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Abstract—There have been many bug prediction models
built with historical metrics, which are mined from version
histories of software modules. Many studies have reported the
effectiveness of these historical metrics. For prediction levels,
most studies have targeted package and file levels. Prediction
on a fine-grained level, which represents the method level, is
required because there may be interesting results compared
to coarse-grained (package and file levels) prediction. These
results include good performance when considering quality
assurance efforts, and new findings about the correlations
between bugs and histories. However, fine-grained prediction
has been a challenge because obtaining method histories from
existing version control systems is a difficult problem. To
tackle this problem, we have developed a fine-grained version
control system for Java, Historage. With this system, we target
Java software and conduct fine-grained prediction with well-
known historical metrics. The results indicate that fine-grained
(method-level) prediction outperforms coarse-grained (package
and file levels) prediction when taking the efforts necessary to
find bugs into account. Using a correlation analysis, we show
that past bug information does not contribute to method-level
bug prediction.

Keywords-bug prediction; fine-grained prediction; fine-
grained histories; historical metrics; effort-based evaluation

I. INTRODUCTION

Bug prediction has been widely studied and has been one

of many hot topics among researchers. Recent findings show

the usefulness of collecting historical metrics from soft-

ware repositories for bug prediction models. Many studies

measure software development histories, such as changes

on source code [1], events of development or maintenance

processes [2]–[5], developer-related histories [6]–[13], and

so on. It is reported that historical metrics are more effective

than code complexity metrics [14], [15].

In industry, there are reports of bug prediction in practice.

Microsoft Corporation built a system, CRANE, and reported

its experiences with this system [16]. Historical metrics

including code churn, regression histories, and details of

fixes are collected to build failure prediction models in

CRANE. There is also a report of bug prediction in practice

at Google1. Based on research papers [4], [17], a prediction

model was built using bug-fix information. In both industry

and the academy, bug prediction with historical metrics has

1Bug Prediction at Google, http://google-engtools.blogspot.com/2011/12/
bug-prediction-at-google.html

become the focus of attention because of its effectiveness

and understandability.

In the research area of bug prediction, fine-grained pre-

diction is one of the next challenges. In the ESEC/FSE 2011

conference, PhD working groups created a forum to conduct

short surveys on software engineering topics by interviewing

conference participants and researching the field2. The forum

group who discussed “bug prediction models” concentrated

on the main open challenges in building bug prediction mod-

els. From 27 subjects, including five from industry and 22

from academia, fine-grained prediction was selected as one

of the future directions. Studies of fine-grained prediction are

necessary because desirable results may be obtained when

compared to coarse-grained prediction. Recently, studies

take into account the effort of quality assurance activities

for evaluating bug prediction results [17]–[21]. Effort-based

evaluation considers the effort required to find bugs, but

does not evaluate the prediction results only with prediction

accuracy. Previous studies considered the lines of code

(LOC) of modules as efforts. If we can find the most

bugs while investigating the small percentages of LOC

in the entire software, such prediction models would be

desirable. Recent studies reported that file-level prediction

models are more effective than package-level prediction,

which has more coarse-grained modules than file-level, on

Java software [15], [22], [23]. From these results, we can

hypothesize that method-level prediction is more effective

than package-level and file-level prediction, which means

we can find more bugs during quality assurance activities

with method-level prediction while investigating the same

amount of LOC.

Actually, there are studies predicting fine-grained buggy

modules. Kim et al. targeted buggy Java methods by a cache-

based approach [4]. Mizuno and Kikuno predicted buggy

Java methods using a spam-filtering-based approach [24].

However, there have been few studies of fine-grained pre-

diction using well-known historical metrics. This is because

of the difficulty of collecting method-level historical metrics

since version control systems do not control method histo-

ries. To collect detailed histories, we have proposed a fine-

grained version control system, Historage [25]. Historage is

2http://pwg.sed.hu/



constructed on top of Git, and can control method histories

of Java. With this system, we collect historical metrics

for methods to build prediction models, and compare such

models with package-level and file-level prediction models

based on effort-based evaluation. We empirically evaluate

the prediction models with eight open source projects written

in Java.

The contributions of this paper can be summarized as

follows:

• Survey and classification of recent historical metrics

proposed in bug prediction studies.

• Study of the effectiveness of method-level prediction

compared with package-level and file-level prediction

based on effort-based evaluation, and a report of its

effectiveness.

• Analysis of the correlations between bugs and histories

of packages, files, and methods.

The reminder of this paper is structured as follows. Sec-

tion II summarizes the proposed historical metrics from our

survey. Section III discusses the problem of obtaining fine-

grained module histories, and introduces our fine-grained

version control system. In Section IV, we describe our study

design, including effort-based evaluation, research questions,

information of study projects, collected historical metrics

in our study, and how we collect buggy modules, and the

prediction model we used. Section V reports the results and

lessons we learned, and Section VI discusses the overheads

of fine-grained prediction and threats to the validity of this

study. Finally, we conclude in Section VII.

II. HISTORICAL METRICS

In this Section, we classify historical metrics based on the

target of measurement. We prepare four categories each of

code-related metrics, process-related metrics, organizational

metrics, and geographical metrics.

