
Master Thesis

Title

A Refactoring Support for Form Template Method using PDG-based

Code Clone Detection

Supervisor

Prof. Shinji KUSUMOTO

by

Keisuke HOTTA

February 7, 2012

Department of Computer Science

Graduate School of Information Science and Technology

Osaka University

Master Thesis

A Refactoring Support for Form Template Method using PDG-based Code Clone Detection

Keisuke HOTTA

Abstract

Recently, code clones have received much attention. Code clones are defined as source code

fragments that are identical or similar to each other. Code clones are introduced into software sys-

tems by various reasons such as copy-and-paste operations. It is generally said that the existences

of code clones make software maintenance more difficult. This is because if we modify a code

fragment, it is necessary to check its correspondents whether they need the same modifications si-

multaneously or not. To avoid negative effects of code clones, it is effective to remove code clones

with refactoring. Refactoring is a technique to transform one representation form of source code

to another without changing the external behavior of the subject systems. By applying refactoring

techniques to code clones, we can merge them spreading across multiple source files into a sin-

gle module. However, we need much effort to apply manual refactorings to them. Also, applying

manual refactorings is a complicated task, so that human related errors easily occur. Consequently,

techniques or tools for supporting refactoring activities are required.

There are some techniques to remove code clones. Applying “Form Template Method” is one

of the techniques and one of the refactoring patterns. Form Template Method focuses on similar

methods whose owner classes have the same base class. In this refactoring pattern, developers

write an outline of the process into the base class and implement the details of the process in the

derived classes. By applying Form Template Method refactoring, code clones existing in similar

methods are merged into the base class. One of the advantages of using this pattern is that we can

handle differences between target methods.

Some researchers have proposed methods to support Form Template Method refactorings.

However, they still have some issues. The issues are that they cannot handle trivial differences

even though they have no impacts on the behavior of the program, and that they can support

refactorings on only pairs of methods, which means they cannot support refactorings on groups

consisting of three or more methods. This thesis proposes a new method for supporting Form

Template Method applications to resolve all of these issues with program dependence graphs.

Keywords

Code Clones

Refactoring

Form Template Method

Program Dependence Graph

Software Maintenance

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Program Dependence Graph . 3

2.1.1 Generic Definition . 3

2.1.2 PDGs in This Study . 4

2.2 Code Clone . 6

2.2.1 Definition . 6

2.2.2 Causes of Creations . 6

2.3 Code Clone Detection Methods . 7

2.3.1 Categorization . 7

2.3.2 Scorpio (PDG-based Code Clone Detection Tool) 11

2.4 Refactoring . 12

2.4.1 Refactoring Activities . 12

2.4.2 Behavior Preservation . 13

2.4.3 Refactoring Patterns Used for Code Clone Removals 13

3 Related Work 19

3.1 Techniques for Refactoring on Code Clones . 19

3.2 Techniques for Refactoring on Code Clones withForm Template Method . . . 20

3.3 Techniques for Code Clone Managing . 20

4 Motivation 23

4.1 Issues of Previous Studies . 23

4.1.1 Issue of Trivial Differences . 23

4.1.2 Issue of Groups of Three or More Methods 24

4.2 Objective of This Study . 26

5 Outline of the Proposed Method 27

5.1 Inputs and Outputs . 27

5.2 Processing Flow . 28

5.3 Definitions . 29

5.3.1 A Directed Graph . 29

5.3.2 A PDG . 30

5.3.3 Clone Pairs . 31

i

6 Supporting for Method Pairs 33

6.1 STEP-P1: Create PDGs . 33

6.2 STEP-P2: Detect Code Clones . 33

6.3 STEP-P3: Identify Method Pairs . 34

6.4 STEP-P4: Detect Common and Unique Processes 35

6.5 STEP-P5: Detect Sets of Statements Extracted as a Single Method 37

6.5.1 Definition of the Extract Node Set . 37

6.5.2 Parameters of ENSs . 38

6.5.3 Output of ENSs . 39

6.5.4 Conditions for Call . 39

6.5.5 Requirements for ENSs to be Extracted as a Single Method 40

6.6 STEP-P6: Detect Pairwise Relationships . 43

6.6.1 Requirement P6-1: Requirement the Type of the Return Value 44

6.6.2 Requirement P6-2: Requirement about Conditions for Call 44

6.6.3 An Example of Pairwise Relationships Detection 47

7 Supporting for Method Groups 48

7.1 STEP-S7: Identify Method Groups . 48

7.2 STEP-S8: Detect Common and Unique Processes 48

7.3 STEP-S9: Detect Relationships on ENSs . 50

8 Implementation 51

8.1 Overview . 51

8.2 Functionalities for Method Pairs . 52

8.3 Functionalities for Method Groups . 57

9 Evaluation 59

9.1 Evaluation of Supporting for Method Pairs . 59

9.2 Evaluation of Supporting for Method Groups 61

9.3 Experiment with Subjects . 61

9.3.1 Overview of the Experiment . 61

9.3.2 Target Method Groups . 61

9.3.3 Prodcedure of the Experiment . 63

9.3.4 Result . 64

ii

10 Discussion 66

10.1 PDG Creation . 66

10.2 Detection of Common Statements . 66

10.3 Candidates that Need to be Tailored . 66

10.4 Detection of Method Groups . 67

10.5 Threats to Validity of the Experiment with Subjects 68

11 Conclusion 69

Acknowledgements 70

References 71

A Algorithms for Detecting Isomorphic Subgraphs 76

iii

List of Figures

1 An Example of PDG . 3

2 An Example of PDG with Execute Dependence Edges 4

3 Data Dependence Considering State Changes of Objects 5

4 An Example of Clone Pairs and Clone Sets . 6

5 An Example of ASTs . 9

6 A Code Clone with a Differnt Order of Statements 10

7 An Example ofExtract Class . 14

8 An Example ofExtract SuperClass . 14

9 An Example ofExtract Method . 15

10 An Example ofPull Up Method . 16

11 An Example of Refactorings withForm Template Method 17

12 Motivating Example 1 . 23

13 Motivating Example 2 . 25

14 The Output of the Proposed Method . 27

15 A Directed Graph . 29

16 A PDG . 30

17 ClonePairs(G1, G2) . 31

18 An example of Method Pairs Including Redundant Clone Pairs 36

19 An example of the Detection of ENSs . 37

20 An Example of Inputs and Outputs of ENSs . 38

21 Behavior of Algorithm 2 . 41

22 An Instance of Segmentalization of Block Statements 43

23 An Example of Wrong Pairwise Relationships Caused by not Considering Condi-

tions for Call . 45

24 An Example of Pairwise Relationships . 46

25 An Example of Method Group . 49

26 A Whole Snapshot of Creios (for Method Pairs) 51

27 A Snapshot of Source Code View . 52

28 A Snapshot of PDG View . 53

29 A Snapshot of Apposing View of Source Code View and PDG View 54

30 An Example of Candidate Method Pair . 55

31 A Snapshot of Filtering View . 56

32 A Metrics Graph . 56

33 View of the Metrics Values . 57

iv

34 A Whole Snapshot of Creios (for Method Groups) 57

35 An Example of Application ofForm Template Method with the Proposed Method 59

36 The Box-Plot of the Time to ApplyForm Template Method on Synapse 60

37 Candidate Method Groups . 62

v

List of Tables

1 The Values of Metrics in the Method Pair of Figure 30 55

2 Target Software Systems . 59

3 The Number of Detected Candidates and Elapsed Time on Method Pairs 60

4 The Number of Detected Candidates and Elapsed Time on Method Groups 61

5 The Features of Target Method Groups . 63

6 Groups of Subjects . 64

7 Elapsed Time to FinishForm Template Method Application 65

8 The Average Time . 65

9 The Candidates that Need some Modifications for Creios’s Outputs 67

vi

List of Algorithms

1 Removing Redundant Clone Pairs . 35

2 Division of an ENS . 42

3 detect(v, S) . 42

4 parse(S, R) . 42

5 ForwardSlice(G1, G2, r1, r2, R1, R2) . 76

6 BackwardSlice(G1, G2, r1, r2, R1, R2) . 77

vii

1 Introduction

Recently, code clones have received much attention and many research efforts have been per-

formed on them [1, 2]. Code clones are defined as identical or similar code fragments to one

another, and they are created by various reasons such as copy-and-paste operations. Because code

cloning is easy and inexpensive, it can make software development faster and can enable “ex-

perimental” development. However, it has been pointed out that the presence of code clones has

a negative impact on software maintenance because if we modify a code fragment, it is neces-

sary to check its correspondents whether they need the same modifications or not. Therefore,

various techniques and tools have been proposed to detect code clones automatically by many

researchers [3–18].

Refactoring also has been studied intensively in recent years because it is highly expected that

we can improve maintainability of software systems by applying refactorings. In Fowler’s book,

he defined refactoring as “the process of changing a software system in such a way that it does

not alter the external behavior of the code, yet improves its internal structure” [19]. It has been

reported that the maintainability of software systems decays over time [20]. Refactoring is usable

in such a case because we can prevent the decay of maintainability with suitable refactorings.

However, applying refactorings requires much effort for maintainers, and it is quite difficult for

maintainers to apply refactorings manually without introducing any human errors [21]. Because of

these factors, techniques to assist refactoring activities are required, and indeed many techniques

have been proposed in recent years [22].

To prevent the influence of code clones, it is effective to remove code clones by applying

some refactorings. We can remove code clones by merging cloned code spreading across multiple

source files into a single module with refactorings. Many research efforts have been performed on

assisting code clone removal with refactorings. A majority of clone removal techniques are based

on “Extract Method” refactoring pattern or “Pull-Up Method” refactoring pattern. However,

these techniques have an issue that they cannot handle code clones with some gaps.

A clone removal technique with “Form Template Method” refactoring pattern can overcome

this issue. Form Template Method usesTemplate Method pattern that is one of the design

patterns proposed by Gamma et al. [23]. This pattern targets similar methods whose owner classes

have the same base class. In this pattern, programmers write an outline of similar methods into

the base class and implement detail processes in each derived class. By applyingForm Template

Method, code clones existing between similar methods are merged into the base class. One of

the advantages of clone removal with this pattern is that we can apply this technique to methods

having some gaps.

Some researchers have proposed techniques to support refactorings withForm Template

1

Method [24–26]. However, these techniques cannot support removing code clones if they in-

clude the following differences even if these differences have no impacts on the behavior of the

program:

• Different order of code fragments and

• Different implementation styles (such as for- and while- loops).

Moreover, the existing methods can handle only pairs of methods thoughForm Template

Method refactoring can be applied to groups consisting of three or more similar methods.

This thesis proposes a new technique to support applyingForm Template Method with pro-

gram dependence graphs, which allows us to resolve the first issue. We also extend the proposed

method to be able to handle groups of three or more similar methods.

The rest of this thesis is organized as follows: In Section 2, we introduce preliminaries related

to this work. We describe related works in Section 3, then we explain our motivation in Section

4. Section 5 describes the outline of the proposed method, then we explain the proposed method

in detail in Section 6 and Section 7. In Section 8, we describe the implementation of the proposed

method. Section 9 reports the evaluation of the proposed method on open source software systems,

and we discuss the result of the evaluation in Section 10. Finally, Section 11 summarizes this thesis

and refers to the future work.

