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It is said that the presence of duplicate code is one of the factors that make software maintenance more difficult. Many research
efforts have been performed on detecting, removing, or managing duplicate code on this basis. However, some researchers doubt
this basis in recent years and have conducted empirical studies to investigate the influence of the presence of duplicate code. In this
study, we conduct an empirical study to investigate this matter from a different standpoint from previous studies. In this study, we
define a new indicator “modification frequency” to measure the impact of duplicate code and compare the values between duplicate
code and nonduplicate code. The features of this study are as follows the indicator used in this study is based on modification places
instead of the ratio of modified lines; we use multiple duplicate code detection tools to reduce biases of detection tools; and we
compare the result of the proposed method with other two investigation methods. The result shows that duplicate code tends
to be less frequently modified than nonduplicate code, and we found some instances that the proposed method can evaluate the
influence of duplicate code more accurately than the existing investigation methods.

1. Introduction

Recently, duplicate code has received much attention. Dupli-
cate code is also called as “code clone.” Duplicate code is
defined as identical or similar code fragments to each other
in the source code, and they are generated by various reasons
such as copy-and-paste programming. It is said that the
presence of duplicate code has negative impacts on software
development and maintenance. For example, they increase
bug occurrences: if an instance of duplicate code is changed
for fixing bugs or adding new features, its correspondents
have to be changed simultaneously; if the correspondents
are not changed inadvertently, bugs are newly introduced to
them.

Various kinds of research efforts have been performed
for resolving or improving the problems caused by the
presence of duplicate code. For example, there are currently
a variety of techniques available to detect duplicate code
[1]. In addition, there are many research efforts for merging
duplicate code as a single module like function or method,
or for preventing duplications from being overlooked in
modification [2, 3]. However, there are precisely the opposite
opinions that code cloning is a good choice for design of the
source code [4].

In order to answer the question whether duplicate code
is harmful or not, several efforts have proposed comparison
methods between duplicate code and nonduplicate code.
Each of them compares a characteristic of duplicate code
and nonduplicate code instead of directly investigating their
maintenance cost. This is because measuring the actual
maintenance cost is quite difficult. However, there is no
consensus on this matter.

In this paper, we conduct an empirical study that
compares duplicate code to nonduplicate code from a
different standpoint of previous research and reports the
experimental result on open source software. The features of
the investigation method in this paper are as follows:

(i) every line of code is investigated whether it is dupli-
cate code or not; such a fine-grained investigation
can accurately judge whether every modification
conducted to duplicate code or to nonduplicate code;

(ii) maintenance cost consists of not only source code
modification but also several phases prior to it; in
order to more appropriately estimate maintenance
cost, we define an indicator that is not based on
modified lines of code but the number of modified
places;
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(iii) we evaluate and compare modifications of duplicate
code and nonduplicate code on multiple open source
software systems with multiple duplicate code detec-
tion tools, that is, because every detection tool detects
different duplicate code from the same source code.

We also conducted a comparison experiment with two
previous investigation methods. The purpose of this exper-
iment is to reveal whether comparisons between duplicate
code and nonduplicate code with different methods yield the
same result or not. In addition, we carefully analyzed the
results in the cases that the comparison results were different
from each method to reveal the causes behind the differences.

The rest of this paper is organized as follows: Section 2
describes related works and our motivation of this study.
Section 3 introduces the preliminaries. We situate our
research questions and propose a new investigation method
in Section 4. Section 5 describes the design of our exper-
iments, then we report the results in Sections 6 and 7.
Section 8 discusses threats to validity, and Section 9 presents
the conclusion and future work of this study.

2. Motivation

2.1. Related Work. At present, there is a huge body of work on
empirical evidence on duplicate code shown in Table 1. The
pioneering report in this area is Kim et al.’s study on clone
genealogies [5]. They have conducted an empirical study on
two open source software systems and found 38% or 36%
of groups of duplicate code were consistently changed at
least one time. On the other hand, they observed that there
were groups of duplicate code that existed only for a short
period (5 or 10 revisions) because each instance of the groups
was modified inconsistently. Their work is the first empirical
evidence that a part of duplicate code increases the cost of
source code modification.

However, Kapser and Godfrey have different opinions
regarding duplicate code. They reported that duplicate code
can be a reasonable design decision based on the empirical
study on two large-scale open source systems [4]. They built
several patterns of duplicate code in the target systems, and
they discussed the pros and cons of duplicate code using the
patterns. Bettenburg et al. also reported that duplicate code
does not have much a negative impact on software quality
[6]. They investigated inconsistent changes to duplicate code
at release level on two open software systems, and they found
that only 1.26% to 3.23% of inconsistent changes introduced
software errors into the target systems.

Monden et al. investigated the relation between software
quality and duplicate code on the file unit [7]. They use
the number of revisions of every file as a barometer of
quality: if the number of revisions of a file is great, its
quality is low. Their experiment selected a large-scale legacy
system, which was being operated in a public institution,
as the target. The result showed that modules that included
duplicate code were 40% lower quality than modules that did
not include duplicate code. Moreover, they reported that the
larger duplicate code a source file included, the lower quality
it was.

Lozano et al. investigated whether the presence of
duplicate code was harmful or not [8]. They developed a tool,
CloneTracker, which traces which methods include duplicate
code (in short, duplicate method) and which methods are
modified in each revision. They conducted a pilot study, and
found that: duplicate methods tend to be more frequently
modified than nonduplicate methods; however, duplicate
methods tend to be modified less simultaneously than
nonduplicate methods. The fact implies that the presence
of duplicate code increased cost for modification, and
programmers were not aware of the duplication, so that
they sometimes overlooked code fragments that had to be
modified simultaneously.

Also, Lozano and Wermelinger investigated the impact
of duplicate code on software maintenance [9]. Three
barometers were used in the investigation. The first one is
likelihood, which indicates the possibility that the method
is modified in a revision. The second one is impact, which
indicates the number of methods that are simultaneously
modified with the method. The third one is work, which
can be represented as a product of likelihood and impact
(work = likelihood × impact). They conducted a case study
on 4 open source systems for comparing the three barometers
of methods including and not including duplicate code. The
result was that likelihood of methods including duplicate
code was not so different from one of methods not including
duplicate code; there were some instances that impact of
methods including duplicate code were greater than one
of methods not including duplicate code; if duplicate code
existed in methods for a long time, their work tended to
increase greatly.

Moreover, Lozano et al. investigated the relation between
duplicate code, features of methods, and their changeability
[10]. Changeability means the ease of modification. If
changeability decreased, it will be a bottleneck of soft-
ware maintenance. The result showed that the presence
of duplicate code can decrease changeability. However,
they found that changeability was more greatly affected by
other properties such as length, fan-out, and complexity
of methods. Consequently, they concluded that it was not
necessary to consider duplicate code as a primary option.

Krinke hypothesized that if duplicate code is less stable
than nonduplicate code, maintenance cost for duplicate
code is greater than for nonduplicate code. He conducted
a case study in order to investigate whether the hypothesis
is true or not [11]. The targets are 200 revisions (a version
per week) of source code of 5 large-scale open-source
systems. He measured added, deleted, and changed LOCs
on duplicate code and nonduplicate code and compared
them. He reported that nonduplicate code was more added,
deleted, and changed than duplicate code. Consequently,
he concluded that the presence of duplicate code did not
necessarily make it more difficult to maintain source code.

Göde and Harder replicated Krinke’s experiment [12].
Krinke’s original experiment detected line-based duplicate
code meanwhile their experiment detected token-based
duplicate code. The experimental result was the same as
Krinke’s one. Duplicate code is more stable than nondu-
plicate code in the viewpoint of added and changed. On
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Table 1: Summarization of related work.

How to investigate Impact of duplicate code

Kim et al. [5] Using clone linages and clone genealogies A part of duplicate code is negative

Kapser and Godfrey [4] Build several patterns of duplicate code and discuss about them Nonnegative

Bettenburg et al. [6] Investigate inconsistent changes to duplicate code at the release revel Nonnegative

Monden et al. [7] Calculate the number of revisions on every file Negative

Lozano et al. [8] Count the number of modifications on methods including duplicate code Negative

Lozano and Wermelinger
[9]

Using work A part of duplicate code is negative

Lozano et al. [10] Using changeability (the ease of modification) Negative but not so high

Krinke [11] Using stability (line level) Nonnegative

Göde and Harder [12] Using stability (token level) Nonnegative

Krinke [13] Using ages Nonnegative

Rahman et al. [14] Investigate the relationship between duplicate code and bugs Nonnegative

Göde and Koschke [15] Count the number of changes on clone genealogies A part of duplicate code is negative

the other hand, from the deleted viewpoint, nonduplicate
code is more stable than duplicate code.