A. Code-Related Metrics

Nagappan and Ball proposed code churn metrics, which

measures the changes made to a module over a development

history [1]. They measured Churned LOC / Total LOC, and

Deleted LOC / Total LOC, for example. Churned LOC is the

sum of added and changed lines of code between a baseline

version and a new version of a module. Based on code churn

metrics the authors built statistical regression models, and

reported that code churn metrics are highly predictive of

defect density performed on Windows Server 2003. These

code-related metrics have been basic historical metrics and

have been used in many studies [10], [14], [15], [26]–[30].

B. Process-Related Metrics

There are many studies of historical metrics related to

development processes.

Changes, fixes, past bugs, etc. Graves et al. measured the

number of changes, the number of past bugs, and the average

age of modules for predicting bugs [2]. They reported the

usefulness of such process-related metrics compared with

traditional complexity metrics from a telephone switching

system study. These process-related metrics have been used

in many studies, for example, the number of changes [3],

[4], [6], [7], [9], [10], [14], [15], [30], [31] , the number

of past bugs [27], [29], [31], [32], the number of bug fix

changes [3], [4], [6], [14], [15], [30], [33], and module ages

[3], [4], [6], [15], [26], [30], [31].

Cache-based approach. Several cache-based bug pre-

diction studies exist [3], [4], [17]. Hassan and Holt, for

example, proposed a “Top Ten List,” which dynamically

updated the list of the ten most likely subsystems to have

bugs [3]. The list is updated based on heuristics including

the most recently changed, most frequently bug fixed, and

the most recently bug fixed as the development progresses.

Kim et al. [4] and Rahman et al. [17] discusses BugCache

and FixCache cache operations. The four heuristics used as

cache update policies in their work are as follows:

• Changed locality: recently changed modules tend to be

buggy.

• New locality: recently created modules tend to be

buggy.

• Temporal locality: recently bug fixed modules tend to

be buggy.

• Spatial locality: a module recently co-changed with

bug-introduced modules tends to be buggy.

The number of co-changes with buggy modules (logical

coupling with bug-introducing modules) are also measured

in other studies [8], [14].

Process complexity metrics. Hassan proposed complex-

ity metrics of code changes [5]. These metrics are designed

to measure the complexity of change processes based on the

conjecture that a chaotic change process is a good indicator

of many project problems. The key idea is that the modules

that are modified during periods of high change complexity

will have a higher tendency to contain bugs. To measure the

change complexity of a certain period, Hassan proposed to

use Shannon’s Entropy. To measure how much a module is

modified in complex change periods, different parameters

are prepared and four history complexity metrics (HCM)

are proposed. It is reported from a study with open source

projects that history complexity metrics are better predictors

than process-related metrics, i.e., prior modifications and

prior bugs [5].

C. Organizational Metrics

Historical metrics related to organization are newer met-

rics and have been well studied recently.

Number of developers. Graves et al. measured the num-

ber of developers [2]. From a case study of a telephone

switching system, the authors reported that the number of

developers did not help in predicting the number of bugs.



Weyuker et al. also reported that the number of developers

is not a major influence on bug prediction models [6].

Structure of organization. To investigate a corollary

of Conway’s Law, “structure of software system closely

matches its organization’s communication structure” [34],

Nagappan et al. designed organizational metrics, which in-

clude the number of engineers, the number of ex-engineers,

the number of changes, the depth of master ownership,

the percentage of organizational contribution, the level of

organizational ownership, overall organizational ownership,

and the organization’s intersection factor [7]. They reported

that these organizational metrics-based failure-prone module

prediction models achieved higher precision and recall val-

ues compared with models with churn, complexity, coverage,

dependencies, and pre-release bug measures from a case

study of Windows Vista.

Mockus investigated the relationship between developer-

centric metrics of organizational volatility and the probabil-

ity of customer-reported defects [8]. From a case study of a

switching software project, Mockus reported that the number

of developers leaving and the size of the organization have

an effect on software quality, but the number of newcomers

to the organization is not statistically significant.

Network metrics. Networks between developers and

modules are analyzed for predicting failures [9]–[11]. Hu-

man factors, such as the contributions of developers, coordi-

nation, and communications are examined based on network

metrics, such as centrality, connectivity, and structural holes.

Ownership. The relationship between ownership and

quality is also investigated. Bird et al. examined the effects

of ownership on Windows Vista and Windows 7 [12]. They

measured the number of minor contributors, the number of

major contributors, the total number of contributors, and

the proportion of ownership for the contributor with the

highest proportion of ownership. They found a high ratio

of ownership and many major contributors, and a few minor

contributors are associated with less defects.

Rahman and Devanbu examined the effects of ownership

and experience on quality [13]. They conducted a fine-

grained study about authorship and ownership of code

fragments. They measured the number of lines contributed

by an author divided by the number of lines changed to fix

a bug as an authorship metric, and defined the authorship

of the highest contributor as ownership. From a study of

open-source projects, they reported that a high ownership

value by a single author is associated with lines changed or

deleted to fix bugs, and that lack of specialized experience

on a particular file is associated with such lines.