2

<1>

Data Dependence Edge

Control Dependence Edge

method

enter

<4>

1: x = 0;

2: y = 0;

3: z = MAX;

4: while (y < z) {

5: y = x + 1;

6: }

7: println(y);

<3> <2>

<5> <7>

Figure 1: An Example of PDG

2 Preliminaries

2.1 Program Dependence Graph

2.1.1 Generic Definition

Program dependence graph (in short,PDG) is a directed graph that represents dependencies

between the elements of the program [27,28]. A node in a PDG indicates an element of a program

(such as a statement and a conditional predicate), and an edge in a PDG indicates a dependence

between two elements. PDG is created based on flows of data and controls. Therefore, we get the

same PDGs from two programs if their flows of data and controls are same, though the program-

ming styles are not equal.

There are the following two types of dependencies in PDG.

Data Dependence: There is a data dependence from elements to elementt, if a value is assigned

to variablex in s, andt referencesx without changing the value ofx.

Control Dependence: There is a control dependence from elements to elementt, if s is a con-

ditional predicate and it directly determines whethert is executed or not.

Figure 1 shows an example of PDG. In this example, there are three data dependencies from

the 2nd, 3rd, and 5th lines to the 4th line because variablesy andz are referenced in the 4th line.

On the other hand, there is a control dependence from the 4th line to the 5th line because the

conditional predicate in the 4th line directly controls the execution of the 5th line. In addition,

there is a node labeled with “method enter” that means the enter node of the method. In general,

PDG contains a method enter node, and there are control dependencies from the enter node to all

3

<1>

Data Dependence Edge

Control Dependence Edge

method

enter

<4>

1: x = 0;

2: y = 0;

3: z = MAX;

4: while (y < z) {

5: y = x + 1;

6: }

7: println(y);

<3> <2>

<5> <7>

Execute Dependence Edge

Figure 2: An Example of PDG with Execute Dependence Edges

nodes that are directly contained by the method. Note that we regard a noden as being directly

contained by the method ifs has no control dependencies from any other nodes in the PDG.

2.1.2 PDGs in This Study

PDGs used in this study is specialized for code clones detection and refactoring. The major

differences of a traditional PDG and a specialized PDG are as follows:

• Having execute dependences and

• Tracing state changes of objects.

Execute Dependence

PDGs used in this study has an additional dependence called ‘execute dependence’. The defi-

nition of execute dependence is as follow.

Execute Dependence:There is an execute dependence from elements to elementt, if t can be

executed in the next thats is executed.

Figure 2 shows an example of PDG with execute dependence edges. We can detect more code

clones with PDGs having execute dependence than with traditional PDGs. This is because the

range of program slicing is expanded by introducing this dependence.

4

1: StringBuilder builder = new StringBuilder();

2: builder.append(“A”);

3: builder.append(“B”);

4: builder.append(“C”);

5: return builder.toString();

(a) Source Code

1

2

3

4
5

1

2

3

4

5

(b) Traditional (c) Specialized

Figure 3: Data Dependence Considering State Changes of Objects

Tracing State Changes of Objects

In this study, we create data dependence edges with considering state changes of objects caused

by method calls. Concretely, we regard that there is a data dependence from a method call state-

ments to other statementt, if the state of any objects is changed ins andt references the objects

without redefining them.

Figure 3 compares a traditional PDG and a specialized PDG created from the same source

code. In this figure, we omit control and execute dependences and the method enter node. In

this example, the state of an objectbuilder is changed in the 2nd, 3rd, and 4th lines by calling

a methodappend . In the traditional PDG, all the elements that referencebuilder have data

dependences from the 1st line. This is because the objectbuilder does not re-defined or re-

assigned until the end of the method. However, the specialized PDG used in this study considers

state changes of objects. Therefore, we get the PDG shown in Figure 3 (c) from the source code.

5

Clone

Pair

Clone

Pair

Clone

Pair

Clone Set

α

β

γ

Figure 4: An Example of Clone Pairs and Clone Sets

Note that it is regarded that states of objects are changed by a method call if the values of any

fields in the objects are changed by the method [29].

2.2 Code Clone

2.2.1 Definition

Code clone is defined as identical or similar code fragments in source code. As shown in

Figure 4, we call a pair of code fragmentsα andβ as a clone pair ifα andβ are similar. In

addition, we call a set of code fragmentsS as a clone set if any pair of code fragments inS are

clone pairs [30]. Note that there is neither a generic nor strict definition of code clone, therefore

each clone detection method or tool has its own definition of code clone.

Code clones can be categorized into the following 3 types by the degree of their similarities

[31].

Type-1: An exact copy except for white space and comments.

Type-2: Syntactically identical copy; only variable, type, or function identifiers were changed.

Type-3: A copy with further modifications in Type-2; statements were changed, added, or re-

moved.

2.2.2 Causes of Creations

Code clones can be created or introduced by the following factors.

6

Copy-and-paste Operations

This is the most popular situation that code clones are created. The code reuse by copy-and-

paste operations is a common practice in software development, because it is quite easy, and it

enables us to make software development faster.

Stylized Processing

Processing used frequently (e.g. calculations of the income tax, insertions in queues, or access

to data structures) may cause code duplication.

Lack of Suitable Functions

Programmers may have to write similar processes with similar algorithms if they use program-

ming languages that do not have abstract data types or local variables.

Performance Improvement

Programmers can introduce code duplication intentionally to improve the performance of soft-

ware systems in the case that the in-line expansion is not supported.

Automatically Generated Code

Code generation tools automatically create code based on stylized code. As a result, if we use

code generation tools to handle similar processes, it may generate similar code fragments.

To Handle Multiple Platforms

Software systems that can handle multiple operation systems or CPUs tend to include many

code clones in the processes handling each platform.

Accident

Different developers may write similar code accidentally. However, it is rare that the amount

of similar code generated accidentally becomes high.

2.3 Code Clone Detection Methods

2.3.1 Categorization

There are many methods that detect code clones automatically, and there are also many code

clones detectors implementing these methods. Code clones detectors can be loosely categorized

7

into the following categories by their detection units [1,31].

Text-based Techniques

Text-based detection techniques detect code clones by comparing every line of code as a string.

They detect multiple consecutive lines that match in specified threshold or more lines as code

clones. The biggest advantage of this technique is that it can detect code clones quickly compared

with other detection techniques. This technique requires no pre-processing on source code, which

enables the fast detection. However, we cannot detect code clones including differences of coding

styles (e.g. whether long lines are divided into multiple lines or not) with this technique.

The method proposed by Johnson [5] and the method proposed by Ducasse et al. [6] are in-

stances of line-based clone detectors. In these methods, every line of code is compared after white

space and tabs are removed. These methods are language-independent because they compare lines

of code textually.

Token-based Techniques

In a token-based approach, source code is lexed/parsed/transformed to a sequence of tokens.

This technique detects common subsequences of tokens as code clones. Compared to text-based

approaches, a token-based approach is usually robuster against code changes such as formatting

and spacing. Detection speed is inferior as compared with text-based techniques, meanwhile su-

perior as Tree- or PDG-based approaches. This is because, in token-based approach, source code

has to be transformed into intermediate representations such as AST and PDG.

CCFinder, a clone detector developed by Kamiya et al. [3], is one of the token-based detectors.

CCFinderreplaces user-defined identifiers by special tokens. By this pre-processing, it can detect

code clones with different identifiers. In addition, it can handle multiple widely-used programming

languages such as C/C++, Java, COBOL, and FORTRAN. Moreover, there is a major version up

of CCFindernamedCCFinderX[32]. In this version up, the detection algorithm is changed, and

the detection speed is improved by multithreading.

CP-Miner is also a token-based detector.CP-Miner is developed by Li et al. [7]. Firstly,

lexical and syntax analises are performed on source code. User-defined identifiers are replaced by

special tokens as well asCCFinder. The major difference betweenCP-MinerandCCFinderis in

detection algorithms. InCP-Miner, hash values are calculated from every statement, and then a

frequent pattern mining algorithm is applied to detect code clones. Frequent patterns do not have

to be consecutive, which means thatCP-Minercan detect Type-3 clones.

8

int num = k + size * 4;

VariableDeclarationStatement

int num +

k *

size 4

Figure 5: An Example of ASTs

Tree-based Techniques

In a Tree-based detection, a program is parsed to a parse tree or an abstract syntax tree (in short,

AST) with a parser of the language in interest. An AST is one of the intermediate representations

that capture the structure of source code. Figure 5 shows an example of ASTs. Common subtrees

are regarded as code clones. This approach considers the structural information of source code,

therefore tree-based detectors do not detect code clones ignoring the structure of source code

such as code clones including a part of a method and a part of another method. However, a

disadvantage of this approach compared with Text- and Token-based approaches is that it requires

more detection costs because of the additional cost required to transform source code to parse trees

or ASTs.

One of the pioneers of AST-based clone techniques is that of Baxter et al.’sCloneDR[4, 33].

CloneDRcompares subtrees of ASTs by characterization metrics based on a hash function through

tree matching, instead of comparing subtrees of ASTs directly. This processing allowsCloneDR

to detect code clones quickly from large software systems. It can handle a lot of programming

languages. Moreover, it has a function to assist clone removal.

Koschke et al.’s method [8] and Jiang et al.’s method [9] are tree-based approaches as well

asCloneDR. In Koschke et al.’s method, ASTs are compared with a suffix tree algorithm to have

9

fp = lookaheadset + tokensetsize;

for (I = lookaheas(state) ; I < k ; i++) {

% fp1 = LA + i * tokensetsize;

% fp2 = lookaheadset;

% while (fp2 < fp3)

% *fp2++ |= fp1++;

}

fp3 = base + tokensetsize;

…

if (rp) {

while ((j = *rp++) >= 0) {

…

fp1 = lookaheadset;

fp2 = LA + j * tokensetsize;

while (fp1 < fp3)

*fp1++ |= *fp2++;

}

}

(a) Code Fragment 1 (b) Code Fragment 2

Figure 6: A Code Clone with a Differnt Order of Statements

an increase of detection speed. On the other hand, Jiang et al. use a locality sensitive hashing

algorithm to detect code clones. With the algorithm, Jiang et al.’s method can detect Type-3 code

clones.

PDG-based Techniques

In a PDG-based approach, code clones are detected by comparing PDGs created from source

code. Isomorphic subgraphs are regarded as code clones. PDGs require a semantic analysis for

their creation, therefore this approach requires much cost than other detection techniques. How-

ever, this technique can detect code clones with additions/deletions/changes in statements or those

with some differences that have no impact on the behavior of programs. This is because PDG-

based techniques can consider the meanings of programs.

Figure 6 shows one of the code clones that include some differences that have no impact on the

behavior of programs. Other techniques cannot detect these two code fragments as a code clone

because there is a different order of statements.

One of the leading PDG-based clone detection approach is Komondoor and Horwitz’s method

[10]. Their method detects isomorphic subgraphs of PDGs with program slicing. They also pro-

pose an approach to group identified clones together while preserving the semantics of the original

code for automatic procedure extraction to support software refactoring. Krinke’s method [11],

and Higo et al.’s method [12, 34] are also included in PDG-based techniques. Each detection

method is optimized to reduce detection cost. Krinke sets a limit of the search range of PDGs with

a threshold. By contrast, Higo et al. confine nodes to be base of subgraphs with some conditions.

Moreover, Higo et al. introduce a new dependence named “execution dependence”. That is, there

is an execution dependence from a nodeA to another nodeB if the program element represented

10

by B may only be executed after the program element represented byA. By introducing this

dependence, they succeeded to detect code clones that other PDG-based methods could not detect.

Other Detection Techniques

One of the detection techniques that can be categorized into this category is a metrics-based

approach [13]. First, metrics-based detectors calculate metrics on every program module (such as

files, classes, or methods), then detect code clones by comparing the coincidence or the similarity

of these values.

Beside this, there are some file-based detection methods [14, 15]. This detection technique

detects code clones by comparing every file instead of statements or tokens, which let it quick

detections. However, this technique cannot find code clones that exist in a part of a file.