Also, Krinke conducted an empirical study to investigate
ages of duplicate code [13]. In this study, he calculated and
compared average ages of duplicate lines and nonduplicate
lines on 4 large-scale Java software systems. He found that
the average age of duplicate code is older than nonduplicate
code, which implies duplicate code is more stable than
nonduplicate code.

Eick et al. investigated whether source code decays when
it is operated and maintained for a long time [16]. They
selected several metrics such as the amount of added and
deleted code, the time required for modification, and the
number of developers as indicators of code decay. The experi-
mental result on a 15-year-operated large system showed that
cost required for completing a single requirement tendS to
increase.

Rahman et al. investigated the relationship between
duplicate code and bugs [14]. They analyzed 4 software
systems written in C language with bug information stored in
Bugzilla. They use Deckard, which is an AST-based detection
tool, to detect duplicate code. They reported that only a small
part of the bugs located on duplicate code, and the presence
of duplicate code did not dominate bug appearances.

Göde modeled how type-1 code clones are generated and
how they evolved [17]. Type-1 code clone is a code clone that
is exactly identical to its correspondents except white spaces
and tabs. He applied the model to 9 open-source software
systems and investigated how code clones in them evolved.
The result showed that the ratio of code duplication was
decreasing as time passed; the average life time of code clones
was over 1 year; in the case that code clones were modified
inconsistently, there were a few instances that additional
modifications were performed to restore their consistency.

Also, Göde and Koschke conducted an empirical study
on clone evolution and performed a detailed tracking to
detect when and how clones had been changed [15]. In their
study, they traced clone evolution and counted the number
of changes on each clone genealogy. They manually inspected

the result in one of the target systems and categorized all
the modifications on clones into consistent or inconsistent.
In addition, they carefully categorized inconsistent changes
into intentional or unintentional. They reported that almost
all clones were never changed or only once during their
lifetime, and only 3% of the modifications had high severity.
Therefore, they concluded that many of clones do not cause
additional change effort, and it is important to identify the
clones with high threat potential to manage duplicate code
effectively.

As described above, some empirical studies reported that
duplicate code should have a negative impact on software
evolution meanwhile the others reported the opposite result.
At present, there is no consensus on the impact of the pres-
ence of duplicate code on software evolution. Consequently,
this research is performed as a replication of the previous
studies with solid settings.

2.2. Motivating Example. As described in Section 2.1, many
research efforts have been performed on evaluating the
influence of duplicate code. However, these investigation
methods still have some points that they did not evaluate. We
explain these points with the example shown in Figure 1. In
this example, there are two similar methods and some places
are modified. We classified these modifications into 4 parts,
modification A, B, C, and D.

Investigated Units. In some studies, large units (e.g., files
or methods) are used as their investigation units. In those
investigation methods, it is assumed that duplicate code has
a negative impact if files or methods having a certain amount
of duplicate code are modified, which can cause a problem.
The problem is the incorrectness of modifications count. For
example, if modifications are performed on a method which
has a certain amount of duplicate code, all the modifications
are assumed as performed on the duplicate code even if
they are actually performed on nonduplicate code of the
method. Modification C in Figure 1 is an instance of this
problem. This modification is performed on nonduplicate
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Revision R

public void highlight(Graph target) {
if (target.isEmpty()) {

return;
}
Set<Node> nodes = target.getNodes();

uninterestNodes.add(node);

}
}
nodes.removeAll(uninterestNodes);

for(Node node : uninterestNodes) {
drawLineThrough (node);

}

addHighlight(node, Color.red);
}

}

Set<Node> uninterestNodes =
new HashSet<Node>();

for (Node node : target.getNodes()) {
if (node.getEdges().isEmpty()) {

for (Node node : nodes) {

Revision R + 1

public void highlight(Graph target) {

return;
}
Set<Node> nodes = target.getNodes(); Set<Node> nodes = target.getNodes();

Set<Node> uninterestNodes =
new HashSet<Node>();

for (Node node : target.getNodes()) {
if (node.getEdges().isEmpty()) {

uninterestNodes.add(node);

}
}
nodes.removeAll(uninterestNodes);

for(Node node : uninterestNodes) {
paint (node, getPaintColor());

}

for (Node node : nodes) {
addHighlight(node, getColor());

for (Node node : nodes)

addHighlight(node, getColor());

}
}

}
}

Modification A

if (target== null || target.isEmpty()) {
public void highlight(Graph target) {

return;
}

if (target== null || target.isEmpty()) {

public void highlight(Graph target) {
if (target.isEmpty()) {

return;
}

Set<Node> nodes = target.getNodes();
Set<Node> uninterestNodes =

new HashSet<Node>();

for (Node node : target.getNodes()) {
if (node.getEdges().isEmpty()) {

uninterestNodes.add(node);

}
}
nodes.removeAll(uninterestNodes);

for (Node node : nodes) {
addHighlight(node, Color.red);

}
}

Duplicate code detected by only Scorpio

Duplicate code detected by both CCFinder &
Scorpio

Modification B

Modification C

Modification D

System.out.println(“Processing Nodes”);

System.out.println(“Processing Nodes”);

Figure 1: Motivating example.
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code; nevertheless, it is regarded that this modification is
performed on duplicate code if we use method as the
investigation units.

Line-Based Barometers. In some studies, line-based barom-
eters are used to measure the influence of duplicate code
on software evolution. Herein, the line-based barometer
indicates a barometer calculated with the amount of added/
changed/deleted lines of code. However, line-based barome-
ter cannot distinguish the following two cases: the first case is
that consecutive 10 lines of code were modified for fixing a single
bug; the second case is that 1 line modification was performed
on different 10 places of code for fixing 10 different bugs. In
real software maintenance, the latter requires much more
cost than the former because we have to conduct several
steps before the actual source code modification such as
identifying buggy module, informing the maintainer about
the bugs, and identifying buggy instruction.

In Figure 1, Modification A is 1 line modification, and
performed on 2 places, meanwhile Modification B is 7 lines
modification on a single place. With line-based barometers,
it is regarded that Modification B has the impact 3.5 times
larger than Modification A. However, this is not true because
we have to identify 2 places of code for modifying A
meanwhile 1 place identification is required for B.

A Single Detection Tool. In the previous studies, a single
detection tool was used to detect duplicate code. However,
there is neither a generic nor strict definition of duplicate
code. Each detection tool has its own unique definition of
duplicate code, and it detects duplicate code based on the
own definition. Consequently, different duplicate code is
detected by different detection tools from the same source
code. Therefore, the investigation result with one detector is
different from the result from another detector. In Figure 1,
a detector CCFinder detects lines highlighted with red as
duplicate code, and another detector Scorpio detects not
only lines highlighted with red but also lines highlighted with
orange before modification. Therefore, if we use Scorpio,
Modification D is regarded as being affected with duplicate
code, nevertheless, it is regarded as not being affected
with duplicate code if we use CCFinder. Consequently, the
investigation with a single detector is not sufficient to get the
generic result about the impact of duplicate code.

2.2.1. Objective of This Study. In this paper, we conducted
an empirical study from a different standpoint of previous
research. The features of this study are as follows.

Fine-Grained Investigation Units. In this study, every line of
code is investigated whether it is duplicate code or not, which
enables us to judge whether every modification is conducted
on duplicate code or nonduplicate code.

Place-Based Indicator. We define a new indicator based on
the number of modified places, not the number of modified
lines. The purpose of place-based indicator is to evaluate
the impact of the presence of duplicate code with different
standpoints from the previous research.

Multiply Detector. In this study, we use 4 duplicate code
detection tools to reduce biases of each detection method.

3. Preliminaries

In this section, we describe preliminaries used in this paper.

3.1. Duplicate Code Detection Tools. There are currently
various kinds of duplicate code detection tools. The detection
tools take the source code as their input data, and they
provide the position of the detected duplicate code in it. The
detection tools can be categorized based on their detection
techniques. Major categories should be line based, token
based, metrics based, AST (Abstract Syntax Tree) based, and
PDG (Program Dependence Graph) based. Each technique
has merits and demerits, and there is no technique that
is superior to any other techniques in every way [1, 18].
The following subsections describe 4 detection tools that
are used in this research. We use two token-based detection
tools, which is for investigating whether both the token-
based detection tools always introduce the same result or not.