D. Geographical Metrics

Geographical metrics are measured for assessing the risks

of distributed development. Bird et al. investigated the

locations of engineers who developed binaries [35]. Bird

et al. classified distribution levels into buildings, cafeterias,

campuses, localities, and continents. From a case study of

Windows Vista, they clarified how distributed development

has little to no effect on post-release failures.

In a study of organizational volatility and its effects on

software defects, Mockus measured the number of sites that

modified the file and investigated the distribution of mentors

and developers [8]. He also reported on a case study of large

switching software to show that geographic distribution has

a negative impact on software quality.

III. FINE-GRAINED HISTORIES

In Section II, we discussed various historical metrics. To

measure these historical metrics, we need to obtain version

histories of each module. For packages and files, it is easy

to collect historical metrics by using builtin commands

of ordinary version control systems. However, there is no

command to investigate the histories of methods in Java files.

To analyze fine-grained module histories, some tools have

been proposed and used in research. Hassan and Holt,

for example, proposed C-REX, which is an evolutionary

extractor [36]. It records fine-grained entity changes over the

development period. Although C-REX stores entire versions,

it cannot track module histories if there is renaming or

moving. BEAGLE is a research platform [37]. Using origin

analysis, it can identify rename, move, split, and merge.

However, the BEAGLE targets selected release revisions

to apply origin analysis. Bevan et al. proposed Kenyon,

which is designed to facilitate software evolution research

[38]. Although Kenyon records entire versions, rename and

move are not identified. Zimmermann proposed APFEL,

which collects fine-grained changes in relational databases

[39]. Although versions are stored entirely, APFEL does not

identify rename or move.

For fine-grained module histories, clarifying existing

methods in particular revisions is not difficult because all

versions of the files are stored entirely. Matching every se-

quential version is required to obtain entire method histories,

but matching is difficult when renaming and moving exist.

Because of this limitation, obtaining entire histories of Java

methods has been difficult.

To address this problem, we proposed a fine-grained

version control system, Historage [25]. We make use of

the rename/move detection mechanism of Git, a version

control system. When renaming and moving exists, Git

identifies matches based on the similarities of file contents.

Historage stores all Java methods independently, and control

their histories3. Since Historage is created on top of a Git

version control system, every Git command can be used.

From empirical evaluation with some open source projects,

we found that Historage can identify matches practically

3A tool to create Historage is available from https://github.com/hdrky/
git2historage
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Figure 1. Cost-effectiveness curve

when renaming and moving exist4. With this system, we

can obtain the entire histories of Java methods, and collect

method-level historical metrics.

IV. STUDY DESIGN

A. Effort-Based Evaluation

Recent studies take into account the effort of quality

assurance activities, such as inspecting and testing predicted

modules for evaluating prediction models [17]–[21]. These

effort-based evaluations should be desirable for practical

use of the prediction results. The key idea of effort-based

evaluation is that it discriminates the cost of inspecting and

testing for each module. Arisholm et al. pointed out that

the cost of such quality assurance activities on a module is

roughly proportional to the size of the module [20].

Figure 1 illustrates an example of a cost-effectiveness

curve. This curve shows that as the quality assurance cost

increases, the percentage of found bugs increases. The

quality assurance cost is represented as the percentage of

investigated LOC of software. When we inspect or test

modules, the modules are ordered by bug-proneness. If we

find most bugs when we investigate the small percentage of

the entire LOC, it should be effective.

To compare different bug prediction results, the percent-

age values of bugs found on the same value of the percentage

of LOC should be easy to understand. For this cutoff value,

20% of LOC is used in some studies [15], [17], [20], [21].

We also choose 20% as this cutoff value because it is more

realistic than investigating the entire LOC. Inspecting 20%
of the entire LOC may be an enormous effort for large

software, or little for small software. So deciding cutoff with

absolute value of cumulative LOC is another possible way,

and one of future works is to discuss the results with such

effort-based evaluation.

In Figure 1, a dotted line represents this cutoff of LOC

at 20%. If cost-effectiveness curves cross the upper part of

4Git detects rename/move while outputting logs with -M option if the
content is similar enough. The default value of this similarity threshold is
50%. Historage makes use of this mechanism for tracking methods and we
found that it detected more than 99% correct matches in candidates with
this default threshold value.

this cutoff line, it is better for the cost of inspection and

testing. In this example, when we inspect top bug-prone

modules until 20% of the entire LOC, it is revealed that

we can investigate 45% of buggy modules.

B. Research Questions

To investigate the effectiveness of fine-grained prediction,

we compare prediction models on different levels, that is,

packages, files and methods of Java software. Prediction

models are built with well-known historical metrics pro-

posed and used in previous studies, and are compared with

effort-based evaluation.

Compared with package-level and file-level prediction,

there is a difference in method-level prediction. Since pack-

ages consist of files, the total LOC are equal in both levels.

However, this does not hold in package-level vs. method-

level and file-level vs. method-level because a file does not

consist of methods only. For fair comparison with levels

of package, file, and method, we ignore code except for

methods. This means that bugs only in methods are targeted,

and only the LOC of methods are considered as efforts.

With these settings, we investigate the following three

research questions:

RQ1: Are method-level prediction models more effective

than package-level and file-level prediction models

with effort-based evaluation?