Moreover, incremental detection techniques are under intense studies [16–18]. In incremental

detections, code clone detection results or their intermediate products persist by using databases,

and it is used in the next code clone detection. By reusing previous revisions’ analysis, it can

reduce detection cost on the current revision substantially.

2.3.2 Scorpio (PDG-based Code Clone Detection Tool)

In this subsection, we describe a clone detector, Scorpio [34], used in this research.

Scorpio is one of the PDG-based clone detectors developed by Higo et al. [12]. Currently,

Scorpio can handle software systems written in Java. The major features of Scorpio are as follows.

It can detect code clones with different user-defined variables

Scorpio replaces use-defined identifiers by special characters. Therefore, it can detect code

clones having different user-defined variables.

It can detect Type-3 code clones and non-contiguous code clones

Scorpio can detect Type-3 code clones and non-contiguous code clones because it is a PDG-

based clone detector.

It is robust for detecting contiguous code clones

One of the disadvantages of PDG-based clone detectors is that they cannot regard sequences

of program elements as code clones if every element in the sequences has no dependence between

other elements in the sequences. To improve this matter, Scorpio introduces execute dependence,

11

which enables it to expand the range of program slicing, so that the ability to detect contiguous

code clones is improved.

It uses both of two graph search algorithms

There are two ways to search graphs, forward and backward slicing. Scorpio uses both of

forward and backward slicing, which enlarges code clone detection result because there are similar

subgraphs that cannot be detected by using only forward or backward slicing.

It confines nodes to be bases of slicing

To reduce detection costs, Scorpio limits slice points. Unnecessary slice points are identified

and removed by this heuristic.

2.4 Refactoring

2.4.1 Refactoring Activities

Refactoring is a technique that improves internal structures of software systems without chang-

ing the external behavior of the programs [22]. We can prevent decay of maintainability of running

software systems with suitable refactorings.

The refactoring process consists of several activities as follows [22]:

1. Identify places that should be refactored,

2. Determine which refactroing(s) should be applied to the places,

3. Guarantee that the behavior of the program is preserved by the selected refactoring(s),

4. Apply the refactoring(s),

5. Assess the effect of the refactoring(s) on quality of the software or the process and

6. Maintain the consistency between the refactored program and other software artifacts (e.g.

documentation, design documents, requirements specification, tests).

Each of these activities can be supported by different tools, techniques or formalisms.

12

2.4.2 Behavior Preservation

The refactoring should not change the behavior of programs accoring to its definition.

The original definition of behavior preservation is suggested by Opdyke [35]. The definition

states that, for the same set of input values, the resulting set of output values should be the same

before and after the refactoring. However, requiring the preservation of input-output behavior is

insufficient, since many other aspects of the behavior may be relevant as well. For example, in

the case ofreal-time software, an essential ascect of the behavior is the execution time of certain

operations. Thus, refactorings should preserve all the kinds of temporal constraints. Forembedded

software, memory constraints and power consumption are also important aspects. Consequently,

we need a wider range of definitions of behavior that may or may not be preserved by a refactoring,

depending on domain-specific or even user-specific concerns.

Another pragmatic way to guarantee the behavior preservation is using test suites. This means

that if all the test suites are passed before and after refactorings, it is regarded that the refactorings

do not affect the behavior of the program. If we have sufficient test suites, the fact that all the test

suites still pass after the refactorings will be a good evidence that the behavior is preserved.

Another approach is to formally prove that refactorings preserve the full program semantics.

We can prove the behavior preservation formally if a language with a simple and formally defined

semantics is used in the target software systems. However, it is difficult to prove the behavior

preservation for more complex languages such as C++. In such a case, we need to put some

restrictions to prove the behavior preservation.

2.4.3 Refactoring Patterns Used for Code Clone Removals

Herein, we describe refactoring patterns proposed by Fowler used for clone removals [19,36].

Extract Class/SuperClass

Extract Class indicates extracting a part of a class as a new class. If there is a large and/or

complex class, the class requires much cost to be maintained.Extract Class is useful in such

a case. If there is a class-level duplication, we can remove code clones by appllyingExtract

Class. Figure 7 shows an example of refactoring withExtract Class. In this case, there are

duplicate fieldsofficeAreaCode andofficeNumber , and duplicate operation about them.

By applyingExtract Class to this example, duplicate fields and duplicate operation are extracted

as a new classTelephoneNumber , and the classesPerson andCompany uses the class. By

this modification, duplicate code is removed from the two classes.

If duplicate classes do not extend different base classes,Extract SuperClass may be a better

13

Person

name

officeAreaCode

OfficeNumber

getTelephoneNumber()

Company

address

officeAreaCode

OfficeNumber

getTelephoneNumber()

Person

name

getTelephoneNumber()

Company

address

getTelephoneNumber()

TelephoneNumber

areaCode

number

getTelephoneNumber()

1 1

1 1

Figure 7: An Example ofExtract Class

Department

getTotalAnnualCost()

getName()

getHeadCount()

Employee

getAnnualCost()

getName()

getId()

Party

getTotalAnnualCost()

getName()

getHeadCount()

Department Employee

getAnnualCost()

getHeadCount()

getAnnualCost()

getId()

Figure 8: An Example ofExtract SuperClass

solution for clone removal.Extract SuperClass is similar toExtract Class. The difference is

thatExtract SuperClass uses the inheritance; meanwhileExtract Class uses the delegation. In

Extract SuperClass, duplication between two (or more) classes is extracted as a new class and

all the original classes are changed to extend the new class. Figure 8 shows an example of the

application ofExtract SuperClass. In this example, a new classParty is created by extracting

the duplication of two classesDepartment andEmproyee , then the two classes are changed

to extend the classParty .

Extract Method

Extract Method indicates extracting a part of a method as a new method. This refactoring

14

void printTaxi(int amount) {

String name = getTaxiName();

System.out.println(“name: “ + name);

System.out.println(“amount: “ + amount);

}

void printBus(int amount) {

String name = getBusName();

System.out.println(“name: “ + name);

System.out.println(“amount: “ + amount);

}

void printTaxi(int amount) {

String name = getTaxiName();

print(name, amount);

}

void printBus(int amount) {

String name = getBusName();

print(name, amount);

}

void print(String name, int amount) {

System.out.println(“name: “ + name);

System.out.println(“amount: “ + amount);

}

Figure 9: An Example ofExtract Method

pattern is often used for improving reusability by segmentalizing too long and/or too complex

methods into short and simple methods. We can remove code clones by extracting them as a new

method and replace them by method call instructions for the method. Figure 9 shows an example

of the application ofExtract Method. In this example, there are same statements between two

methodsprintTaxi andprintBus . By applyingExtract Method, these duplicate statements

are extracted as a new methodprint , and the original statements are replaced by the method call.

As a result, code clones between the two methods are merged into a single method. An advantage

of this pattern as clone removal technique is that it can be applied if a part of a method contain

code clones and the other part does not contain code clones. In addition, this pattern is capable of

wide application because it does not use class hierarchies. Therefore, this pattern is useful in such

a case that versatile processes that can be merged as a library are scattered across source code as

code clones. However, this pattern introduces many methods if multiple clone fragments exist in

a single method and there are some non-clone fragments between every two fragments.

Pull Up Method

Pull Up Method indicates pulling up identical methods existing in derived classes into their

common base class as a new method. This pattern is effective if there are some methods that

behave the same way in all the derived classes. By applying this pattern, duplicate methods are

merged into a base class, which means that code clones existing in derived classes are removed.

Figure 10 shows an example of the application ofPull Up Method. In this case, two duplicate

methodsgetName in classSalesman andEngineer are pulled up into the same base class

Employee . This pattern can be applied if and only if target methods are exactly same. Moreover,

this pattern uses inheritance relationship of classes. Therefore, the range of application of this

15

Salesman

getName()

Engineer

getName()

Employee

Salesman Engineer

Employee

getName()

Figure 10: An Example ofPull Up Method

pattern is narrower than that ofExtract Method refactoring pattern.

Parameterize Method

If there are similar methods in a single class, the duplication may be removed byParame-

terize Method. Parameterize Method is used in a case that several methods do similar things

but with different values contained in the method body. In this pattern, a new method that uses a

parameter for different values is created.

Pull Up Constructor

This pattern is very similar to thePull Up Mehtod. The only difference is the target of this

pattern is not a method but a constructor.

Form Template Method

Form Template Method refactroing pattern is a hybrid ofExtract Method and Pull Up

Method refactoring patterns. This pattern targets similar methods existing in derived classes that

have a same base class. In this pattern, processes that are common in all the target methods are

pulled up into the base class withPull Up Method refactoring pattern. On the other hand, the

processes that are not common in the target methods remain in each derived class. The remaining

processes are unique in each derived classes. These unique processes are extracted as a new

method withExtract Method refactoring pattern.

The steps for applyingForm Template Method are as follows:

1. Detect common processes in all the target methods,

2. Extract unique processes as new methods withExtract Method refactoring pattern,

3. Rename methods to make correspondence of signatures. The targets of renaming are meth-

ods that created in 2. and called in the same point of the common processes and

16

Site

ResidentialSite

getBillableAmount()

LifelineSite

getBillableAmount()

double base = units * rate * 0.2;

double tax = base * Site.RATE * 0.5;

return base + tax;

double base = units * rate;

double tax = base * Site.RATE;

return base + tax;

ResidentialSite

getBillableAmount()

method1()

method2()

Site

LifelineSite

getBillableAmount()

method3()

method4()

double base = method3();

double tax = method4();

return base + tax;

double base = method1();

double tax = method2();

return base + tax;

return units * rate;

return base * Site.Rate * 0.5;return base * Site.Rate;

return units * rate * 0.2;

(a) before refactoring (b) after step1 and step2

ResidentialSite

getBillableAmount()

getBase()

getTax()

Site

LifelineSite

getBillableAmount()

getBase()

getTax()

double base = getBase();

double tax = getTax();

return base + tax;

double base = getBase();

double tax = getTax();

return base + tax;

return units * rate;

return base * Site.Rate * 0.5;return base * Site.Rate;

return units * rate * 0.2;

Site

getBillableAmount()

getBase()

getTax()

ResidentialSite

getBase()

getTax()

LifelineSite

getBase()

getTax()

double base = getBase();

double tax = getTax();

return base + tax;

return units * rate;

return base * Site.Rate * 0.5;return base * Site.Rate;

return units * rate * 0.2;

(c) after step3 (d) after refactoring

Figure 11: An Example of Refactorings withForm Template Method

4. Pull up common processes as a new method in the base class withPull Up Method refac-

toring pattern.

Figure 11 shows an example of refactorings with this pattern. There are two classes that have

the same base class,Site, and these two classes have the methods that are similar to each other,

getBillableAmount.

To applyForm Template Method to this target, at first, we have to distinguish the common

and unique processes in the two methods. In this example, the differences of the two methods are

in the calculation ways of variablesbaseandtax.

Secondly, we extract each of the calculations ofbaseandtaxas new methods (shown in Figure

11(b)). We get 4 methods as a result of this step (currently, they are named asmethod1, method2,

method3, andmethod4).

In the next step, we rename 4 new methods to make correspondence of signatures (shown in

Figure 11(c)). In this example,method1in ResidentialSiteandmethod3in LifelineSiteare called as

the first processing of the original methods. Also,method2andmethod4are called as the second

processing of the original methods. Therefore, we renamemethod1andmethod3to make their

17

signatures correspondent. In this example,method1andmethod3are renamed asgetBaseAmount.

Similary,method2andmethod4are renamed asgetTaxAmount.

