones Manually

User of Fica is required to firstly mark a small set of
clones found by CDT manually, to be used by Fica as an
initial training set. Considered types of marks on clones can
be boolean or tags:

bool Clones are marked as “interesting” or not.
tags Clones are marked as one of several tags or cat-

egories by user based on their use cases such as
refactoring procedural, issue tracking id, etc.

As the most simple case, users need to tell Fica that they
are interested in certain clones, and wants to find more like
these. Tags typed marks can be considered as possible ex-
tension of boolean typed ones that involve multiple choices.

Also user of Fica is allowed to have multiple profiles in
system, with each profile representing a use case of code
clones. Profiles should be trained separately and Fica will
treat them as individual users.

C. Machine Learning

Fica receives the clones from CDT and marks from
user, studies the characteristic of the marked clones by
calculating similarity of token sequence of these clones.
This step employs machine learning algorithms which are
widely used in natural language processing or text mining.
The algorithm to be used will be similar with the one GMail
used in detecting spam emails. By comparing the similarity
of marked clones and unmarked ones, Fica can thus predict
the possibility whether an unmarked clone is interesting or
not to user profile.

IV. CONCLUSION AND FUTURE PLANS

We have shown the fact that users of CDT may have
different opinions on whether a code clone is “useful” or
“interesting” to them. This observation suggested that filter
of code clones should as well take user judgments into
consideration to generate more useful list of code clones.

We are currently building the described system Fica, as
a web-based system for proof of concept research purpose.
The system consists of a generalized suffix tree [3] based
CDT and a web-based user interface that allows the user
marks detected code clones and shows ranked result.

We plan to release this system to public domain as soon
as the system is ready. Collected user data and calculated
result will also be released to public domain, which should
be useful for further studies on clone classifying.

ACKNOWLEDGMENT

This study has been supported in part by Grants-in-Aid
for Scientific Research (A) (21240002) and Grant-in-Aid for
Exploratory Research (23650014) from the Japan Society for
the Promotion of Science.

REFERENCES

[1] Y. Higo, S. Kusumoto, and K. Inoue, “A metric-based approach
to identifying refactoring opportunities for merging code clones
in a java software system,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 20, no. 6, pp. 435–
461, 2008.

[2] R. Tairas and J. Gray, “An information retrieval process to aid
in the analysis of code clones,” Empirical Software Engineer-
ing, vol. 14, pp. 33–56, 2009, 10.1007/s10664-008-9089-1.

[3] E. Ukkonen, “On-line construction of suffix trees,” Algorith-
mica, vol. 14, no. 3, pp. 249–260, 1995.

77