RQ2: (When method-level prediction models are more

effective.) Why are method-level prediction models

more effective than package-level and file-level

prediction models?

RQ3: Are there differences in different module levels re-

garding the correlations between bugs and module

histories?

C. Target Projects

We selected eight open-source projects for our study:

Eclipse Communication Framework (ECF), WTP Incuba-

tor, and Xpand were chosen from the Eclipse Projects.

Ant, Cassandra, Lucene/Solr, OpenJPA, and Wicket were

chosen from the Apache Software Foundation. All projects

are written in Java and have relatively long development

histories. We chose these projects because they span varied

application domains: a building tool, a distributed database

management system, a text search platform, an object-

relational mapping tool, a web application framework, and

development platform plugins related to the communication

framework, web tools, and a template engine.

We obtained each Git repository5. For package-level and

file-level prediction, we mine ordinary Git repositories. For

method-level prediction, we convert ordinary Git repositories

to Historage repositories, and mine them. This conversion

5Eclipse Projects from http://git.eclipse.org/ and Apache Software Foun-
dation from http://git.apache.org/



Table I
SUMMARY OF STUDIED PROJECTS

Name Initial Date Last Date # of Commits # of Developers Last LOC # of Files on Last Date

ECF 2004-12-03 2011-05-31 9,748 23 167,283 2,439

WTP Incubator 2007-11-10 2010-07-22 1,133 17 206,533 1,944

Xpand 2007-12-07 2011-05-31 1,038 21 79,589 1,126

Ant 2000-01-13 2011-08-19 12,590 46 118,969 1,194

Cassandra 2009-03-02 2011-09-20 4,423 14 99,940 712

Lucene/Solr 2010-03-17 2011-09-20 3,485 27 347,898 3,301

OpenJPA 2006-05-02 2011-09-15 4,180 26 343,191 4,229

Wicket 2004-09-21 2011-09-20 15,033 25 410,538 6,681

can be done automatically. Table I summarizes information

for each target project. The development period ranges from

18 months to 11 years, and the LOC on the last date of the

studied period ranges from 15k to 370k. Table I also presents

the number of commits (from 1k to 15k), the number of

developers (from 14 to 46), and the number of files on the

last date (from 700 to 4k). The average LOCs per one file

varies from 61.4 to 140.4.

D. Metrics Collection

We collected the major metrics discussed in Section II.

Historical metrics for packages can be measured by the

cumulating values of files in the packages in most cases.

Method-level historical metrics can be collected from His-

torage repositories similar to collecting file-level historical

metrics from Git repositories. Table II presents all historical

metrics collected in this study.

Code-related metrics. For code-related metrics, we mea-

sure LOC and code churn metrics (Added LOC and Deleted

LOC). As stated in Section II-A, these metrics are used

in many studies. Code churn metrics for files are easily

collected from version control repositories.

Process-related metrics. For process-related metrics, we

collect the basic metrics stated in Section II-B, such as the

number of changes, the number of past bugs, the number of

bug-fix changes, and the existing period (age) of modules.

Some metrics are collected inspired by cache-based ap-

proaches [3], [4], [17]. We collect two types of logical

coupling metrics: the number of logical couplings with bug-

introduced modules and the number of logical couplings

with modules that have been buggy. To investigate the

frequency of changes, we measured average, maximum, and

minimum intervals.

In addition, we also collected one of the history complex-

ity metrics [5]. As stated in Section II-B, there are four types

of historical complexity metrics. In this paper, we select

HCM3s because it performed well. This metric is designed

under the assumption that modules are equally affected by

the complexity of a period. For other parameters, we follow

the paper [5].

Organizational metrics. Organizational metrics and geo-

graphical metrics are relatively difficult to collect from open-

source projects although it may be possible to measure by

integrating information from several software repositories.

Hence, we measure ownership-related metrics designed in

[12] although there are lots of metrics, especially for orga-

nizational metrics as stated in Section II-C. Organizational

metrics in [12] can be collected only from version control

repositories.

To measure ownership-related metrics, we follow the def-

inition of proportion of ownership in [12]. The proportion of

ownership of a developer for a particular module is the ratio

of the number of changes by the developer to the number of

total changes for that module. If ownership of an developer

is below a threshold, the developer is considered a minor

developer, otherwise, a major developer. In [12], values

ranging from 2% to 10% are suggested as the threshold

based on a sensitivity analysis. Bird et al. targeted compiled

binaries as modules for study, which tend to be developed by

many developers [12]. On the contrary, files and methods,

which are our modules for study, are a relatively small size

and are developed by relatively only a few developers. To

take into account this difference, we set the threshold value

at 20%.

E. Bug Information

Buggy modules are collected based on the SZZ algorithm

(proposed by Śliwerski, Zimmermann, and Zeller), which

is designed to identify bug-introducing commits by mining

version control repositories and bug report repositories [40].

Buggy modules can be identified by choosing modified

modules between bug-introducing commits and bug-fixing

commits. With the SZZ algorithm, bug-introducing and bug-

fixing commits can be linked with each bug ID in bug

reports6.