Finally, we pull up the common processes as a new method. Note that we have to define

getBaseAmountandgetTaxAmountas abstract methods in the base class. Figure 11 shows the

code that the refactoring has finished.

By applying this refactoring pattern to similar methods, code clones existing between these

methods are merged into a base class. An advantage of clone removal with this pattern compared

with Pull Up Methodis that this pattern can be more widely thanPull Up Methodbecause this

pattern can be applied to methods that are not exactly same. Compared with clone removal with

Extract Methodrefactoring pattern, the application range of this pattern is narrower. However, this

pattern is effective in such a case that common processes are segmentalized by unique processes.

This is because separated common processes can be merged as a single method withForm Tem-

plate Methodrefactoring pattern, meanwhile each fragment of common processes is extracted as

a method withExtract Methodrefactoring pattern.

In the rest of this thesis, we call a method created in base classes by pulling up the common

processes astemplate method.

18

3 Related Work

3.1 Techniques for Refactoring on Code Clones

Fowler, a pioneer in the field of refactoring, mentioned that the “number one in the stink parade

is duplicate code” [19]. He also presented some sets of operations for merging code clones. How-

ever, because it is quite difficult for maintainers to apply refactorings manually without introducing

any human errors, many research efforts have been performed on refactoring assistance [22].

Higo et al. proposed a method for merging code clones [36]. Their method consists of 2

phases. The first phase is the quick detection ofrefactoring-oriented code clonesfrom the source

code. The second phase is the measurement of metrics indicating how the refactoring-oriented

code clones should be merged. They implemented their method as a tool, ARIES. Using ARIES

in the refactoring process, maintainers of the software system can readily know which and how

code clones can be merged. They conducted a case study with ARIES, and they confirmed that

ARIES performs the process successfully.

CLONEDR, which is an implementation of the AST-based technique, presents not only the

locations of code clones but also forms of merged code fragments [4]. The forms help users

understand what operations are required to merge code clones. However, the tool does not care

about the positional relationship between code clones in the class hierarchy.

Bakazinska et al. proposed a refactoring method for the duplicate methods [37]. Their method

provides the differences between code clones, which help users to determine whether code clones

can be merged or not. Also, their method measures the coupling between a duplicated method

and its surrounding code. In their method, code clones are removed by using two design pattern

“Strategy” and “Template Method”.

Cottrell et al. implemented a tool that visualizes the detailed correspondences between a pair

of classes [38]. The classes are generalized to form an intermediate, AST-like structure that dis-

tinguishes between what is common and what is specific to each class. The specific instructions

will influence the degree of relatively between the classes. The tool works after users identify 2

classes that should be merged.

Komondoor et al. proposed an algorithm for procedure extraction [39]. The inputs to the

algorithm are (1) the CFG (control-flow graph) of a procedure and (2) a set of nodes in the CFG.

The goal of the algorithm is to revise the CFG with the following conditions:

• The set of nodes that are extractable from the revised CFG;

• The revised CFG is semantically equivalent to the original CFG.

The implementation of this algorithm adopts heuristics for enhancing scalability. Although the

19

algorithm has a worst-case exponential time complexity, their experimental results indicated that

it may work well in practice. However, the algorithm can be applied only to a single code clone.

Different techniques are needed to determine how two or more code clones can be extracted as a

single procedure with preserving semantics.

3.2 Techniques for Refactoring on Code Clones withForm Template Method

The majority of clone removal techniques is based onExtract Method or Pull-Up Method

refactorings, and there are few techniques based onForm Template Method refactoring. Juillerat

et al. proposed a method to automatically applyForm Template Method to a pair of similar

methods with ASTs [24]. Their method can show source code after the application of the pattern,

and the execution time and memory space required to the calculation are not so high.

Masai et al. proposed a method to support refactorings withForm Template Method with

ASTs likewise Juillerate et al. [25]. Their method consider the structural information of ASTs

to detect unique processing, meanwhile Juillerat et al. compare ASTs with token sequences that

are made from ASTs. Therefore, their method can extract code fragments that have some func-

tionalities as unique processing. One of the differences between Masai et al.’s method and the

proposed method is that their method suggests different sets of code fragments that should be

merged in a specified method pair by expanding different part between methods consisting of the

method pair. Also, they implemented a function to suggest suitable divisions between common-

and different-part on the specified method pair to users with a cohesion metric COB [26].

3.3 Techniques for Code Clone Managing

At present, there is a huge body of work on empirical evidence on code clones, starting with

Kim et al.’s report on clone genealogies [40]. They performed experiments on the repositories of

open source software systems to investigate how code clones appear and disappear. The experi-

mental results revealed the following points.

• Some code clones are short-lived. Merging (applying refactoring to) them does not improve

the maintainability of the software systems.

• Most long-living code clones are not suited to be refactored because there is no abstraction

function of the programming language that can handle them.

Kapser and Godfrey also suggested that, based on their experience, code clones are not always

harmful [41]. They reported several situations where code duplication is a reasonable or even

beneficial way to handle large-scale complex software systems. Also, Bettenburg et al. reported

20

that duplicate code does not have much a negative impact on software quality [42]. On the other

hand, Monden et al. reported the opposite opinion, which is that the existence of code clones

affects the quality of software systems [43]. They investigated the relation between software

quality and code clones on the file unit. Their experiment selected a large scale legacy system,

which was being operated in a public institution, as the target. The result showed that modules

that included code clones were 40% lower quality than modules that did not include code clones.

Moreover, they reported that the larger code clones a source file included, the lower quality it was.

Lozano et al. investigated whether the presence of code clones was harmful or not [44], and they

reported that methods including code clones tend to be more frequently modified than method

including no code clone.

Krinke hypothesized that if code clones are less stable than non-cloned code, maintenance

cost for code clones is greater than non-cloned code, and he conducted a case study in order to

investigate whether the hypothesis is true or not [45]. The experimental result showed that non-

cloned code was moreadded, deleted, andmodifiedthan cloned code. Consequently, he concluded

that the presence of code clones did not necessarily make it more difficult to maintain source code.

Göde et al. replicated Krinke’s experiment [46]. Krinke’s original experiment detected text-

based code clones meanwhile their experiment detected token-based code cloens. The experimen-

tal result was the same as Krinke’s one. Cloned-code is more stable than non-cloned code in the

viewpoint ofaddedanddeleted. On the other hand, fromdeletedviewpoint, non-cloned code is

more stable than cloned-code.

Also, Göde et al. conducted an empirical study on a clone evolution [47]. They performed

a detailed tracking to detect when and how code clones had been changed. In their study, they

traced clone evolutions and counted the number of changes on each clone genealogy. They man-

ualy inspected the result in one of the target systems, and categorized all the modifications on

clones into consistent or inconsistent. In addition, they carefully categorized inconsistent changes

into intentional or unintentional. They reported that almost all code clones were never changed

or only once during their lifetime, and only3% of the modifications had high severity. There-

fore, they concluded that many of clones does not cause additional change effort. They consisted

that it is important to identify code clones with high threat potential for the effective code clone

management.

Rahman et al. investigated the relationship between code clones and bugs. They analyzed 4

software systems written in C language with bug information stored in a bug management system,

Bugzilla. They reported that only a small part of bugs located on code clones, and the presence of

code clones did not dominate bug appearance [48].

21

Our research group also coudncted empirical studies to investigate the influence of code clones

on software maintenance. We conducted an empirical study on 15 open source software systems

with 4 clone detectors, and compare their modification frequency [49]. As a result, we found

that code clones tend to be less frequently modified than non-cloned code. Consequently, we

concluded that the presence of code clones did not necessarily have a negative impact on soft-

ware maintenance. Moreover, we compared the experimental result of our investigation method

with other 2 investigation methods [50]. We found that the result (whether the presence of code

clones has a negative impact on software evolution or not) differs from every investigation method

although the target software systems are same to one another.

At present, there is no consensus for the question whether the presence of code clones affects

software maintenance or not. This is because the results of empirical studies vary according to

research methods or target software systems. However, it can be said that removing all the code

clones existing software systems is not effective because some researchers reported that code

clones did not necessarily make it more difficult to maintain source code. Thus, it is important to

focus on code clones that have a negative impact on software maintenance, or to remove them.

22

Duplicate

Statements

gaps

public int calc() {

int result = 0;

int dc = getDC(getRegion());

result += dc;

int sum = 0;

int points = 0;

for (int i = 0; i < getList().size(); i++) {

Item item = getList().get(i);

sum += item.getPrice();

points++;

}

result += sum * TAX_RATE;

addPoints(points);

return result;

}

public int calc() {

int result = 0;

int s = 0;

int points = 0;

int i = 0;

while (i < getList().size()) {

Item item = getList().get(i);

s += item.getPrice();

points += item.getPoints();

i++;

}

addPoints(points);

int dc = getDC(getRegion());

result += dc;

result += s * TAX_RATE;

return result;

}

Duplicate

Statements

gaps

public int calc() {

int result = 0;

int dc = getDC(getRegion());

result += dc;

int sum = 0;

int points = 0;

for (int i = 0; i < getList().size(); i++) {

Item item = getList().get(i);

sum += item.getPrice();

points++;

}

result += sum * TAX_RATE;

addPoints(points);

return result;

}

public int calc() {

int result = 0;

int s = 0;

int points = 0;

int i = 0;

while (i < getList().size()) {

Item item = getList().get(i);

s += item.getPrice();

points += item.getPoints();

i++;

}

addPoints(points);

int dc = getDC(getRegion());

result += dc;

result += s * TAX_RATE;

return result;

}

(a) The Method Proposed by Juillerat et al. [24] (b) The Proposed Method

Figure 12: Motivating Example 1

4 Motivation

4.1 Issues of Previous Studies

As described in Section 3, there are some studies to supportForm Template Method refac-

toring application. However, they still have some issues as follows.

• They cannot handle trivial differences that have no impact on the behavior of programs.

• They cannot handle groups of three or more similar methods in spite of thatForm Template

Method itself can be applied to them.

In the following subsections, we describe these issues in detail.

4.1.1 Issue of Trivial Differences

In previous studies, all the differences between target methods are regarded as unique process-

ing even if some of them do not affect the meaning of programs. The following situations may be

instances of the differences that do not affect the behavior of programs are as follows.

• The order of code statements is different in target methods. However, the behavior of the

program is preserved even if we reorder the order of them.

• Iterations are implemented with for statements in a method of target methods, meanwhile

they are implemented with while statements in another method of target methods. However,

the meanings of the iterations are exactly same except the implementation styles.

23

Figure 12 shows an example of our motivating example for this issue. In this example, there

is a difference of the order of code statements, and there is also a difference of the implemen-

tation style of loop statements. However, these differences do not influence the meaning of the

program. The only meaningful difference of these two methods is the ways of calculations of

variablepoints. Nevertheless the methods described in previous studies regard these trivial differ-

ences as gaps between the two methods. Therefore, they can suggest only four lines as duplicate

statements in the two methods (shown in Figure 12(a)). In this study, we aim to improve this issue

by using PDGs, and we will suggest 11 lines except the calculations of variablepointsas duplicate

statements (shown in Figure 12(b)).

4.1.2 Issue of Groups of Three or More Methods

Form Template Method can be applied to a group of three or more similar methods. Never-

theless, the previous methods can handle only a pair of similar methods. SupportingForm Tem-

plate Method application on only a pair of similar methods is not sufficient for clone removal.

This is because code clones should remain after a refactoring withForm Template Method on a

pair of methods if there are three or more similar methods.