3.1.1. CCFinder. CCFinder is a token-based detection tool
[19]. The major features of CCFinder are as follows.

(i) CCFinder replaces user-defined identifiers such as
variable names or function names with special
tokens before the matching process. Consequently,
CCFinder can identify code fragments that use
different variables as duplicate code.

(ii) Detection speed is very fast. CCFinder can detects
duplicate code from millions lines of code within an
hour.

(iii) CCFinder can handle multiple popular program-
ming languages such as C/C++, Java, and COBOL.

3.1.2. CCFinderX. CCFinderX is a major version up from
CCFinder [20]. CCFinderX is a token-based detection tool
as well as CCFinder, but the detection algorithm was
changed to bucket sort to suffix tree. CCFinderX can handle
more programming languages than CCFinder. Moreover, it
can effectively use resources of multi core CPUs for faster
detection.

3.1.3. Simian. Simian is a line-based detection tool [21].
As well as CCFinder family, Simian can handle multiple
programming languages. Its line-based technique realizes
duplicate code detection on small memory usage and short
running time. Also, Simian allows fine-grained settings. For
example, we can configure that duplicate code is not detected
from import statements in the case of Java language.

3.1.4. Scorpio. Scorpio is a PDG-based detection tool
[22, 23]. Scorpio builds a special PDG for duplicate code
detection, not traditional one. In traditional PDGs, there are
two types of edge representing data dependence and control
dependence. The special PDG used in Scorpio has one
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(a) before modification
(1) A
(2) B
(3) line will be changed 1
(4) line will be changed 2
(5) C
(6) D
(7) line will be deleted 1
(8) line will be deleted 2
(9) E
(10) F
(11) G
(12) H

(b) after modification
(1) A
(2) B
(3) line changed 1
(4) line changed 2
(5) C
(6) D
(7) E
(8) F
(9) G
(10) line added 1
(11) line added 2
(12) H

(c) diff output
3,4c3,4
< line will be changed 1
< line will be changed 2
---
> line changed 1
> line changed 2
7,8d6
< line will be deleted 1
< line will be deleted 2
11a10,11
> line added 1
> line added 2

Algorithm 1: A simple example of comparing two source files with
diff (changed region is represented with identifier “c” like 3,4c3,4;
deleted region is represented with identifier “d” like 7,8d6, added
region is represented with identifier “a” like 11a10,11). The number
before and after the identifier shows the correspond lines.

more edge, execution-next link, which allows detecting more
duplicate code than traditional PDG. Also, Scorpio adopts
some heuristics for filtering out false positives. Currently,
Scorpio can handle only Java language.

3.2. Revision. In this paper, we analyze historical data
managed by version control systems for investigation. Ver-
sion control systems store information about changes to
documents or programs. We can specify changes by using
a number, “revision”. We can get source code in arbitrary
revision, and we can also get modified files, change logs, and

the name of developers who made changes in arbitrary two
consecutive revisions with version control systems.

Due to the limit of implementation, we restrict the target
version control system to Subversion. However, it is possible
to use other version control systems such as CVS.

3.3. Target Revision. In this study, we are only interested
in changes in source files. Therefore, we find out revisions
that have some modifications in source files. We call such
revisions as target revisions. We regard a revision R as the
target revision, if at least one source file is modified from R
to R + 1.

3.4. Modification Place. In this research, we use the number
of places of modified code, instead lines of modified code.
That is, even if multiple consecutive lines are modified,
we regard it as a single modification. In order to identify
the number of modifications, we use UNIX diff command.
Algorithm 1 shows an example of diff output. In this
example, we can find 3 modification places. One is a change
in line 3 and 4, another is a deletion in line 7 and 8, and the
other is an addition at line 11. As shown in the algorithm,
it is very easy to identify multiple consecutive modified lines
as a single modification; all we have to do is just parsing the
output of diff so that the start line and end line of all the
modifications are identified.

4. Proposed Method

This section describes our research questions and the inves-
tigation method.

4.1. Research Questions and Hypotheses. The purpose of this
research is to reveal whether the presence of duplicate code
really affects software evolution or not. We assume that if
duplicate code is more frequently modified than nonduplicate
code, the presence of duplicate code has a negative impact on
software evolution. This is because if much duplicate code is
included in source code though, it is never modified during
its lifetime, the presence of duplicate code never causes
inconsistent changes or additional modification efforts. Our
research questions are as follows.

RQ1: Is duplicate code more frequently modified than non-
duplicate code?

RQ2: Are the comparison results of stability between
duplicate code and nonduplicate code different from
multiple detection tools?

RQ3: Is duplicate code modified uniformly throughout its
lifetime?

RQ4: Are there any differences in the comparison results on
modification types?

To answer these research questions, we define an indica-
tor, modification frequency (in short, MF). We measure and
compare MF of duplicate code (in short, MFd) and MF of
nonduplicate code (in short, MFn) for investigation.
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4.2. Modification Frequency

4.2.1. Definition. As described above, we use MF to estimate
the influence of duplicate code. MF is an indicator based
on the number of modified code, not lines of modified
code. This is because this research aims to investigate from
a different standpoint from previous research.

We define MFd in the formula:

MFd =
∑

r∈R MCd(r)
|R| , (1)

where R is a set of target revisions, MCd(r) is the number of
modifications on duplicate code between revision r and r+1.
We also define MFn in the formula:

MFn =
∑

r∈R MCn(r)
|R| , (2)

where MCn(r) is the number of modifications on nondupli-
cate code between revision r and r + 1.

These values mean the average number of modifications
on duplicate code or nonduplicate code per revision. How-
ever, in these definitions, MFd and MFn are very affected by
the amount of duplicate code included the source code. For
example, if the amount of duplicate code is very small, it is
quite natural that the number of modifications on duplicate
code is much smaller than nonduplicate code. However,
if a small amount of duplicate code is included but it is
quite frequently modified, we need additional maintenance
efforts to judge whether its correspondents need the same
modifications or not. We cannot evaluate the influence of
duplicate code in these situations in these definitions.

In order to eliminate the bias of the amount of duplicate
code, we normalize the formulae (1) and (2) with the ratio of
duplicate code. Here, we assume that

(i) LOCd(r) is the total lines of duplicate code in revision
r,

(ii) LOCn(r) is the total lines of nonduplicate code on r,

(iii) LOC(r) is the total lines of code on r, so that the
following formula is satisfied:

LOC(r) = LOCd(r) + LOCn(r). (3)

Under these assumptions, the normalized MFd and MFn

are defined in the following formula:

normalized MFd =
∑

r∈R MCd(r)
|R| ×

∑
r∈R LOC(r)

∑
r∈R LOCd(r)

,

normalized MFn =
∑

r∈R MCn(r)
|R| ×

∑
r∈R LOC(r)

∑
r∈R LOCn(r)

.
(4)

In the reminder of this paper, the normalized MFd and
MFn are called as just MFd and MFn, respectively.

4.2.2. Measurement Steps. The MFd and MFn are measured
with the following steps,

Step 1. It identifies target revisions from the repositories of
target software systems. Then, all the target revisions are
checked out into the local storage.

Step 2. It normalized all the source files in every target
revision.

Step 3. It detects duplicate code within every target revision.
Then, the detection result is analyzed in order to identify the
file path, the lines of all the detected duplicate code.

Step 4. It identifies differences between two consecutive
revisions. The start lines and the end lines of all the
differences are stored.

Step 5. It counts the number of modifications on duplicate
code and nonduplicate code.

Step 6. It calculates MFd and MFn.

In the reminder of this subsection, we explain each step
of the measurement in detail.

Step 1. It obtains Target Revisions. In order to measure MFd

and MFn, it is necessary to obtain the historical data of the
source code. As described above, we used a version control
system, Subversion, to obtain the historical data.

Firstly, we identify which files are modified, added, or
deleted in each revision and find out target revisions. After
identifying all the target revision from the historical data,
they are checked out into the local storage.

Step 2. It normalizes Source Files. In the Step 2, every source
file in all the target revisions is normalized with the following
rules:

(i) deletes blank lines, code comments, and indents,

(ii) deletes lines that consist of only a single open/close
brace, and the open/close brace is added to the end of
the previous line.