First, we need bug reports from bug report repositories,

such as Bugzilla and JIRA. In these bug report repositories,

6Bug reports are available from https://bugs.eclipse.org/bugs/ (Eclipse
Projects), https://issues.apache.org/bugzilla/ (Ant), and https://issues.
apache.org/jira/ (the other projects in the Apache Software Foundation)



Table II
COLLECTED HISTORICAL METRICS

Name Description

Code LOC Lines of code

AddLOC Added lines of code from the initial version

DelLOC Deleted lines of code from the initial version

Process ChgNum Number of changes

FixChgNum Number of bug-fix changes

PastBugNum Number of fixed bug IDs

Period Existing period in days

BugIntroNum Number of logical coupling commits that introduce more than one bug in other modules

LogCoupNum Number of logical coupling commits that change other modules that have been buggy

AvgInterval Period /ComNum

MaxInterval Maximum weeks between two sequential changes

MinInterval Minimum weeks between two sequential changes

HCM History complexity metric HCM3s

Organization DevTotal Total number of developers

DevMinor Number of minor developers

DevMajor Number of major developers

Ownership The highest proportion of ownership

Table III
SUMMARY OF PREDICTION MODULES

# of Packages # of Files # of Methods

Project Tag Date Method LOC Buggy / All Percent Buggy / All Percent Buggy / All Percent

ECF Root Release 3 0 2009-06-02 81,324 63 / 322 19.6% 163 / 1,715 9.5% 632 / 11,121 5.7%

WTP Incubator v20090510 2009-05-10 58,407 51 / 121 42.1% 123 / 606 20.3% 318 / 5,492 5.8%

Xpand Galileo RC1 2009-05-18 68,557 55 / 213 25.8% 85 / 1,247 6.8% 270 / 8,273 3.3%

Ant ANT 180 RC1 2010-01-05 82,597 30 / 83 36.1% 87 / 912 9.5% 156 / 9,862 1.6%

Cassandra casandra-0.6.0-rc1 2010-05-28 35,179 27 / 36 75.0% 92 / 296 31.1% 279 / 4,419 6.3%

Lucene/Solr lucene solr 3 1 2011-03-30 137,747 30 / 202 14.9% 59 / 1,940 3.0% 81 / 14,478 0.6%

OpenJPA 2.0.0 2010-04-19 119,745 24 / 50 48.0% 91 / 1,305 7.0% 162 / 21,323 0.8%

Wicket wicket-1.4.0 2009-08-04 172,277 64 / 720 8.9% 91 / 3,663 2.5% 192 / 25,541 0.8%

there are also reports for requesting new features or enhance-

ment. To ignore such reports, it is necessary to filter reports.

From Bugzilla repositories, we exclude enhancement

severity reports, and from JIRA repositories, we collect only

bug issue type reports. From a bug report of bug bi,

where i represents bug ID, we obtain open date OD(bi)
and commit date CD(bi).

With collected bug reports, we then identify bug-fixing

commits. Bug-fixing commits and bug bi are linked based

on matching bug IDs in commit messages stored in version

control repositories. While linking commits and bug bi, we

investigated whether commit dates are before CD(bi) or not

to remove improper identification of bug-fixing commits.

From each bug-fixing commit, we perform the following

procedure to identify buggy modules:

1) Perform the ‘diff’ command on the same module be-

tween the bug-fixing version and a preceding revision

to locate modified regions on the bug-fixing commit.

2) Examine the initially inserted date of the modified

regions using line tracking commands, such as ‘git

blame’ or ‘cvs annotate’. If the regions are inserted

before OD(fi), commits creating those regions are

identified as bug-introducing commits.

3) Identify a module as buggy if the module contains re-

gions that are created in the bug-introducing commits,

and are modified in the bug-fixing commits.

As reported in [41], naive differencing analysis on step

1 of the procedure should yield incorrect bug-introducing

commits, such as non-behavior change commits and just

format change commits. To remove such false positives, we

ignore changes on blank lines, comment changes, and format

changes. In addition, we ignore changes not on methods to

identify bugs on methods as stated in Section IV-B. This

procedure can be performed automatically. If there is more

than or equal to one buggy file in a package, we consider

it as a buggy package. Buggy methods are identified by



mining Historage repositories. This identification can also

be performed automatically.

We identify buggy packages, files, and methods in one

revision for each project. For this particular revision, we

select tagged revisions or revisions that are nearby tagged

revisions. Table III shows the data of the prediction study

and the result of buggy module identification. We obtained

bug reports from the first report to the last one until

June 30, 2011. With these reports and entire versions in

obtained version repositories, we identify bug information.

The percentages of buggy packages ranges from 8.9% to

75.0%, the percentages of buggy files ranges from 2.5% to

31.1%, and the percentage of buggy methods ranges from

0.6% to 6.3%. Since we target only the code of methods,

each total LOC is accumulated with the entire method LOC

(Method LOC).

F. Prediction Model

Bug prediction models are built with the historical metrics

shown in Section IV-D. These historical metrics are mea-

sured in the period from the initial date to the tagged date

shown in Table III for each module.