In the example shown in Figure 13, there are four similar methods in four different classes,

and these four classes have the same base class. If we applyForm Template Method refactoring

on the pair ofmethod()in ClassAandmethod()in ClassB, we get source code shown in Figure

13(b). As the figure shows, there are still code clones betweenmethod()in ClassCandmethod()

in ClassDbecause we did not modify these two methods. Also, there are code clones between

the template method andmethod()in ClassCandClassD. Moreover, it is difficult to remove code

clones from the source code of Figure 13(b) withForm Template Method refactoring. That is

because a conflict of two template methods should occur if we applyForm Template Method on

a pair ofmethod()in ClassCandmethod()in ClassD. However, we can applyForm Template

Method on all the four similar methods at a time. If we do so, we get the source code shown in

Figure 13(c). As the figure shows, code clones are completely removed by the refactoring.

Moreover, some researchers reported that the quality of software systems after some refactor-

ings is affected by the order of the refactorings [51,52]. In the case that refactorings on only a pair

of methods are supported, the number of the candidates (pairs of methods) ofForm Template

Method refactorings is equal to the number of 2-combinations from a set of all the target meth-

ods. It is too difficult to detect the most appropriate order of refactorings from such a huge number

of candidates. In the example of Figure 13, there are 6 pairs of methods that can be refactored

with Form Template Method. However, it is difficult to decide which pair is most suitable to be

refactored.

24

method2()methodA()

ClassA

methodB()

ClassB

methodC()

ClassC

methodD()

ClassD

SuperClass

Code Clones

(a) before refactoring

method2()newMehtod()

ClassA

newMethod()

ClassB

methodC()

ClassC

methodD()

ClassD

SuperClass

template()

Code Clones

(b) after refactoring on two methods

method2()newMehtod()

ClassA

newMethod()

ClassB

newMethod()

ClassC

newMethod()

ClassD

SuperClass

method()

(c) after refactoring on all the four methods

Figure 13: Motivating Example 2

25

For these reasons, it is necessary to handle three or more methods at a time for effective clone

removal withForm Template Method refactoring pattern. In this study, therefore, we expand

proposed refactoring support technique on pairs of methods to be able to handle groups of three or

more methods.

4.2 Objective of This Study

In this thesis, we propose a new refactoring support method withForm Template Method

refactoring pattern. We aim to resolve the first issue of previous studies (described in Section

4.1.1), and we aim to resolve the second issue described in Section 4.1.2 by expanding the pro-

posed method on pairs of methods to be able to handle groups of three or more methods.

Moreover, we aim to assist users in detecting refactoring candidates withForm Template

Method. Users need to specify refactoring candidate (a pair of methods) for using the previous

Form Template Method application assistance methods. The approach of previous studies is

useful for actual modifications in source code associated with refactoring activities. However, it is

not possible to reduce efforts required for identifying opportunities on which users want to apply

Form Template Method refactorings in this approach. Because software systems become more

large and more complex, it is difficult to comprehend structures of software systems appropriately.

Hence, it is difficult to identify suitable clone removal candidates. This is the reason why we aim

to support the detection of refactoring candidates.

To reduce efforts for identifying refactoring candidates, the proposed method detects refac-

toring candidates automatically, and suggests all the candidates to its users. Consequently, the

proposed method can suggest refactoring candidates of which users are not aware. In addition, the

proposed method also suggests common processing and unique processing in each of refactoring

candidate to reduce efforts required for modifying source code to applyForm Template Method

refactoring pattern.

Note that the proposed method aims to suggest candidates thatcan be refactored, notshould

be refactored. The reason is that there is not strict and generic standard to judge whether code

clones should be removed. Also, there is not strict and generic standard to judge whetherForm

Template Method should be used to remove code clones. Accordingly, the proposed method

leaves such decisions to its users whether they need to apply refactorings on each candidate that

the proposed method suggests.

26

public void validate() {

verifySettings();

dieOnCircularReference();

String errmsg = getError();

if (errmsg != null) {

throw new BuildException(errmsg);

}

Enumeration e = selectorElements();

while (e.hasMoreElements()) {

Object o = e.nextElement();

((BaseSelector) o).validate();

}

}

public void validate() {

if (isReference()) {

getCheckedRef().validate();

}

dieOnCircularReference();

Enumeration e = selectorElements();

while (e.hasMoreElements()) {

Object o = e.nextElement();

((BaseSelector) o).validate();

}

}

Common

Processes

Unique

Processes
：

Code fragments

surrounded with a

rectangle are extracted

as a single method

A B

C
：

To be extracted as same

signature methods

Figure 14: The Output of the Proposed Method

5 Outline of the Proposed Method

5.1 Inputs and Outputs

The proposed method takes source code of target software systems as its input. Then, the pro-

posed method detects all the candidates ofForm Template Method refactoring, and it suggests

them to users. For each of the refactoring candidates, the proposed method suggests program state-

ments that can be merged into the base class as the common processes, and program statements

that should be remain in each derived class as the unique processes. Additionally, for the unique

processes, the proposed method suggests the following two information.

• Sets of program statements that should be extracted as a single method.

• Relationships of new methods created by extracting the unique processes between the de-

rived classes. This relationship means that the new methods under this relationship can be

extracted as methods whose signatures are the same as each other.

Figure 14 shows the output information of the proposed method. In this example, there are two

similar methods namedvalidate, and the owner classes of these two methods have the same base

class. The proposed method detects the common and unique processes between these methods.

Herein, program statements highlighted with orange are the common processes that should be

merged into the base class. Program statements that are not included in the common processes are

regarded as the unique processes in each derived classes. For the unique processes, the proposed

method detects sets of program statements that can be extracted as a single method. In this case,

we get three sets of program statements (labeled with ‘A’, ‘B’ and ‘C’ in the figure). The proposed

27

method also detects relationships of new methods created by extracting the unique processes. In

this example, the proposed method detect a relationship between ’A’ and ‘B’, which means that

the new methods created by extracting ‘A’ and ‘B’ should have the same signature to each other.

Here, there is no correspondence of ‘C’. In this case, we have to write an empty method that has

the same signature of the method created from ‘C’ in the owner class of the left method.

5.2 Processing Flow

The processing of the proposed method can be separated into method-pairs version and method-

groups version. The method-groups version is implemented as an extended version of method-

pairs version.

The processing flow of the proposed method on pairs of methods is shown below.

STEP-P1: Analyze target source code, and create PDGs.

STEP-P2: Detect code clones with PDGs.

STEP-P3: Identify pairs of methods on whichForm Template Method can be applied.

STEP-P4: Detect common processes and unique processes for each of method pairs.

STEP-P5: Detect sets of statements included in unique processes that should be extracted as a

single method.

STEP-P6: Detect pairwise relationships between new methods created by extracting unique pro-

cesses.

STEP-P7: Show all the analysis results.

The method-groups version uses the result of the method-pairs version. Therefore, processing

steps from STEP-S1 to STEP-S6 are exactly identical to the processing steps from STEP-P1 to

STEP-P6. The processing flow of the proposed method on method groups after STEP-S6 is shown

below.

STEP-S7: Detect groups of methods on whichForm Template Method can be applied with the

information about pairs of methods.

STEP-S8: Detect common processes and unique processes for each of method groups.

STEP-S9: Detect relationships between new methods created by extracting unique processes.

STEP-S10: Show all the analysis results.

We describe each step in detail in Sections 6 and 7.

28

A

B C D

E F

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

Figure 15: A Directed Graph

5.3 Definitions

Here, we describe definitions of terms referenced in the following explanations.

5.3.1 A Directed Graph

A directed graphG is represented asG = (f, V,E), where,V is a set of nodes,E is a set of

edges, andf is a map from edges to ordered pairs of nodes (f : E → V × V). In this thesis, we

write the set of nodes inG asVG, the set of edges inG asEG, and the map between edges and

ordered pairs of nodes inG asfG, respectively.

Figure 15 shows an example of directed graphs. Given that the graph of the figure isG, VG,

EG, andfG become as follows.

VG = {A,B,C,D,E, F}

EG = {e1, e2, e3, e4, e5, e6, e7, e8}

fG(e1) = (A,B), fG(e2) = (A,C), fG(e3) = (A,D), fG(e4) = (B,E)

fG(e5) = (E,C), fG(e6) = (C,F), fG(e7) = (F,D), fG(e8) = (E,F)

We define a tail of an edgee ∈ EG astail(e) and a head ofe ashead(e). The definitions are as

follows.

Definition 5.1 (tail(e), head(e)). We definetail(e) as the first element offG(e), andhead(e) as

the last element offG(e). In other words,tail(e) := u andhead(e);= v, wherefG(e) = (u, v).

For example, for an edgee1 in the graph of Figure 15,tail(e1) = A andhead(e1) = B.

29

A

B C D

E F

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

Data Dependence Control Dependence

x

y

y

x

z

x

Figure 16: A PDG

In the next, we define sets of edgesBackwardEdges(v) and ForwardEdges(v) for v ∈
VG. BackwardEdges(v) is a set of edges whose head isv (defined in the formula (1)), and

ForwardEdges(v) is a set of edges whose tail isv (defined in the formula(2)).

Definition 5.2 (BackwardEdges(v), ForwardEdges(v)).

BackwardEdges(v) := {e ∈ EG | head(e) = v} (1)

ForwardEdges(v) := {e ∈ EG | tail(e) = v} (2)

For a nodeC in the graph of Figure 15,BackwardEdges(C) andForwardEdges(C) become

as follows.

BackwardEdges(C) = {e2, e5}

ForwardEdges(C) = {e6}

5.3.2 A PDG

A PDG is one of the directed graphs. Given a PDGG = (f, V,E), a node ofG corresponds to

an element of programs, and an edge ofG corresponds to a dependence between two elements. In

this study, an element of programs indicates a statement of programs. Note that we build a PDG

in each of methods, therefore every method has a corresponding PDG.

As described above, there are two types of dependences in PDGs.

30

A

B C

D

E

F G

I

J

H

1

2 3

4

5

6 7

8

9

10G
1

G
2

Cloned Node

Non-Cloned Node

G’
1

G’
2

G’’
1

G’’
2

Figure 17:ClonePairs(G1, G2)

Definition 5.3 (Data Dependence and Control Dependence). We write data dependences asdata,

and control dependences ascontrol. We definetypeas a map from edges to the types of depen-

dences that the edges represent (type : E → EdgeType), whereEdgeType = {data, control}. In

addition, a data dependence edge has the information about the variable that the edge represents.

We definevar(ed) as the represented variable by a data dependence edgeed.

In the PDG of Figure 16,type andvar become as follows.

type(e1) = data, type(e2) = data, type(e3) = data, type(e4) = data

type(e5) = control , type(e6) = control , type(e7) = data, type(e8) = data

var(e1) = x, var(e2) = x, var(e3) = x, var(e4) = y, var(e7) = z, var(e8) = y

5.3.3 Clone Pairs

In the proposed method, code clones are detected with PDGs. PDG-based clone detectors

regard isomorphic subgraphs of PDGs as code clones. Here, we defineClonePairs(G1, G2) as a

set of isomorphic subgraphs between PDGsG1 andG2.

Definition 5.4 (ClonePairs(G1, G2)andaclonepair). We defineClonePairs(G1, G2) in the for-

mula (3), and we call every element ofClonePairs(G1, G2) as a clone pair.

ClonePairs(G1, G2) := {(G′
1, G

′
2) | G′

1 ⊂ G1 ∧G′
2 ⊂ G2 ∧G′

1
∼= G′

2} (3)

where,G1 andG2 are PDGs given as input data,G′ ⊂ G indicatesG′ is a subgraph ofG, and

G′ ∼= G′′ indicatesG′ andG′′ are isomorphic subgraphs to each other.

In the example of Figure 17, there are two isomorphic subgraphs betweenG1 andG2. There-

fore,ClonePairs(G1, G2) become as follows.