The presence of code comments influences the measure-
ment of MFd and MFn. If a code comment is located within a
duplicate code, it is regarded as a part of duplicate code even
if it is not a program instruction. Thus, the LOC of duplicate
code is counted greater than it really is. Also, there is no
common rule how code comments should be treated if they
are located in the border of duplicate code and nonduplicate
code, which can cause a problem that a certain detection tool
regards such a code comment as duplicate code meanwhile
another tool regards it as nonduplicate code.

As mentioned above, the presence of code comments
makes it more difficult to identify the position of duplicate
code accurately. Consequently, all the code comments are
removed completely. As well as code comments, different
detection tools handle blank lines, indents, lines including
only a single open or close brace in different ways, which
also influence the result of duplicate code detection. For this
reason, blank lines and indents are removed, and lines that
consist of only a single open or close brace are removed, and
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Table 2: Target software systems—Experiment 1.

(a) Experiment 1.1

Name Domain Programming language Number of Revisions LOC (latest revision)

EclEmma Testing Java 788 15,328

FileZilla FTP C++ 3,450 87,282

FreeCol Game Java 5,963 89,661

SQuirrel SQL Client Database Java 5,351 207,376

WinMerge Text Processing C++ 7,082 130,283

(b) Experiment 1.2

Name Domain Programming language Number of Revisions LOC (latest revision)

ThreeCAM 3D Modeling Java 14 3,854

DatabaseToUML Database Java 59 19,695

AdServerBeans Web Java 98 7,406

NatMonitor Network (NAT) Java 128 1,139

OpenYMSG Messenger Java 141 130,072

QMailAdmin Mail C 312 173,688

Tritonn Database C/C++ 100 45,368

Newsstar Network (NNTP) C 165 192,716

Hamachi-GUI GUI, Network (VPN) C 190 65,790

GameScanner Game C/C++ 420 1,214,570

Table 3: Overview of Investigation Methods.

Method Krinke [11]
Lozano and

Wermelinger
[9]

Proposed method

Target
Revisions

A revision per
week

All All

Investigation
Unit

Line Method
Place (consecutive

lines)

Measure
ratio of

Modified lines
Work

Modification
frequency

the removed open or close brace is added to the end of the
previous line.

Step 3. It detects Duplicate Code. In this step, duplicate code is
detected from every target revision, and the detection results
are stored into a database. Each detected duplicate code is
identified by 3-tuple (v, f , l), where v is the revision number
that a given duplicate code was detected; f is the absolute
path to the source file where a given duplicate code exists;
l is a set of line numbers where duplicate code exists. Note
that storing only the start line and the end line of duplicate
code is not feasible because a part of duplicate code is non-
contiguous.

This step is very time consuming. If the history of
the target software includes 1,000 revisions, duplicate code
detection is performed 1,000 times. However, this step is fully
automated, and no manual work is required.

Step 4. It identifies Differences between Two Consecutive
Revisions. In Step 4, we find out modification places between

two consecutive revisions with UNIX diff command. As
described above, we can get this information by just parsing
the output of diff.

Step 5. It Counts the Number of Modifications. In this step,
we count the number of modifications of duplicate code
and nonduplicate code with the results of the previous
two steps. Here, we assume the variable for the number of
modifications of duplicate code is MCd, and the variable
for nonduplicate code is MCn. Firstly, MCd and MCn are
initialized with 0, then they are increased as follows; if
the range of specified modification is completely included
in duplicate code, MCd is incremented; if it is completely
included in nonduplicate code, MCn is incremented; if it is
included in both of duplicate code and nonduplicate code,
both MCd and MCn are incremented. All the modifications
are processed with the above algorithm.

Step 6. It calculates MFd and MFn. Finally, MFd and MFn

defined in the formula (4) are calculated with the result of
the previous step.

5. Design of Experiment

In this paper, we conduct the following two experiments.

Experiment 1. Compare MFd and MFn on 15 open-source
software systems.

Experiment 2. Compare the result of the proposed method
with 2 previous investigation methods on 5 open-source
software systems.
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Table 4: Target software systems—Experiment 2.

Name Domain Programming language Number of Revisions LOC (latest revision)

OpenYMSG Messenger Java 194 14,111

EclEmma Testing Java 1,220 31,409

MASU Source Code Analysis Java 1,620 79,360

TVBrowser Multimedia Java 6,829 264,796

Ant Build Java 5,412 198,864

We describe these experiments in detail in the reminder
of this section.

5.1. Experiment 1

5.1.1. Outline. The purpose of this experiment is to answer
our research questions. This experiment consists of the
following two subexperiments.

Experiment 1.1. We compare MFd and MFn on various size
software systems with a scalable detection tool, CCFinder.

Experiment 1.2. We compare MFd and MFn on small
size software systems with 4 detection tools, described in
Section 3.1.

The reason why we choose only a single clone detector,
CCFinder, on Experiment 1.1 is that the experiment took
much time. For instance, we took a week to conduct the
experiment on SQuirrel SQL Client.

The following items are investigated in each sub-
experiment.

Item A. Investigate whether duplicate code is modified more
frequently than nonduplicate code. In this investigation, we
calculate MFd and MFn on the entire period.

Item B. Investigate whether MF tendencies differ according
to the time.

To answer RQ1, we use the result of Item A of Exper-
iments 1.1 and 1.2. For RQ2, we use the result of Item A
of Experiment 1.1. For RQ3, we use Item B of Experiment
1.1 and Experiment 1.2. Finally, for RQ4, we use Item A of
Experiment 1.1 and Experiment 1.2.

5.1.2. Target Software Systems. In Experiment 1, we select
15 open source software systems shown in Table 2 as
investigation targets. 5 software systems are investigated
in Experiment 1.1, and the other software systems are
investigated in Experiment 1.2. The criteria for these target
software systems are as follows:

(i) the source code is managed with Subversion;

(ii) the source code is written in C/C++ or Java;

(iii) we took care not to bias the domains of the targets.

Table 5: Ratio of duplicate code—Experiment 1.

(a) Experiment 1.1

Software Name ccf ccfx sim sco

EclEmma 13.1% — — —

FileZilla 22.6% — — —

FreeCol 23.1% — — —

SQuirrel 29.0% — — —

WinMerge 23.6% — — —

(b) Experiment 1.2

Software Name ccf ccfx sim sco

ThreeCAM 29.8% 10.5% 4.1% 26.2%

DatabaseToUML 21.4% 25.1% 7.6% 11.8%

AdServerBeans 22.7% 18.2% 20.3% 15.9%

NatMonitor 9.0% 7.7% 0.7% 6.6%

OpenYMSG 17.4% 9.9% 5.8% 9.9%

QMailAdmin 34.3% 19.6% 8.8% —

Tritonn 13.8% 7.5% 5.5% —

Newsstar 7.9% 4.8% 1.5% —

Hamachi-GUI 36.5% 23.1% 18.5% —

GameScanner 23.1% 13.1% 6.6% —

5.2. Experiment 2

5.2.1. Outline. In Experiment 2, we compare the results
of the proposed method and two previously described
investigation methods on the same targets. The purpose of
this experiment is to reveal whether comparisons of duplicate
code and nonduplicate code with different methods always
introduce the same result. Also, we evaluate the efficacy of
the proposed method comparing to the other methods.

5.2.2. Investigation Methods to Be Compared. Here, we
describe 2 investigation methods used in Experiment 2.
We choose investigation methods proposed by Krinke [11]
(in short, Krinke’s method) and proposed by Lozano and
Wermelinger [9] (in short, Lozano’s method). Table 3 shows
the overview of these methods and the proposed method.
The selection was performed based on the following criteria.

(i) The investigation is based on the comparison some
characteristics between duplicate code and nondupli-
cate code.
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(ii) The method has been published at the time when our
research started (at 2010/9).

In the experiments of Krinke’s and Lozano’s papers, only
a single detection tool Simian or CCFinder was selected.
However, in this experiment, we selected 4 detection tools
for bringing more valid results.

We developed software tools for Krinke’s and Lozano’s
methods based on their papers. We describe Krinke’s method
and Lozano’s method briefly.

Krinke’s Method. Krinke’s method compares stability of
duplicate code and nonduplicate code [11]. Stability is
calculated based on ratios of modified duplicate code and
modified nonduplicate code. This method uses not all the
revisions but a revision per week.