We adopt the RandomForest algorithm [42] as a bug

prediction model. RandomForest is a classifier with many

decision trees that outputs the class that is the mode of the

classes output by individual trees. Lessmann et al. confirmed

its good performance in bug prediction [43]. There are

several other studies using the RandomForest algorithm for

bug prediction [15], [21]. We use a statistical computing

and graphics tool R [44] and a randomForest package for

our study. As shown in Table III, the percentages of buggy

methods are small in total methods. In such cases, prediction

models tend to predict all methods as non-buggy because

there are only a small number of false positives. In our pilot

study with other prediction models like logistic regression,

we found such results. However, with RandomForest mod-

els, not all methods are predicted as non-buggy in every

project.

Using prepared modules in Table III, we conduct a 10-fold

cross validation analysis. Entire modules in one prediction

level in one project are randomly divided into 10 groups. Of

the 10 groups, a single group is used for testing a model,

and the other 9 groups are used for training the model. The

cross-validation process is repeated 10 times, with each of

the 10 groups used once as test data. The 10 results are

combined into a single validation result.

V. RESULTS

We present our results following research questions stated

in Section IV-B. Plots of the results are shown from Eclipse

Communication Framework (ECF) and Ant only, and other

results are discussed in text.
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Figure 2. Cost-effectiveness curves of package-level, file-level and method-
level prediction
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Figure 3. Boxplots of package-level, file-level, and method-level predic-
tion. Percentages of bugs found in 20% LOC on a 1, 000 times run

A. Effort-Based Evaluation: Package, File vs. Method

RQ1: Are method-level prediction models more effective

than package-level and file-level prediction models with

effort-based evaluation?

Figure 2 shows two plots of cost-effectiveness curves.

A package-level curve (dotted), file-level curve (dashed),

and a method-level curve (solid) are plotted. We can see

that the method-level curves rise larger than the package-

level and file-level curves in a small LOC. As a result,

more bugs can be found by method-level prediction when

investigating 20% of the LOC, represented by the cutoff

lines. In all projects, method-level prediction outperformed

package-level and file-level prediction.

As Arcuri and Briand insisted, we should collect data

from a large enough number of runs to assess the results of

randomized algorithms because we obtain different results

on every run when applied to the same problem instance

[45]. RandomForest is a randomized algorithm. Figure 2

shows the result on one run. Following the suggested value

of 1, 000 as a very large sample [45], we conducted a 1, 000
times run for all projects.

Figure 3 shows the results of the 1, 000 run. In each

project, boxplots of the value of percentages of bugs found in

20% LOC for package-level, file-level and method-level are

shown. In all projects, we observed the small distributions



Table IV
MEDIAN VALUES OF THE PERCENTAGE OF BUGS FOUND IN 20% LOC

ON 1, 000 TIMES RUN

Project Package File Method

ECF 19.1 42.3 69.2

WTP Incubator 29.4 37.4 61.0

Xpand 35.2 12.9 51.9

Ant 13.3 25.3 44.9

Cassandra 22.2 20.7 46.6

Lucene/Solr 17.2 52.5 59.3

OpenJPA 20.8 16.5 45.1

Wicket 60.9 65.9 82.3

of the values, and method-level prediction achieved higher

values than package-level and file-level prediction.

In Table IV, we summarize the median values of the

percentages of found bugs when investigating 20% of LOC

in all modules. The second to fourth column shows the

values of package-level, file-level, and method-level results.

To detect statistical differences, the Mann-Whitney U-test

was used between package-level vs. method-level and file-

level vs. method-level. In both pairs in all projects, the

differences are statistically significant (p < 0.001).

The values of the percentages of found bugs are shown

in bold if the value is more than 40%. In all projects,

method-level prediction achieved more than 40%, and out-

performed package-level and file-level prediction. Based on

these results from eight open-source projects, we can answer

research question RQ1. The answer is clear: method-level

prediction is more effective than both package-level and file-

level prediction.

When comparing package-level and file-level, file-level

prediction outperformed package-level prediction in five

projects as shown in Table IV. These results are consistent

with the reports of previous studies [15], [22], [23]. How-

ever, there are opposite results in the Xpand, Cassandra, and

OpenJPA projects. Our study is different from the previous

studies in counting LOC and targeting bugs: we limit the

LOC of methods and target buggy methods. These settings

lead to an ignorance of files that have no method, and may

improve the package-level prediction. However, these results

depend on project-specific data. Therefore, analyzing these

project-specific features is remained as a future work.

B. Why Is Method-Level Prediction Effective?

RQ2: Why are method-level prediction models more ef-

fective than package-level and file-level prediction models?

Intuitively, fine-grained prediction may more effective

than coarse-grained prediction because finding bugs in large

modules is difficult. Figure 4 shows boxplots of LOC for

packages, files, and methods. With the Mann-Whitney U-

test in all pairwise comparisons (packages vs. files, packages
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Figure 4. Size of modules: package-level, file-level and method-level.
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Figure 5. Number of all and buggy methods in buggy files.

vs. methods, and files vs. methods), we found that the

differences in LOC are statistically significant (p < 0.001).

Comparing the median value of the LOC, methods are nearly

ten times smaller than files, and are from thirty to three-

hundreds times smaller than packages.