ClonePairs(G1, G2) = {(G′
1, G

′
2), (G

′′
1 , G

′′
2)}

31

where,VG′
1
= {A,B,C,D}, VG′

2
= {1, 2, 3, 4}, VG′′

1
= {E,F,G}, andVG′′

2
= {5, 6, 7}.

We also define duplicate relationships on nodes of PDGs as follows.

Definition 5.5 (Duplication of nodes). The two nodesv1 ∈ VG1 andv2 ∈ VG2 are duplicated

to each other if and only if they satisfy the formula (4). We representv1 ∼ v2 if v1 andv2 are

duplicated to each other.

∃(G′
1, G

′
2) ∈ ClonePairs(G1, G2)[v1 ∈ VG′

1
∧ v2 ∈ VG′

2
∧ φ(v1) = v2] (4)

where,G1 andG2 are PDGs, andφ indicates the isomorphism betweenG′
1 andG′

2 (G′
1
∼= G′

2).

In the example of Figure 17, the binary relation∼ becomes as follows.

∼= {(A, 1), (B, 2), (C, 3), (D, 4), (E, 5), (F, 6), (G, 7)}

32

6 Supporting for Method Pairs

6.1 STEP-P1: Create PDGs

The proposed method internally uses an existing PDG-based clone detector, Scorpio [34], to

detect code clones. In addition, Scorpio internally uses a source code analysis tool, MASU [53],

to create PDGs. The first step of the proposed method is covered with MASU.

In PDGs created by MASU, a node corresponds to a statement of programs. Additionally,

PDGs created by MASU have another dependence, “execution dependence”, in addition of tradi-

tional two dependences, data and control dependences. Execution dependences indicate execution-

next links.

Note that PDGs used in the proposed method need not to be always created by MASU. We

can apply the proposed method on PDGs created by other tools if we can detect code clones on

them with the way described in the next subsection.

6.2 STEP-P2: Detect Code Clones

As described above, we use Scorpio to detect code clones. Therefore, the second step of the

proposed method is fully covered with Scorpio. Here, we describe the clone detection algorithm

used in Scorpio briefly.

First, Scorpio calculates hash values for every node of PDGs. The hash values are calculated

with information about the structure of the statement that every node represents. Scorpio replace

variables’ name or literals by their types, which enables to detect code clones with different vari-

ables’ name or literals. Next, Scorpio classifies every node with its hash value. Nodes having

the same hash value are classified as an equivalence class. Then, every pair(r1, r2) of nodes are

selected from every equivalence class, and two isomorphic subgraphs that includer1 andr2 are

identified. Both forward and backward slices are used to identify isomorphic subgraphs. Details

of the slicing are described in Appendix A. Isomorphic subgraphs detected in this step is regarded

as a clone pair. We set a minimal size of each isomorphic subgraph to 6 nodes to be detected as

code clones. In the next step, Scorpio removes uninteresting clone pairs. The algorithm is that if a

clone pair(s1, s2) is subsumed by another clone pair(s′1, s
′
2), it is removed from the set of clone

pairs. Finally, clone sets are generated from clone pairs sharing the same isomorphic subgraphs.

Note that it is not necessary to detect code clones with this way to use the proposed method.

The proposed method only needsClonePairs(Gm1 , Gm2) for any pair of methods(m1,m2) con-

tained in the target programs, whereGmi indicates a PDG of methodmi. The proposed method

does not care how they are identified.

33

6.3 STEP-P3: Identify Method Pairs

In this step, we detect pairs of methods on whichForm Template Method can be applied

with the information about code clones detected by Scorpio. We regard a pair of methods as a

refactoring candidate if it satisfies following requirements.

Requirement A: The two methods in the method pair are defined in different classes.

Requirement B: The owner classes of the two methods have the same base class.

Requirement C: There is at least one clone pair between the method pair.

We discuss these requirements in detail.

Requirement A

Form Template Method can not be applied on methods defined in the same class because it

uses the inheritance relationships and the polymorphism. Thus, the method pair that the proposed

method targets has to be defined in different classes.

Requirement B

Form Template Method targets similar methods whose owner classes have the same base

class. It is possible that we applyForm Template Method on methods whose owner classes do

not have the same base class. The way is that we insert a new class into class hierarchy and make

the owner classes inheriting the new class. However, refactorings with this way may decay the

quality of programs because two non-related classes are forced to be jointed in the class hierarchy.

For this reason, the target method pairs are limited to having the same base class.

Requirement C

If there is no duplicate statement,Form Template Method can not be applied on such a

method pairs because no statement is pulled up into the base class. Therefore, we make a re-

quirement that there is at least one clone pair between the two methods of every target method

pair.

Suppose thatGm1 andGm2 are PDGs of methodsm1 andm2. If there is no clone pair

between a method pair(m1,m2), ClonePairs(Gm1 , Gm2) is empty. Therefore, we can check

whether there is at least one clone by checking whetherClonePairs(Gm1 , Gm2) is empty or not.

In other words, the method pair(m1,m2) must satisfy the formula (5).

ClonePairs(Gm1 , Gm2) ̸= ∅ (5)

34

Algorithm 1 Removing Redundant Clone Pairs
Require: ClonePairs(Gm1

, Gm2
)

Ensure: ClonePairs(Gm1 , Gm2) after repaired

1: CopyOfClonePairs = ∅
2: CopyOfClonePairs ←+ ClonePairs(Gm1 , Gm2)

3: for all (G′
m1

, G′
m2

) ∈ CopyOfClonePairs do

4: for all (G′′
m1

, G′′
m2

) ∈ CopyOfClonePairs do

5: if (∃v1 ∈ G′
m1

[v1 ∈ G′′
m1

])&(G′
m1
̸= G′′

m1
) then

6: if |G′
m1
| < |G′′

m1
| then

7: ClonePairs(Gm1 , Gm2)←
-
(G′

m1
, G′

m2
)

8: else

9: ClonePairs(Gm1 , Gm2)←
-
(G′′

m1
, G′′

m2
)

10: end if

11: end if

12: if (∃v2 ∈ G′
m2

[v2 ∈ G′′
m2

])&(G′
m2
̸= G′′

m2
) then

13: if |G′
m2
| < |G′′

m2
| then

14: ClonePairs(Gm1 , Gm2)←
-
(G′

m1
, G′

m2
)

15: else

16: ClonePairs(Gm1
, Gm2

)←- (G′′
m1

, G′′
m2

)

17: end if

18: end if

19: end for

20: end for

6.4 STEP-P4: Detect Common and Unique Processes

In this step, the proposed method detects common and unique processes in each method pair.

Suppose that a method pair ofm1 andm2 is the given method pair, andGm1(2)
is the PDG of

methodm1(2).

The proposed method regards statements as common processes if and only if included in code

clones existing between the two methods of the given method pair. We defineCommonNodes(Gm1(2)
)

as a set of nodes inGm1(2)
whose representing statements form common processes. The formula

(6) represents the definition, whereGm1(2)
indicates the PDG of methodm1(2).

CommonNodes(Gm1(2)
) := {v ∈ VGm1(2)

| ∃w ∈ VGm2(1)
[v ∼ w]} (6)

However, a node inGm1(2)
can be duplicated between two or more nodes inGm2(1)

. In other

words, the formula (7) can be satisfied in some cases, considering the two clone pairs(G′
m1

, G′
m2

), (G′′
m1

, G′′
m2

) ∈
ClonePairs(Gm1 , Gm2).

∃v ∈ VG′
m1(2)

[v ∈ VG′′
m1(2)

] (7)

In this case, we cannot merge all the nodes that are duplicate to other nodes in the other method.

35

a

b c d

e

A

B C D

E

F

G H

I

f J

β

α

method m
1

method m
2

Figure 18: An example of Method Pairs Including Redundant Clone Pairs

We remove some clone pairs fromClonePairs(Gm1 , Gm2) to resolve this problem. Algorithm 1

shows the algorithm for removing clone pairs. Note that|R| means the number of elements in a

setR andR←- r means the process to remove an elementr from R.

By applying this algorithm, we can ensure that there is at most one duplicate node in the other

method for all nodes in methodm1 andm2. Nodes should be pulled up into the base class if they

are contained inCommonNodes(Gm1(2)
) after this processing.

Figure 18 shows an instance of method pairs that contain redundant clone pairs. There are two

clone pairs; one is labeled with ‘α’, and another one is labeled with ‘β’. The clone pairα consists

of ({a, b, c, d, e}, {A,B,C,D,E}), and the clone pairβ consists of({a, b, d, e}, {F,G,H, I}). In

this case, the algorithm selectsα as the remaining clone pair, and removesβ fromClonePairs(Gm1 , Gm2)

because the number of elements ofα is larger than those ofβ. As a result, the common statements

that the proposed method detects in this method pair(m1,m2) become as follows.

CommonNodes(Gm1) = {a, b, c, d, e}

CommonNodes(Gm2) = {A,B,C,D,E}

On the other hand, the proposed method regards that program statements form unique pro-

cesses in a given method pair if they are not included in the common processes. We define

DiffNodes(Gm1(2)
) as a set of nodes inGm1(2)

that need to remain in the derived class that has

methodm1(2). Formula (8) shows the definition ofDiffNodes(Gm1(2)
).

DiffNodes(Gm1(2)
) := {v ∈ VGm1(2)

| v /∈ CommonNodes(Gm1(2)
)} (8)

36

a

g

ed

j

i

f h

b

m

k

l

c a

g

ed

j

i

f h

b

m

k

l

c

Nodes contained in CommonNodes ENSs

Figure 19: An example of the Detection of ENSs

In the method pair(m1,m2) shown in Figure 18,DiffNodes(Gm1(2)
) becomes as follows.

DiffNodes(Gm1) = {f}

DiffNodes(Gm2) = {F,G,H, I, J}

6.5 STEP-P5: Detect Sets of Statements Extracted as a Single Method

In this step, the proposed method detects sets of statements that can be extracted as a single

method in the unique processes. For applyingForm Template Method refactorings, it is neces-

sary that nodes remaining in derived classes are extracted as new methods. Therefore, we have to

detect sets of program statements included inDiffNodes(Gm1(2)
), each of which can be extracted

as a single method. In the reminder of this thesis, we call a set of nodes that should be extracted

as a single method as anExtract Node Set(in short,ENS).

6.5.1 Definition of the Extract Node Set

In the proposed method, we regard nodes includedDiffNodes(Gm1(2)
) as an ENS if there is at

least one path that does not include nodes inCommonNodes(Gm1(2)
) for any pairs of the nodes in

it ignoring directions of each edges. In other words, we regard a set of nodesSm1(2)
⊂ VGm1(2)

as

an ENS if there is at least one path that satisfies the formula (9) for any two nodesv1, vn(v1 ̸= vn)

in Sm1(2)
.

∀i ∈ {1 . . . n}[vi ∈ DiffNodes(Gm1(2)
)] (9)

In the example shown in Figure 19 we can find two ENSs; one consists of{d, g} and the other

consists of{b, c, h, k, l}. As shown in this example, each of methods in refactoring candidates can

37

1: double width = triangle.getWidth();

2: double height = triangle.getHeight();

3: double area = width * height / 2:

4: System.out.println(“The area is “ + area);

1 2

3

4

width height

area

Before

1: double width = triangle.getWidth();

2: double height = triangle.getHeight();

3: double area = calcArea(width, height):

4: System.out.println(“The area is “ + area);

After

: Cloned Statements

: An ENS

e
1

e
2

e
3

Figure 20: An Example of Inputs and Outputs of ENSs

contain multiple ENSs. We defineDiffNodeSets(Gm1(2)
) as a family of ENSs in methodm1(2).