First of all, a revision is extracted from every week
history. Then, duplicate code is detected from every of the
extracted revisions. Next, every consecutive two revisions
are compared for obtaining where added lines, deleted lines,
and changed lines are. With this information, the ratios of
added lines, deleted lines, and changed lines on duplicate and
nonduplicate code are calculated and compared.

Lozano’s Method. Lozano’s method categorized Java meth-
ods, then compare distributions of maintenance cost based
on the categories [9].

Firstly, Java methods are traced based on their owner
class’s full qualified name, start/end lines, and signatures.
Methods are categorized as follows:

AC-Method. Methods that always had duplicate code
during their lifetime;

NC-Method. Methods that never had duplicate code
during their lifetime;

SC-Method. Methods that sometimes had duplicate
code and sometimes did not.

Lozano’s method defines the followings where m is a
method, P is a period (a set of revisions), and r is a revision.

(i) ChangedRevisions(m,P): a set of revisions that
method m is modified in period P,

(ii) Methods(r): a set of methods that exist in revision r,

(iii) ChangedMethods(r): a set of methods that were
modified in revision r,

(iv) CoChangedMethods(m, r): a set of methods that
were modified simultaneously with method m in
revision r. If method m is not modified in revision
r, it becomes 0. If modified, the following formula is
satisfied:

ChangedMethod(r) = m∪ CoChangedMethod(m, r).
(5)

Table 6: Overall results—Experiment 1.

(a) Experiment 1.1

Software Name ccf ccfx sim sco

EclEmma N — — —

FileZilla N — — —

FreeCol N — — —

SQuirrel N — — —

WinMerge N — — —

(b) Experiment 1.2

Software Name ccf ccfx sim sco

ThreeCAM N C N N

DatabaseToUML N N N N

AdServerBeans N N N N

NatMonitor C C N C

OpenYMSG C C C N

QMailAdmin C C C —

Tritonn N C N —

Newsstar N N N —

Hamachi-GUI N N N —

GameScanner C C N —

Then, this method calculates the following formulae with
the above definitions. Especially, work is an indicator of the
maintenance cost:

likelihood(m,P) = ChangedRevisions(m,P)
∑

r∈P
∣
∣ChangedMethods(r)

∣
∣ ,

impact(m,P)

=
∑

r∈P
∣
∣CoChangedMethods(m, r)

∣
∣/|Methods(r)|

∣
∣ChangedRevisions(m,P)

∣
∣ ,

work(m,P) = likelihood(m,P)× impact(m,P).
(6)

In this research, we compare work between AC-Method
and NC-Method. In addition, we also compare SC-Methods’
work on duplicate period and nonduplicate period.

5.2.3. Target Software Systems. We chose 5 open-source
software systems in Experiment 2. Table 4 shows them. Two
targets, OpenYMSG and EclEmma, are selected as well as
Experiment 1. Note that the number of revisions and LOC
of the latest revision of these two targets are different from
Table 2. This is because they had been being in development
between the time-lag in Experiments 1 and 2. Every source
file is normalized with the rules described in Section 4.2.2 as
well as Experiment 1. In addition, automatically generated
code and testing code are removed from all the revisions
before the investigation methods are applied.

6. Experiment 1—Result and Discussion

6.1. Overview. Table 5 shows the average ratio for each target
of Experiment 1. Note that “ccf,” “ccfx,” “sim,” and “sco” in
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Figure 2: Result of Item A on Experiment 1.1.

Table 7: The average values of MF in Experiment 1.1.

Modification Type
MF

Duplicate code Nonduplicate code

Change 7.0337 8.1039

Delete 1.0216 1.4847

Add 1.9539 3.7378

ALL 10.0092 13.3264

the table are the abbreviated form of CCFinder, CCFinderX,
Simian, and Scorpio, respectively.

Table 6 shows the overall result of Experiment 1. In
this table, “C” means MFd > MFn in that case, and “N”
means the opposing result. For example, the comparison
result in ThreeCAM with CCFinder is MFd < MFn, which
means duplicate code is not modified more frequently than
nonduplicate code. Note that “—” means the cases that we
do not consider because of the following reasons: (1) in
Experiment 1.1, we use only CCFinder, so that the cases with
other detectors are not considered; (2) Scorpio can handle
only Java, so that the cases in software systems written in
C/C++ with Scorpio are not considered.

We describe the results in detail in the following subsec-
tions.

6.2. Result of Experiment 1.1. Figure 2 shows all the results
of Item A on Experiment 1.1. The labels “d” and “n” in X-
axis means MF in duplicate code and nonduplicate code,
respectively, and every bar consists of three parts, which
means change, delete, and add. As shown in Figure 2, MFd

is lower than MFn on all the target systems. Table 7 shows the
average values of MF based on the modification types. The
comparison results of MFd and MFn show that MFd is less
than MFn in the cases of all the modification types. However,
the degrees of differences between MFd and MFn are different
for each modification type.

For Item B on Experiment 1.1, first, we divide the entire
period into 10 sub-periods and calculate MF on every of the
sub periods. Figure 3 shows the result. X-axis is the divided
periods. Label “1” is the earliest period of the development,
and label “10” is the most recent period. In the case of
EclEmma, the number of periods that MFd is greater than
MFn is the same as the number of periods that MFn is greater
than MFd. In the case of FileZilla, FreeCol, and WinMerge,
there is only a period that MFd is greater than MFn. In
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Figure 3: Result of Item B on Experiment 1.1 (divided into 10
periods).

the case of Squirrel SQL Client, MFn is greater than MFd

in all the periods. This result implies that if the number
of revisions becomes large, duplicate code tends to become
more stable than nonduplicate code. However, the shapes of
MF transitions are different from every software system.

For WinMerge, we investigated period “2,” where MFn is
much greater than MFd, and period “10,” where is only the
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Table 8: Comparing MFs based on programming language and
detection tool.

(a) Comparison on programming language

Programming language
MF

Duplicate code Nonduplicate code

Java 20.4370 24.1739

C/C++ 49.4868 57.2246

ALL 32.8869 38.3384

(b) Comparison on detection tool

Detection tool
MF

Duplicate code Nonduplicate code

CCFinder 38.2790 40.7211

CCFinderX 40.3541 40.0774

Simian 26.0084 42.1643

Scorpio 20.9254 24.1628

ALL 32.8869 38.3384

Table 9: The average values of MF in Experiment 1.2.

Modification type
MF

Duplicate code Nonduplicate code

Change 26.8065 29.2549

Delete 3.8706 3.5228

Add 2.2098 5.5608

ALL 32.8869 38.3384

period that MFd is greater than MFn. In period “10,” there are
many modifications on test cases. The number of revisions
that test cases are modified is 49, and the ratio of duplicate
code in test cases is 88.3%. Almost all modifications for test
cases are performed on duplicate code, so that MFd is greater
than MFn. Omitting the modifications for test cases, MFd

and MFn became inverted. However, there is no modification
on test cases in period “2,” so that MFd is less than MFn in this
case.

Moreover, we divide the entire period by release dates and
calculate MF on every period. Figure 4 shows the result. As
the figure shows, MFd is less than MFn in all the cases for
FileZilla, FreeCol, SQuirrel, and WinMerge. For EclEmma,
there are some cases that MFd > MFn at the release level.
Especially, duplicate code is frequently modified in the early
releases.

Although MFd is greater than MFn in the period “6”
in Freecol and the period “10” in WinMerge, MFd is less
than MFn in all cases at the release level. This indicates that
duplicate code is sometimes modified intensively in a short
period, nevertheless it is stable than nonduplicate code in a
long term.

The summary of Experiment 1 is that duplicate code
detected by CCFinder was modified less frequently than
nonduplicate code. Consequently, we conclude that duplicate
code detected by CCFinder does not have a negative impact
on software evolution even if the target software is large and
its period is long.
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Figure 4: Result of Item B on Experiment 1.1 (divided by releases).