Next, we investigated buggy files by considering how

many methods exist in one file, and how many buggy

methods exist in the file. The boxplots of Figure 5 present

the results. In both projects, most of the buggy files contain

nearly or more than 10 methods, but there are only a few

buggy methods. From all of the projects, the median values

of the number of entire methods range from 8 to22, and the

median values of the number of buggy methods range from

1 to 2. Although there are many methods in one buggy file,

there are only a few actual buggy methods. This indicates

that we need to investigate most of the non-buggy methods

in a file if the file is predicted to be buggy.

Similarly, we also investigated buggy packages. From all

of the projects, the median values of the number of entire

methods range from 27 to 579.5, and the median values of

the number of buggy methods range from 1 to 5.5. Because

of these non-buggy methods, method-level prediction is

more effective than package-level and file-level prediction.



Table V
SPEARMAN CORRELATION BETWEEN THE POST BUGS AND COLLECTED METRICS. MARKED BY * IF STATISTICALLY SIGNIFICANT (p < 0.05)

ECF Xpand Ant Wicket

Metric Package File Method Package File Method Package File Method Package File Method

LOC 0.392* 0.366* 0.239* 0.303* 0.298* 0.205* 0.493* 0.362* 0.164* 0.154* 0.159* 0.094*

AddLOC 0.374* 0.063* 0.003 0.416* 0.237* 0.213* 0.515* 0.319* 0.114* 0.181* 0.089* 0.072*

DelLOC 0.259* 0.069* 0.006 0.416* 0.206* 0.210* 0.366* 0.246* 0.098* 0.075* 0.095* 0.067*

ChgNum 0.268* 0.017 -0.007 0.406* 0.212* 0.192* 0.583* 0.302* 0.112* 0.126* 0.083* 0.073*

FixChgNum 0.333* 0.138* 0.044* 0.299* 0.169* 0.051* 0.550* 0.331* 0.096* 0.337* 0.199* 0.098*

PastBugNum 0.325* 0.137* 0.044* 0.334* 0.170* 0.051* 0.565* 0.329* 0.096* 0.339* 0.200* 0.099*

Period 0.139* 0.146* 0.129* 0.316* 0.196* 0.153* 0.302* 0.139* -0.001 -0.389* -0.207* -0.104*

BugIntroNum 0.307* 0.199* 0.080* 0.126 0.228* 0.161* 0.508* 0.278* 0.088* 0.223* 0.160* 0.069*

LogCoupNum 0.312* 0.163* 0.089* 0.331* 0.146* 0.139* 0.429* 0.202* 0.040* 0.288* 0.144* 0.053*

AvgInterval -0.229* 0.059* 0.109* -0.372* -0.126* -0.035* -0.587* -0.310* -0.113* -0.261* -0.178* -0.110*

MaxInterval -0.108 0.084* 0.121* -0.329* -0.033 -0.021 -0.606* -0.297* -0.086* -0.450* -0.230* -0.118*

MinInterval -0.120* 0.095* 0.114* -0.295* -0.138* -0.035* -0.245* -0.212* -0.105* -0.108* -0.093* -0.090*

HCM 0.249* 0.200* 0.142* 0.325* 0.204* 0.174* 0.564* 0.257* 0.060* -0.210* -0.095* -0.055*

DevTotal 0.198* 0.027 -0.024* 0.571* 0.259* 0.234* 0.580* 0.290* 0.101* -0.099* 0.067* 0.070*

DevMinor 0.225* 0.101* -0.010 0.381* 0.091* -0.004 0.566* 0.305* 0.137* 0.118* 0.065* 0.022*

DevMajor 0.014 -0.040 -0.023* 0.463* 0.262* 0.234* -0.024 -0.063 0.039* -0.016 0.045* 0.069*

Ownership -0.105 -0.010 0.024* -0.547* -0.256* -0.236* -0.431* -0.178* -0.082* -0.001 -0.049* -0.068*

C. Correlation Analysis

RQ3: Are there differences in different module levels

regarding the correlations between bugs and module

histories?

The Spearman correlation values between historical met-

rics and the number of post bugs for package-level, file-level,

and method-level of four projects are shown in TableV. The

number of post bugs is the number of bug IDs that have

not been fixed. Correlations that are statistically significant

(p < 0.05) are marked by *. As shown in Table III, the per-

centages of buggy methods is smaller than the percentages

of buggy packages and files. Thus the correlation values

are lower in method-level. We can make the following

observations:

• Code-related metrics have relatively higher correla-

tions; that is, changes in code are related to bugs.

Although this holds in most projects, there are excep-

tional projects like the Wicket project. In this project,

Java files and methods do not change repeatedly. The

usefulness of code-related metrics depends on how the

software has evolved.

• Past bug information (FixChgNum and PastBugNum)

does not correlate with post bugs for method-level

prediction. This indicates that methods do not have bugs

repeatedly.

• Metrics about intervals have negative correlations. In

other words, short intervals between changes are related

to bugs in most projects.

• Organizational metrics may not contribute to method-

level prediction. This is because many developers have

not changed the methods in the studied projects.

VI. DISCUSSION

A. Overheads

For method-level prediction, we need additional costs for

package-level and file-level prediction. Required overheads

can be summarized as follows:

1) Preparing Historage: Converting Git repositories to

Historage repositories is needed only for method-level

prediction. Although it takes several hours (a one night

run), there is no need for manual efforts.