Suppose thatm1 indicates the name of the method shown in the figure, andGm1 indicates its PDG,

then, in the example of Figure 19,DiffNodeSets(Gm1) becomes as follows.

DiffNodeSets(Gm1) = {{d, g}, {b, c, h, k, l}}

Note that any node inDiffNodes(Gm1(2)
) must be included in a ENS inDiffNodeSets(Gm1(2)

)

(forumla (10)).

∀v ∈ DiffNodes(Gm1(2)
) ∃S ∈ DiffNodeSets(Gm1(2)

)[v ∈ S] (10)

6.5.2 Parameters of ENSs

Parameters of the method created by extracting an ENSS can be defined as variables repre-

sented by data dependence edges whose heads are included inS and whose tails are not included in

S. Assume thatG indicates a PDG, andS indicates an ENS ofG. Under these assumptions, we de-

fine a set of data dependence edges whose tails are not included inS and whose heads are included

in S asInputDataEdges(G,S). Formula (11) shows the definition ofInputDataEdges(G,S).

InputDataEdges(G,S) := {e ∈ EG | (tail(e) /∈ S) ∧ (head(e) /∈ S) ∧ (type(e) = data)} (11)

Here, we define a set of variables of which parameters of the method created by extractingS

consist asInputVariables(S) in forumla (12).

InputVariables(G,S) := {p | ∃e ∈ InputDataEdges(G,S)[var(e) = p]} (12)

38

In the example of Figure 20, there is an ENS consisting of the 3rd line. In this case,InputDataEdges(G,S)

andInputVariables(G,S) become as follows

InputDataEdges(G,S) = {e1, e2}

InputVariables(G,S) = {width, height}

Thus, a method created by extracting the ENS need 2 parameters, one iswidth, and the other is

height .

6.5.3 Output of ENSs

Suppose thatG indicates a PDG of a method, andS indicates an ENS ofG. The output

values of the method created by extractingS are defined as variables that are represented by data

dependence edges whose heads are not included inS and whose tails are included inS.

First, we defineOutputDataEdges(G,S) as a set of data dependence edges whose tails are

included inS and whose heads are not included inS. The definition is shown in formula (13).

OutputDataEdges(G,S) := {e ∈ EG | tail(e) ∈ S ∧ head(e) /∈ S ∧ type(e) = data} (13)

Herein, we can define a set of output variables ofS with this definition. We define it asOutputVariables(G,S)

in the formula (14).

OutputVariables(G,S) := {p | ∃e ∈ OutputDataEdges(G,S)[p = var(e)]} (14)

In the example of Figure 20,OutputDataEdges(G,S) andOutputVariables(G,S) become as

follows.

OutputDataEdges(G,S) = {e3}

OutputVariables(G,S) = {area}

Therefore, a method created from the ENS need to return a value ofdouble .

6.5.4 Conditions for Call

The conditions to call methods created by extracting ENSs are represented by control depen-

dence edges. For example, if there are control dependences from a conditional predicate ofif

statement to all the nodes included in an ENSS, a method created fromS should be called in the

case that the conditional predicate is satisfied.

First, we defineInputControlEdges(G,S) as a set of control dependence edges whose tails

are not included inS and whose heads are included inS in the formula (15), whereG is a PDG of

a method andS is an ENS ofG.

InputControlEdges(G,S) := {e ∈ EG | tail(e) /∈ S ∧ head(e) ∈ S ∧ type(e) = control} (15)

39

In the next, we define nodes that have control dependences to nodes included inS asInputControlNodes(G,S).

The definition is shown in formula (16).

InputControlNodes(G,S) := {v ∈ VG | ∃ec ∈ InputControlEdges(G,S)[v = tail(ec)]} (16)

As described above, a PDG has a method enter node, and there is control dependence from

the node to all the nodes that directly contained by the method. In addition, nodes contained in

conditional blocks have control dependence from the conditional predicates of the blocks. In this

case, there is no control dependence from the method enter node to nodes contained in conditional

blocks because these nodes are not directly contained by the method. Therefore, all the nodes

except the method enter node have at least and at most 1 control dependence from other nodes.

6.5.5 Requirements for ENSs to be Extracted as a Single Method

In some cases, we cannot extract each of ENSs as a single method. Concretely, we cannot

extract an ENSS as a single method if it satisfies the following conditions.

• There are multiple return values in the method created fromS.

• S includes a part of nodes in a block statement, and it also includes some nodes out of the

block statement.

Multiple Return Values

It is necessary that an ENSS has at most one return value to be extracted as a method. There-

fore, if there are two or more return values ofS, it cannot be extracted as is.

To resolve this problem, we divideS into multiple ENSs satisfying the condition. Here, we

describe the algorithm.

First, we define a set of nodes inS that are boundary end points of data dependences between

S and out ofS asBoundaryNodes(G,S). Formula (17) is its definition.

BoundaryNodes(G,S) := {v ∈ VG | ∃e ∈ OutputDataEdges(G,S)[tail(e) = v]} (17)

Then, we divideS with the Algorithms 2, 3, and 4. Note thatR ←+ r means adding an ele-

mentr into a setR. Besides,detect(v, S) andparse(S,R) indicates the following processing,

respectively.

detect(v, S): Return an ENSS′ satisfying the condition thatBoundaryNodes(G,S′) = {v} by

dividing the original ENSS.

40

a

b c d e

j
f g h i

ml
k

n o

p q

r

i

i

i

x

y

y

z z

z w

z
y

x y S

a

b c d e

j
f g h i

mlk

n o

p q

r

i

i
i

x

y

y

z z

z w

z
y

x y
Sy

Sx

Si

After Resolved

Figure 21: Behavior of Algorithm 2

parse(S,R): Return a node setR′ created by adding some nodes into the specified node setR.

The added nodes must be reached from a node inR by tracing an edge in the reverse direc-

tion. Moreover, the addition of nodes must preserve the condition that|BoundaryNodes(G,R)| =
1.

Here, we describe the behavior of the algorithm with the example shown in Figure 21.

In the beginning,BoundaryNodes(G,S) = {n, o}. Here we consider the case thatdetect(n, S)

is called in the 3rd line in Algorithm 2.

In detect(n, S), a node setR is initialized withn, thenR is expanded by trace edges in the

reverse direction. Obviously,|BoundaryNodes(G,R)| = 1.

In the next,parse(S,R) is called. At first, we reach a nodek and we need to judge whether

it can be added intoR or not. In this case,k has no dependences to nodes exceptn, therefore we

judge that it can be included inR. In the next, we reach another nodef . The nodef has two

dependences whose tail isf ; one is tok, and the other is to another nodei. Herein, the nodei are

not included inR. Consequently, if we addf into R, BoundaryNodes(G,R) becomes{f, n}.
Thus we judge that we cannot addf intoR. parse(S,R) stops here because there is no nodes that

can be a candidate of expansion, and it returnsR′ = {k, n}.
Then the algorithm backs to the 3rd line in Algorithm 2. Here,detect(o,R) is called, and it

41

Algorithm 2 Division of an ENS
Require: G,S

Ensure: SeparetedNodeSets

1: while S ̸= ∅ do

2: for all v ∈ BoundaryNodes(G,S) do

3: SeparetedNodeSets ←+ detect(v, S)

4: end for

5: for all T ∈ SeparetedNodeSets do

6: for all v′ ∈ T do

7: S ←- v′

8: end for

9: end for

10: end while

Algorithm 3 detect(v, S)
Require: v, S

Ensure: R

1: R ← {v}
2: while |R| ̸= |parse(S,R)| do

3: for all v′ ∈ parse(S,R) do

4: R ←+ v′

5: end for

6: end while

Algorithm 4 parse(S, R)
Require: S,R

Ensure: R′

1: R′ = R

2: for all v ∈ R do

3: for all e ∈ BackwardEdges(v) do

4: if tail(e) ∈ S ∧ tail(e) /∈ R then

5: if ∀ed ∈ ForwardDataEdges(tail(e))[head(ed) ∈ R] then

6: R′ ←+ tail(e)

7: end if

8: end if

9: end for

10: end for

42

1: if (x > 0) {

2: y = x;

3: z = x * 2;

4: }

5: w = x + y + z;

S

Figure 22: An Instance of Segmentalization of Block Statements

returnsR′ = {d, e, g, h, i, l,m, o}.
Then the algorithm goes to the 5th line in Algorithm 2. Here, nodes included in any element

in SeparetedNodeSets are removed from the original ENSS. In this case,SeparetedNodeSets =

{{k, n}, {d, e, g, h, i, l,m, o}}, thereforeS becomesS = {f, c}.
The algorithm repeats this process untilS ̸= ∅. Finally, we get 3 ENSsSx, Sy, andSi from

the original ENSS, and all of them have to return only a single valuex, y, andi, respectively.

Segmentalization of Block Statements

Suppose thatNodes(b) indicates a set of nodes that are included in the given block statement

b. If an ENSS satisfies all the following formulae (18) and (19), we cannot extract it as a single

method.

∃v ∈ Nodes(b)(v ∈ S) ∧ ∃u ∈ Nodes(b)(u /∈ S) (18)

∃v ∈ S(v ∈ Nodes(b)) ∧ ∃u ∈ S(u /∈ Nodes(b)) (19)

Figure 22 shows an instance of ENSs that satisfy these formulae. As this figure shows, we

cannot extractS as is. This is because one node inS is included inif statement, and the other node

is not included in the statement. To resolve this problem, we restrict nodes in each of ENSs to be

in the same block statement. By this restriction, the 3rd line and the 5th line in Figure 22 can be

included in the same ENS. Therefore, we get 2 ENSs in this example, and each of them can be

extracted as a single method.

6.6 STEP-P6: Detect Pairwise Relationships

In this step, we detect pairwise relationships of ENSs in a given method pair. In other words,

assuming that⇌ indicates the pairwise relationships andSm1(2)
is an ENS of methodm1(2), for

each ofSm1(2)
∈ DiffNodeSets(Gm1(2)

) we detect whetherSm2(1)
∈ DiffNodeSets(Gm2(1)

) sat-

isfiesSm1 ⇌ Sm2 exists or not. Note thatSm1 ⇌ Sm2 indicates thatSm1 andSm2 can be

43

extracted as methods whose signatures are the same as each other. If an ENSS has no correspon-

dent in the other method, we have to make an empty method whose signature is the same asS in

the derived class that does not haveS.

We regard a pair of ENSsSm1 andSm2 asSm1 ⇌ Sm2 if they satisfy the following two

requirements.

Requirement P6-1: The types of return values ofSm1 andSm2 are the same as each other.

Requirement P6-2: The conditions to call the new methods created by extractingSm1 andSm2

are the same as each other.

We describe these requirements in detail in the following subsections. Herein,EM Sm1(2)

means the method created by extracting the ENSSm1(2)
.

6.6.1 Requirement P6-1: Requirement the Type of the Return Value

To makeEM Sm1
andEM Sm2

having the same signature, it is necessary that the types of

return values ofEM Sm1
andEM Sm2

are same to each other.

As described in 6.5.3, the return values ofEM Sm1(2)
are defined asOutputVariables(Gm1(2)

, Sm1(2)
)

(formula (14)). In addition, the number of elements inOutputVariables(Gm1(2)
, Sm1(2)

) is at most

1 because of the processing described in 6.5.5.

We define thatEM Sm1
andEM Sm2

have the same type of the return value if they satisfy

formula (20).