6.3. Result of Experiment 1.2. Figure 5 shows all the results of
Item A on Experiment 1.2. In Figure 5, the detection tools
are abbreviated as follows: CCFinder→C; CCFinderX →
X; Simian→Si;Scorpio→Sc. There are the results of 3
detection tools except Scorpio on C/C++ systems, because
Scorpio does not handle C/C++. MFd is less than MFn in
the 22 comparison results out of 35. In the 4 target systems
out of 10, duplicate code is modified less frequently than
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Figure 5: Result of Item A on Experiment 1.2.

nonduplicate code in the cases of all the detection tools.
In the case of the other 1 target system, MFd is greater
than MFn in the cases of all the detection tools. In the
remaining systems, the comparison result is different for the
detection tools. Also, we compared MFd and MFn based on
programming language and detection tools. The comparison
result is shown in Table 8. The result shows that MFd is less
than MFn on all the programming language, and MFd is
less than MFn on the 3 detectors, CCFinder, Simian, and
Scorpio, meanwhile the opposing result is shown in the case
of CCFinderX. We also compared MFd and MFn based on
modification types. The result is shown in Table 9. As shown
in Table 9, MFd is less than MFn in the cases of change and
addition, meanwhile the opposing result is shown in the case
of deletion.

We investigated whether there is a statistically significant
difference between MFd and MFn by t-test. The result is
that, there is no difference between them where the level
of significance is 5%. Also, there is no significant difference
in the comparison based on programming language and
detection tool.

For Item B on Experiment 1.2, we divide the whole
period into 10 subperiods likewise Experiment 1.1. Figure 6
shows the result. In this experiment, we observed that the
tendencies of MF transitions loosely fall into three categories:
(1) MFd is lower than MFn almost of all the divisions; (2)
MFd is greater than MFn in the early divisions, meanwhile the
opposite tendency is observed in the late divisions; (3) MFd is
less than MFn in the early divisions, meanwhile the opposite

tendency is observed in the late divisions. Figure 6 shows the
result of the 3 systems on which we observed remarkable
tendencies of every category.

In Figure 6(a), period “4” shows that MFn is greater than
MFd on all the detection tool meanwhile period “7” shows
exactly the opposite result. Also, in period “5,” there are
hardly differences between duplicate code and nonduplicate
code. We investigated the source code of period “4.” In
this period, many source files were created by copy-and-
paste operations, and a large amount of duplicate code was
detected by each detection tool. The code generated by copy-
and-paste operations was very stable meanwhile the other
source files were modified as usual. This is the reason why
MFn is much greater than MFd in period “4.”

Figure 6(b) shows that duplicate code tends to be modi-
fied more frequently than nonduplicate code in the anterior
half of the period meanwhile the opposite occurred in the
posterior half. We found that there was a large number of
duplicate code that was repeatedly modified in the anterior
half. On the other hand, there was rarely such duplicate code
in the posterior half.

Figure 6(c) shows the opposite result of Figure 6(b). That
is, duplicate code was modified more frequently in the
posterior half of the period. In the anterior half, the amount
of duplication was very small, and modifications were rarely
performed on it. In the posterior half, amount of duplicate
code became large, and modifications were performed on
it repeatedly. In the case of Simian detection, no duplicate
code was detected except period “5.” This is because Simian
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Figure 6: Result of Item B on Experiment 1.2 (divided into 10 periods).

detects only the exact-match duplicate code meanwhile the
other tools detect exact match and renamed duplicate code
in the default setting.

In Experiment 1.1, we investigate MF tendencies at the
release level. However, we cannot apply the same investi-
gation way to Experiment 1.2. This is because the target
software systems in Experiment 1.2 is not enough mature to
have multiple releases. Instead, we investigate MF tendencies

at the most fine-grained level, at the revision level. Figure 7
shows the result of the investigation at the revision level for
AdServerBeans, OpenYMSG, and NatMonitor. The X-axis of
each graph indicates the value of MFd − MFn. Therefore, if
the value is greater than 0, MFd is greater than MFn at the
revision and vice versa. For AdServerBeans, MF tendencies
are similar for every detection tool except revision 21 to 26.
For other 2 software systems, MF comparison results differ
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Figure 7: Result of Item B on Experiment 1-2 (for each revision).

from each detection tool in most of the revisions. As the
figures show, tendencies of MF transition differ from clone
detectors nevertheless there seems to be small differences
between clone detectors in 10 sub-periods division. However,
these graphs do not consider modification types. Therefore,
we cannot judge what type of modification frequently
occurred from the graphs.

The summary of Experiment 1.2 is as follows: we found
some instances that duplicate code was modified more
frequently than nonduplicate code in a short period on
each detection tool; however, in the entire period, duplicate
code was modified less frequently than nonduplicate code
on every target software with all the detection tools. Conse-
quently, we conclude that the presence of duplicate code does
not have a seriously-negative impact on software evolution.

6.4. Answers for RQs

RQ1: Is duplicate code more frequently modified than nondu-
plicate code? The answer is No. In Experiment 1.1, we found
that MFd is lower than MFn in all the target systems. Also,

we found a similar result in Experiment 1.2: 22 comparison
results out of 35 show that MFd is lower than MFn, also MFd

is lower than MFn in average. This result indicates that the
presence of duplicate code does not seriously affect software
evolution, which is different from the common belief.

RQ2: Are the comparison results of stability between duplicate
code and nonduplicate code different from multiple detection
tools? The answer is Yes. In Experiment 1.2, the comparison
results with CCFinderX are different from the results with
other 3 detectors. Moreover, MFn is much greater than MFd

in the case of Simian. At present, we cannot find the causes
of the difference of the comparison results. One of the causes
may be the ratio of duplicate code. The ratio of duplicate
code is quite different for each detection tool on the same
software. However, we cannot see any relation between the
ratio of duplicate code and MF.

RQ3: Is duplicate code modified uniformly throughout its
lifetime? The answer is No. In Item B of Experiments 1.1
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and 1.2, there are some instances that duplicate code was
modified more frequently than nonduplicate code in a short
period though MFd is less than MFn in the whole period.
However, these MFs tendencies depend on target software
systems, so that we cannot find characteristics of such
variability.

RQ4: Are there any differences in the comparison results on
modification types? The answer is Yes. In Experiment 1.1,
MFd is less than MFn on all the modification types. However,
there is a small difference between MFd and MFn in the case
of deletion, meanwhile there is a large difference in the case
of addition. In Experiment 1.2, MFd is less than MFn in the
cases of change and addition. Especially, MFn is more than
twice as large as MFd in the case of addition. However, MFd

is greater than MFn in the case of deletion. These results
show that deletion tends to be affected by duplicate code,
meanwhile addition tends not to be affected by duplicate
code.

6.5. Discussion. In Experiment 1, we found that duplicate
code tends to be more stable than nonduplicate code, which
indicates that the presence of duplicate code does not have a
negative impact on software evolution. We investigated how
the software evolved in the period, and we found that the
following activities should be a part of factors that duplicate
code is modified less frequently than nonduplicate code.

Reusing Stable Code. When implementing new functionali-
ties, reusing stable code is a good way to reduce the number
of introduced bugs. If most of duplicate code is reused stable
code, MFd becomes less than MFn.

Using Generated Code. Automatically generated code is
rarely modified manually. Also, the generated code tends to
be duplicate code. Consequently, if the amount of generated
code is high, MFd will become less than MFn.

On the other hand, there are some cases that duplicate
code was more frequently modified than nonduplicate code
in a short period. The period “7” on AdServerBeans (Exper-
iment 1.2, Item B) is one of these instances. We analyzed the
source code of this period to detect why MFd was greater than
MFn in this period though the opposite results were shown in
the other periods. Through the analysis, we found that there
are some instances that the same modifications were applied
to multiple places of code.

Algorithm 2 shows an example of unstable duplicate
code. There are 5 code fragments that are similar to
this fragment. Firstly, lines labeled with “%” (shown in
Algorithm 2(b)) were modified to replace the getter methods
into directly accesses to fields. In the next, a line labeled
with “#” is removed (shown in Algorithm 2(c)). These two
modifications were concentrically conducted in period “7.”
Reusing unstable code like this example can cause additional
costs for software maintenance. Moreover, a code fragment
was not simultaneously changed with its correspondents at
the second modification. If this inconsistent change was
introduced unintentionally, it might cause a bug. If so, this

Table 10: Ratio of duplicate code—Experiment 2.

Software Name ccf ccfx sim sco

OpenYMSG 12.4% 6.2% 2.7% 5.5%

EclEmma 6.9% 4.8% 2.0% 3.7%

MASU 25.6% 26.5% 11.3% 15.4%

TVBrowser 13.6% 10.9% 5.4% 19.0%

Ant 13.9% 12.1% 6.2% 15.6%

Table 11: Overall results—Experiment 2.