2) Mining Historage: Running the SZZ algorithm to

identify buggy modules and collecting historical met-

rics require mining repositories of version control

systems. The essential differences between Git repos-

itories and Historage repositories is the number of

storing modules. To calculate the LOC of one module,

there is no difference in processing time. When we

extract a single entire module’s history, rename/move

identification requires an O(n2) processing time where

n is the number of candidates. As a result, to mine a

single log to collect simple historical metrics, such

as the number of changes, fixes, and developers,

Historage requires more processing time than Git.

To collect the process complexity metrics, Historage

requires more processing time because it needs to

analyze multiple logs.

3) Building Models and Prediction: The processing

time of training and testing models highly depends



on the number of modules. Actually, the most time-

consuming task in this study is the 1, 000 times run

of 10-fold cross validation analysis for method-level

prediction (it requires one to two days).

Although there are such overheads, we do not need

additional manual procedures for method-level prediction

compared with package-level and file-level prediction. So

we do not consider them as critical limitations.

B. Threats to Validity

Target projects are limited to open-source software

written in Java. For external validity, there is a threat of

generalization of our result. Projects we targeted are only

open-source projects written in Java. One of the good points

of targeting only open-source software projects in Java is

that there is no opposite result regarding the effectiveness

of method-level prediction compared with package-level and

file-level prediction.

As described in Section IV-C, the eight targeted projects

varied in sizes, domains, and development periods. For

example, the Lucene/Solr project has less than two periods,

and prediction is conducted with only a one-year history and

yields a good result. This result may promote the adoption

of historical metrics based prediction for young projects.

For future work we intend to widen our study to other

projects written in other programming languages, and work

on industrial projects.

Collection of bug information has problems. For con-

struct validity, the main threat is in the phase of collecting

bug information. Although we adopted a well-known SZZ

algorithm discussed in Section IV-E, it has been reported that

there is a linking bias in identifying bugs with revision logs

and bug reports [46]. Recently, a new algorithm of linking

bugs and changes has been proposed [47]. This algorithm

may mitigate this threat.

Effort-based evaluation may not reflect actual efforts.

In our evaluation, there are also threats to construct va-

lidity. To compare package-level, file-level, and method-

level prediction, we adopted an effort-based evaluation with

cost-effectiveness curves, which has been previously studied

[17]–[21]. This effort-based evaluation considers the cost

of quality assurance activities to be roughly proportional

to the size of the modules, that is, to the lines of code.

For coarse-grained modules, such as packages and files, it

seems acceptable to consider the sizes of the modules as

effort. However, for methods, it may not be acceptable. For

example, although methods are small, they might require

much more effort than big methods because of the context

of the methods, such as complex call relations or other deep

dependencies.

Discussing these threats is also important for further fine-

grained prediction. When we consider only the sizes of

the modules as efforts, we can hypothesize that block-

level or line-level prediction is more effective than method-

level prediction for finding bugs. However, this hypothesize

should not be acceptable. Because of this threat, we need

empirical studies of the actual effort, such as times needed,

and cumulative LOC of the code we need to inspect, by

conducting actual quality assurance activities with different

prediction levels.
VII. CONCLUSION

This paper conducted fine-grained bug prediction, which

is a method-level prediction, on Java software based on

recently proposed historical metrics. Using eight open source

projects, package-level, file-level, and method-level predic-

tion models were compared based on effort-based evaluation.

The findings from our study are as follows. Method-level

prediction is more effective than package-level and file-

level prediction when considering efforts. This is because

predicted buggy packages and files contain many non-buggy

packages and files. From the correlation analysis, we found

that past bug information on methods does not correlate with

post bugs in methods, and organizational metrics may not

contribute to method-level prediction. Code-related metrics

have positive correlations and interval-related metrics have

negative correlations.

Effort-based evaluation may not reflect actual efforts.

Therefore, in the future we will also use well-designed

effort calculation or an empirical study of the actual efforts

should be required. Correlation analysis is also needed for

further study. To discuss the correlations between post bugs

and historical metrics, we need more various-type projects

to study. In addition, we want to compare fine-grained

historical metrics with complexity metrics on methods.
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[40] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?” In MSR ’05, pp. 1–5, 2005.

[41] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead,
“Automatic identification of bug-introducing changes,” In
ASE ’06, pp. 81–90, 2006.

[42] A. Liaw and M. Wiener, “Classification and regression by
randomforest,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[43] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
“Benchmarking classification models for software defect
prediction: A proposed framework and novel findings,” IEEE
Trans. Softw. Eng., vol. 34, pp. 485–496, July 2008.

[44] The R Project for Statistical Computing, “R,”
http://www.r-project.org/.

[45] A. Arcuri and L. Briand, “A practical guide for using
statistical tests to assess randomized algorithms in software
engineering,” In ICSE ’11, pp. 1–10, 2011.

[46] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu, “Fair and balanced?: bias in
bug-fix datasets,” In ESEC/FSE ’09, pp. 121–130, 2009.

[47] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, “ReLink:
recovering links between bugs and changes,” In ESEC/FSE
’11, pp. 15–25, 2011.