Software Name Method
Tools

ccf ccfx sim sco

OpenYMSG
Proposed N C C N

Krinke N C C N

Lozano — — N —

EclEmma
Proposed N N N N

Krinke N N N C

Lozano N N — —

MASU
Proposed C N C C

Krinke C C C C

Lozano C C C C

TVBrowser
Proposed N N N N

Krinke C C C C

Lozano C C C C

Ant
Proposed N N N N

Krinke C C C C

Lozano C C C C

is a typical situation that duplicate code affects software
evolution.

7. Experiment 2—Result and Discussion

7.1. Overview. Table 10 shows the average ratios of duplicate
code in each target, and Table 11 shows the comparison
results of all the targets. In Table 11, “C” means that duplicate
code requires more cost than nonduplicate code, and “N”
means its opposite. The discriminant criteria of “C” and “N”
are different in each investigation method.

In the proposed method, if MFd is lower than MFn, the
column is labeled with “C,” and the column is labeled with
“N” in its opposite case.

In Krinke’s method, if the ratio of changed and deleted
lines of code on duplicate code is greater than changed and
deleted lines on nonduplicate code, the column is labeled
with “C,” and in its opposite case the column is labeled with
“N.” Note that herein we do not consider added lines because
the amount of add is the lines of code added in the next
revision, not in the current target revision.

In Lozano’s method, if work in AC-Method is statistically
greater than one in NC-Method, the column is labeled with
“C.” On the other hand, if work in NC-Method is statistically
greater than one in AC-Method, the column is labeled with
“N.” Here, we use Mann-Whitney’s U test under setting
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(a) Before Modification
int offsetTmp = dataGridDisplayCriteria

.getItemsPerPage() ∗
(dataGridDisplayCriteria.getPage() -1);

if (offsetTmp > 0) --offsetTmp;
if (offsetTmp < 0) offsetTmp = 0;

final int offset = offsetTmp;
String sortColumn =

dataGridDisplayCriteria.getSortColumn();
Order orderTmp =

dataGridDisplayCriteria.getOrder()
.equals(AdServerBeansConstants.ASC) ?

Order.asc(sortColumn) :
Order.desc(sortColumn);

(b) After 1st Modification
int offsetTmp = dataGridDisplayCriteria

.getItemsPerPage() ∗
(dataGridDisplayCriteria.getPage() -1);

if (offsetTmp > 0) --offsetTmp;
if (offsetTmp < 0) offsetTmp = 0;

final int offset = offsetTmp;
String sortColumn =

% dataGridDisplayCriteria.sortColumn;
Order orderTmp =

% dataGridDisplayCriteria.order
.equals(AdServerBeansConstants.ASC) ?

Order.asc(sortColumn) :
Order.desc(sortColumn);

(c) After 2nd Modification
int offsetTmp = dataGridDisplayCriteria

.getItemsPerPage() ∗
(dataGridDisplayCriteria.getPage() -1);

#
if (offsetTmp < 0) offsetTmp = 0;

final int offset = offsetTmp;
String sortColumn =

dataGridDisplayCriteria.sortColumn;
Order orderTmp =

dataGridDisplayCriteria.order
.equals(AdServerBeansConstants.ASC) ?

Order.asc(sortColumn) :
Order.desc(sortColumn);

Algorithm 2: An example of unstable duplicate code.

5% as the level of significance. If there is no statistically
significant difference in AC- and NC-Method, we compare
work in duplicate period and nonduplicate period in SC-
Method with Wlcoxon’s singed-rank test. We also set 5% as
the level of significance. If there is no statistically significant
difference, the column is labeled with “—.”

As this table shows, different methods and different tools
brought almost the same result in the case of EclEmma and
MASU. On the other hand, in the case of other targets, we
get different results with different methods or different tools.
Especially, in the case of TVBrowser and Ant, the proposed
method brought the opposite result to Lozano’s and Krinke’s
method.

7.2. Result of MASU. Herein, we show comparison figures of
MASU. Figure 8 shows the results of the proposed method. In
this case, all the detection tools except CCFinderX brought
the same result that duplicate code is more frequently
modified than nonduplicate code. Figure 9 shows the results
of Krinke’s method on MASU. As this figure shows, the
comparison of all the detection detectors brought the same
result that duplicate code is less stable than nonduplicate
code. Figure 10 shows the results of Lozano’s method on
MASU with Simian. Figure 10(a) compares AC-Method
and NC-Method. X-axis indicates maintenance cost (work)
and Y-axis indicates cumulated frequency of methods. For
readability, we adopt logarithmic axis on X-axis. In this
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Figure 8: Result of the proposed method on MASU.
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Figure 9: Result of Krinke’s method on MASU.

case, AC-Method requires more maintenance cost than
NC-Method. Also, Figure 10(b) compares duplicate period
and nonduplicate period of SC-Method. In this case, the
maintenance cost in duplicate period is greater than in
nonduplicate period.

In the case of MASU, Krinke’s method and Lozano’s
method regard duplicate code as requiring more cost than
nonduplicate code in the cases of all the detection tools.
The proposed method indicates that duplicate code is more
frequently modified than nonduplicate code with CCFinder,
Simian, and Scorpio. In addition, there is little differences
between MFd and MFn in the result of the proposed method
with CCFinderX, which is the only case that duplicate code
is more stable than nonduplicate code. Considering all the
results, we can say that duplicate code has a negative impact
on software evolution on MASU. This result is reliable
because all the investigation methods show such tendencies.

7.3. Result of OpenYMSG. Figures 11, 12, and 13 show
the result of the proposed method, Krinke’s method, and
Lozano’s method on OpenYMSG. In the cases of the
proposed method and Krinke’s method, duplicate code is
regarded as having a negative impact with CCFinderX and
Simian, meanwhile the opposing results are shown with
CCFinder and Scorpio. In Lozano’s method with Simian,
duplicate code is regarded as not having a negative impact.
Note that we omit the comparison figure on SC-Method
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Figure 10: Result of Lozano’s Method on MASU with Simian.

because there are only 3 methods that are categorized into
SC-Method.

As these figures show, the comparison results are different
for detection tools or investigation methods. Therefore, we
cannot judge whether the presence of duplicate code has a
negative impact or not on OpenYMSG.

7.4. Discussion. In the case of OpenYMSG, TVBrowser,
and Ant, different investigation methods and different
tools brought opposing results. Figure 14 shows an actual
modification in Ant. Two methods were modified in this
modification. The hatching parts are detected duplicate code
and frames in them mean pairs of duplicate code between
two methods. Vertical arrows show modified lines between
this modification and the next (77 lines of code were
modified).

This modification is a refactoring, which extracts the
duplicate instructions from the two methods and merges
them as a new method. In the proposed method, there
are 2 modification places in duplicate code and 4 places
in nonduplicate code, so that MFd and MFn become 51.13
and 18.13, respectively. In Krinke’s method, DC + CC and
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Figure 11: Result of the proposed method on OpenYMSG.
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Figure 12: Result of Krinke’s method on OpenYMSG.

DN + CN become 0.089 and 0.005, where DC, CC, DN,
and CN indicate the ratio of deleted lines on duplicate
code, changed lines on duplicate code, deleted lines on
nonduplicate code, and deleted lines on nonduplicate code,
respectively.

In this case, both the proposed method and Krinke’s
method regard duplicate code requiring more maintenance
cost than nonduplicate code. However, there is a great
difference in Krinke’s method than the proposed method:
in the proposed method, duplicate code is modified about
2.8 times as frequently as nonduplicate code; meanwhile,
in Krinke’s method, duplicate code is modified 17.8 times
as frequently as nonduplicate code. This is caused by the
difference of the barometers used in each method. In
Krinke’s method, the barometer depends on the amount of
modified lines, meanwhile the barometer depends on the
amount of modified places in the proposed method. This
example is one of the refactorings on duplicate code. In
Krinke’s method, if removed duplicate code is large, duplicate
code is regarded as having more influence. However, in
the cases of duplicate code removal, we have to spend
much effort if the number of duplicate fragments is high.
Therefore, we can say that the proposed method can
accurately measure the influence of duplicate code in this
case.
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Figure 13: Result of Lozano’s method on OpenYMSG with Simian.

This is an instance that is advantageous for the proposed
method. However, we cannot investigate all the experimental
data because the amount of the data is too vast to conduct
manual checking for all the modifications. There is a
possibility that the proposed method cannot accurately
evaluate the influence of duplicate code in some situations.

In Experiment 2, we found that the different investiga-
tion methods or different detectors draw different results
on the same target systems. In Experiment 1, we found that
duplicate code is less frequently modified than nonduplicate
code. However, the result of Experiment 2 shows that we
cannot generalize the result of Experiment 1. We have to
conduct more experiments and analyze the results of them
in detail to gain more generic.

8. Threats to Validity

This section describes threats to validity of this study.

8.1. Features of Every Modification. In this study, we assume
that cost required for every modification is equal to one
another. However, the cost is different between every mod-
ification in the actual software evolution. Consequently, the
comparison based on MF may not appropriately represent
the cost required for modifying duplicate code and nondu-
plicate code.

Also, when we modify duplicate code, we have to
consider maintaining the consistency between the modified
duplicate code and its correspondents. If the modification
lacks the consistency by error, we have to remodify them for
repairing the consistency. The effort for consistency is not
necessary for modifying nonduplicate code. Consequently,
the average cost required for duplicate code may be different
from the one required for nonduplicate code. In order to
compare them more appropriately, we have to consider the
cost for maintaining consistency.

Moreover, distribution of source code that should be
modified are not considered. However, it differs from
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Clone pair relationship

Modified lines between this revision and the next

Code fragment 1 Code fragment 2

private void doClassicCompile() throws BuildException { private void doClassicCompile() throws BuildException {
log(“Using classic compiler”, Project.MSG VERBOSE);

log(“Using classic compiler”, Project.MSG VERBOSE);Path classPath = getCompileClasspath(false);
. . .

7 lines

argList.addElement(“-classpath”);
Path classPath = getCompileClasspath(false);
. . .

7 lines

argList.addElement(“-classpath”);if (. . .) { . . .
} else {

. . .
. . .

}
if (debug) { . . . }
. . .
log(“Compilation args: ” + argList.toString(),

Project.MSG VERBOSE);

. . .

Enumeration enum = compileList.elements();

while (enum.hasMoreElements()) { . . . }
log(niceSourceList.toString(), Project.MSG VERBOSE);
ByteArrayOutputStream out = new ByteArrayOutputStream();
. . .
. . .

}

. . .

. . .

}

String[] args = new String[argList.size() + compileList.size()];32
lines

. . .

17 lines

if (debug) { . . . }
. . .
log(“Compilation args: ” + argList.toString(),
Project.MSG VERBOSE);

. . .

Enumeration enum = compileList.elements();

while (enum.hasMoreElements()) { . . . }
log(niceSourceList.toString(), Project.MSG VERBOSE);

String[] args = new String[argList.size() + compileList.size()];

17 lines

38

lines

Figure 14: An Example of Modification.

every modification, thus we may get different results by
considering the distribution of source code.

8.2. Identifying the Number of Modifications. In this study,
modifying consecutive multiple lines are regarded as a
single modification. However, it is possible that such an
automatically processing identifies the incorrect number of
modifications. If multiple lines that were not contiguous
are modified for fixing a single bug, the proposed method
presumes that multiple modifications were performed. Also,
if multiple consecutive lines were modified for fixing two or
more bugs by chance, the proposed method presumes that
only a single modification was performed. Consequently, it
is necessary to manually identify modifications if we have to
use the exactly correct number of modifications.

Besides, we investigated how many the identified modifi-
cations occurred across the boundary of duplicate code and
nonduplicate code. If this number is high, then the analysis
suspects because such modifications increase both the counts
at the same time. The investigation result is that, in the
highest case, the ratio of such modifications is 4.8%. That
means that almost all modifications occurred within either
duplicate code or nonduplicate code.

8.3. Category of Modifications. In this study, we counted all
the modifications, regardless of their categories. As a result,
the number of modifications might be incorrectly increased
by unimportant modifications such as format transfor-
mation. A part of unimportant modifications remained
even if we had used the normalized source code described
in Section 4.2.2. Consequently, manual categorization for
the modifications is required for using the exactly correct
number of modifications.

Also, the code normalization that we used in this study
removed all the comments in the source files. If considerable
cost was expended to make or change code comments on the
development of the target systems, we incorrectly missed the
cost.

8.4. Property of Target Software. In this study, we used only
open-source software systems, so that different results may
be shown with industrial software systems. Some researchers
pointed out that industrial software systems include much
duplicate code [24, 25]. Consequently, duplicate code may
not be managed well in industrial software, which may
increase MFd. Also, properties of industrial software are
quite different from ones of open source software. In order
to investigate the impact of duplicate code on industrial
software, we have to compare MF on industrial software
itself.

8.5. Settings of Detection Tools. In this study, we used default
settings for all the detection tools. If we change the settings,
different results will be shown.

9. Conclusion

This paper presented an empirical study on the impact of
the presence of duplicate code on software evolution. We
assumed that if duplicate code is modified more frequently
than nonduplicate code, the presence of duplicate code
affects software evolution and compared the stability of
duplicate code and nonduplicate code. To evaluate from a
different standpoint from previous studies, we used a new
indicator, modification frequency, which is calculated with
the number of modified places of code. Also, we used 4
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duplicate code detection tools to reduce the bias of duplicate
code detectors. We conducted an experiment on 15 open-
source software systems, and the result showed that duplicate
code was less frequently modified than nonduplicate code.
We also found some cases that duplicate code was intensively
modified in a short period though duplicate code was stable
than nonduplicate code in the whole development period.

Moreover, we compared the proposed method to other
2 investigation methods to evaluate the efficacy of the
proposed method. We conducted an experiment on 5 open-
source software systems, and in the cases of 2 targets, we got
the opposing results to other 2 methods. We investigated the
result in detail and found some instances that the proposed
method could evaluate more accurately than other methods.

In this study, we found that duplicate code tends to be
stable than nonduplicate code. However, more studies are
required to generalize this result, because we found that
different investigation methods may bring different results.
As future work, we are going to conduct more studies with
other settings to get the characteristics of harmful duplicate
code.
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[17] N. Göde, “Evolution of type-1 clones,” in Proceedings of the 9th
IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM ’09), pp. 77–86, September 2009.

[18] E. Burd and J. Bailey, “Evaluating clone detection tools for
use during preventative maintenance,” in Proceedings of the
2nd IEEE International Workshop on Source Code Analysis and
Manipulation, pp. 36–43, October 2002.

[19] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilin-
guistic token-based code clone detection system for large scale
source code,” IEEE Transactions on Software Engineering, vol.
28, no. 7, pp. 654–670, 2002.

[20] CCFinderX, http://www.ccfinder.net/ccfinderx.html/.
[21] Simian, http://www.harukizaemon.com/simian/.
[22] Y. Higo and S. Kusumoto, “Code clone detection on special-

ized PDGs with heuristics,” in Proceedings of the 15th Euro-
pean Conference on Software Maintenance and Reengineering
(CSMR ’11), pp. 75–84, March 2011.

[23] Scorpio, http://sdl.ist.osaka-u.ac.jp/∼higo/cgi-bin/moin.cgi/
Scorpio/.

[24] S. Ducasse, M. Rieger, and S. Demeyer, “Language indepen-
dent approach for detecting duplicated code,” in Proceedings
of the 15th IEEE International Conference on Software Mainte-
nance (ICSM ’99), pp. 109–118, September 1999.



22 Advances in Software Engineering

[25] S. Uchida, A. Monden, N. Ohsugi, T. Kamiya, K. I. Matsumoto,
and H. Kudo, “Software analysis by code clones in open source
software,” Journal of Computer Information Systems, vol. 45,
no. 3, pp. 1–11, 2005.

[26] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is duplicate code
more frequently modified than non-duplicate code in software
evolution?: an empirical study on open source software,” in
Proceedings of the 4th the International Joint ERCIM Workshop
on Software Evolution and International Workshop on Principles
of Software Evolution, September 2010.

[27] Y. Sasaki, K. Hotta, Y. Higo, and S. Kusumoto, “Is duplicate
code good or bad? an empirical study with multiple investi-
gation methods and multiple detection tools,” in Proceedings
of the 22nd International Symposium on Software Reliability
Engineering (ISSRE ’11), Hiroshima, Japan, November 2011.