(|OutputVariables(Gm1 , Sm1)| = |OutputVariables(Gm2 , Sm2)|)

∧ (∀p ∈ OutputVariables(Gm1 , Sm1)∃q ∈ OutputVariables(Gm2 , Sm2)

[varType(p) = varType(q)]) (20)

Note that we do not consider parameters ofEM Sm1
andEM Sm2

to detect the pairwise re-

lationships. This is because we can make them having the same signature by adding non-used

parameters in the case that the parameters ofEM Sm1
andEM Sm2

are different. For example,

suppose thatEM Sm1
needs one parameter whose type is integer andEM Sm2

needs one parameter

whose type is string. In this case, we can match the signatures ofEM Sm1
andEM Sm2

by adding

a string parameter inEM Sm1
and an integer parameterEM Sm2

.

6.6.2 Requirement P6-2: Requirement about Conditions for Call

To extractEM Sm1
andEM Sm2

as same signature methods, it is necessary thatEM Sm1
and

EM Sm2
are called under the same conditions.

44

if (x == 0) {

System.out.println(“2nd line”);

}

if (y == 1) {

System.out.println(“6th line”);

}

if (x == 0) {

System.out.println(“2nd”);

}

if (y == 1) {

System.out.println(“6th”);

}

method A method B

if (x == 0) {

process2ndLine();

}

if (y == 1) {

process6thLine();

}

System.out.println

(“2nd line”);

System.out.println

(“6th line”);

System.out.println

(“2nd”);

System.out.println

(“6th”);

behavior is changed

A1

A2 B2

B1

Figure 23: An Example of Wrong Pairwise Relationships Caused by not Considering Conditions

for Call

Figure 23 shows an example of wrong correspondence of ENSs. This is caused by not con-

sidering the conditions for call of each ENSs. In this example, there are two ENSsA1 andA2 in

methodA, and there are also two ENSsB1 andB2 in methodB. All of the ENSs are inif state-

ments, which means that methods created by extracting these ENSs are called if the conditional

predicates of the correspondingif statements are satisfied. However, the pairwise relationships

shown in the figure do not consider the conditions, therefore the behavior of methodB is changed

after the refactoring.

As described in 6.5.4, the conditions to callEM Sm1(2)
are represented by control dependence

edges, and all the nodes always have 1 control dependence from other nodes. In addition, all the

nodes in an ENS are contained by a single block statement or contained by their owner method

directly by the process described in 6.5.5. Consequently, all the control dependence edges toS

have the same tail node. In other words, the formula (21) is always satisfied for every ENSS.

|InputControlNodes(G,S)| = 1 (21)

Here, we defineICN S as the unique element inInputControlNodes(G,S). We regard a pair of

45

a

b c

d e

i

method

m1

f

hg

x(int)

str(String)
α

A

B C

D

I

FE

G

Hi(int)
text(String)

β

γ

method

m2

α β γ δ

Satisfy Requirement P6-1 Satisfy Requirement P6-2

c ～ C

α γ，，，，β δ

Input Control Node

α β γ δ

* c * C

δ

String Stringint int

↽⇀ ↽⇀

: Clone Nodes : Non-Clone Nodes

: Data Dependence : Control Dependence

“*” means

Method Enter

Node

Figure 24: An Example of Pairwise Relationships

ENSs (Sm1 , Sm2) as having same conditions for call if and only if they satisfy the formula (22).

(ICN Sm1
∼ ICN Sm2

) ∨ (∃S′
1 ∈ DiffNodeSets(Gm1)∃S′

2 ∈ DiffNodeSets(Gm2)

[S′
1 ⇌ S′

2 ∧ ICN Sm1
∈ S′

1 ∧ ICN Sm2
∈ S′

2]) (22)

46

6.6.3 An Example of Pairwise Relationships Detection

Figure 24 shows an example of pairwise relationships detection. Due to space limitation, we

do not write method enter nodes and control dependence from them in the figure.

In this example, there are two ENSsα andβ in methodm1, and there are also two ENSs

γ andδ in methodm2. Return values ofEMα andEMγ are integer values, and return values

of EMβ andEMδ are string values. Consequently, two pairs of ENSs(α, γ) and(β, δ) satisfy

Requirement P6-1.

Then, the proposed method checks the correspondence of call conditions. In this example,

ICN α andICN γ are the method enter nodes, which means that a pair of ENSs(α, γ) satisfies

Requirement P6-2. In the case of(β, δ), ICN β is c, andICN δ is C. Consequently, the pair of

ENS(β, δ) satisfies Requirement P6-2 becausec ∼ C.

As a result, we get two pairs of ENSs(α, γ) and(β, δ) in this example.

47

7 Supporting for Method Groups

In this section, we describe the steps of proposed method for method groups. As described

in 5.2, we use method pair information calculated in STEP-P1 to STEP-P6, therefore the steps

from STEP-S1 to STEP-S6 are identical to from STEP-P1 to STEP-P6. Therefore, we describe

the steps after STEP-S6 in the following subsections.

7.1 STEP-S7: Identify Method Groups

In this step, we detect groups of methods on whichForm Template Method can be applied.

In the reminder of this thesis, suppose thatm1
.
= m2 indicates that a pair of methodsm1 andm2

is a refactoring candidate detected in the process described in 6.3.

Obviously, the binary relation
.
= is a symmetric relation (m1

.
= m2 ⇒ m2

.
= m1). However,

it is not a transitive relation. Assume that there are 3 methodsm1, m2 andm3, andm1
.
= m2,

m2
.
= m3. In this case, there is at least 1 clone pair betweenm1 andm2, and betweenm2 and

m3 because of the definitions of
.
=. However, there is no clone pair betweenm1 andm3 if all the

clone pairs betweenm1 andm2 are not overlapped by any of clone pairs betweenm2 andm3. If

there is no clone pair betweenm1 andm3, m1 ̸
.
= m3 because of its definitions.

However, the proposed method temporarily regards a group of methods as a candidate method

group if it satisfies the formula (23).

∀m ∈ MS , ∃m′ ∈ MS (m
.
= m′) (23)

Under this definition, ifm1
.
= m2 andm2

.
= m3 are satisfied, a group of methodsm1, m2, and

m3 is regarded as a candidate method group regardless of whetherm1
.
= m3 is satisfied or not.

If there is no clone pairs betweenm1 andm3, the proposed method omits the method group from

candidate method groups in the next step.

7.2 STEP-S8: Detect Common and Unique Processes

In this step, the proposed method detects common processes and unique processes in every

method group. Suppose thatMS indicates a method group andGmi means the PDG of method

mi.

Statements must be duplicate between all the methods in the method group to be pulled up

into a base class as a template method. We defineCommonNodesgroup(Gmi) as a group of nodes

in VGmi
that are pulled up into a base class. The definition is shown in formula (24).

CommonNodesgroup(Gmi) := {vi ∈ VGmi
| ∀mj ∈ MS , ∃vj ∈ VGmj

[vi ∼ vj]} (24)

48

a

b c

d e

g

i

f

h

A

B C

D E

F

H

G

1

2 3

4

6

8

5

7

d e

g

4

6

8

7

A

B C

E

F

H

G

D

a

b c

i

f

h

1

2 3

5

method

m1

method

m2

method

m2

method

m3

method

m3

method

m1

a

b c

d e

g

i

f

h

A

B C

D E

F

H

G

1

2 3

4

6

8

5

7

method

m1

method

m2

method

m3

: Common Nodes

: Unique Nodes

Figure 25: An Example of Method Group

We defineDiffNodesgroup(Gmi) as a group of nodes that need to remain in the derived class that

has methodmi. The definition is shown in the formula (25).

DiffNodesgroup(Gmi) := {vi ∈ VGmi
| vi /∈ CommonNodesgroup(Gmi)} (25)

Figure 25 shows an example of method group. In this example, there are 3 methods (m1,

m2, andm3) and all the pairs of them are detected as candidate method pairs, in other words

m1
.
= m2, m2

.
= m3, andm1

.
= m3. In this example,CommonNodesgroup(Gm1) and

DiffNodesgroup(Gm1) become as follows.

CommonNodesgroup(Gm1) = {a, b, c, i}

DiffNodesgroup(Gm1) = {d, e, f, g, h}

In some cases, some nodes included inCommonNodes(Gmi) are omitted to makeCommonNodesgroup(Gm1).

Consequently, the amount of common processes on method groups might be quite small than that

on method pairs. As a result, the number of elements inCommonNodes(Gmi) might be less

than the threshold of minimum code clone size that is specified by users. Therefore, the proposed

method omits method groups if the number of their common nodes is less than the minimum clone

size. Consequently, in the case thatm1
.
= m2, m2

.
= m3, andm1 ̸

.
= m3, the proposed method

omit the method group that consists ofm1, m2 andm3.

In the next, the proposed method detects ENSs for every method inMS . There is no difference

in the definitions of ENSs between method pairs and method groups because the detection of ENSs

49

is closed in each method.

7.3 STEP-S9: Detect Relationships on ENSs

In this step, the proposed method detects correspondences of ENSs between methods inMS .

Likewise on method pairs, the correspondence relationship means that ENSs in a correspon-

dence relationship can be extracted as methods whose signatures are the same. As described in

6.6, the proposed method regards a pair of ENSsSm1 andSm2 asSm1 ⇌ Sm2 if they satisfy the

requirements about their return values and their call conditions. We can detect this relationship by

expanding that on method pairs.

Suppose thatSm1 , Sm2 , andSm3 are ENSs in methodsm1, m2, andm3, respectively. In ad-

dition, assume thatSm1 ⇌ Sm2 andSm2 ⇌ Sm3 . Moreover, assume thatEM S means a method

created by extracting an ENSS. Under this assumption, the types of return valuesEM Sm1
and

EM Sm2
are the same. Moreover, those ofEM Sm2

andEM Sm3
are also the same. Therefore, the

return values ofEM Sm1
andEM Sm3

are the same. Similarly, the call conditions forEM Sm1
,

EM Sm2
, andEM Sm3

are same to each other. Consequently, the binary relationship⇌ is a transi-

tive relation (Sm1 ⇌ Sm2 ∧ Sm2 ⇌ Sm3 ⇒ Sm1 ⇌ Sm3).

Obviously, the binary relation⇌ is a symmetric relation (Sm1 ⇌ Sm2 ⇒ Sm2 ⇌ Sm1).

Moreover, it is also a reflexive relation (Sm1 ⇌ Sm1). Consequently, the binary relation⇌ is an

equivalence relation.

Therefore, we can detect correspondence relationships between 3 or more ENSs by detecting

equivalent classes.

50

List of Method Pairs

Source Code of the Methods

in the Selected Method PairButton to Call Filtering Function

Figure 26: A Whole Snapshot of Creios (for Method Pairs)

8 Implementation

8.1 Overview

We have implemented the proposed method as a tool namedCreios (Clone Removal Expediter

by Identifying Opportunities with Scorpio) in Java. Creios can handle software systems written in

Java, because Scorpio, the clone detection tool used in Creios, can handle only Java. However, the

proposed method can be applied to other programming languages if PDGs are built.

The LOC of Creios is 17,290 with comments and white lines. It becomes 11,125 without

comments and white lines. Moreover, Creios consists of 136 source files. In addition, it uses the

external libraries as follows.

Scorpio: Scorpio is a PDG-based code clone detector. Creios uses it to detect code clones from

the target source code [34].

MASU: MASU (Metrics Assesment plugin platform for Software Unit) is a source code analysis

platform [53]. Creios uses it to analyze the source code. MASU is also used in Scorpio.

MASU is an open source project in SourceForge.

JUNG: JUNG (Java Universal Network/Graph Framework) is a framework that provides soft-

ware libraries for the modeling, analysis, and visualization of data that can be represented as

a graph or network [54]. Creios uses it to visualize PDGs. JUNG is an open source project

in SourceForge likewise MASU.

Creios has two modes. One is for method pairs, and the other is for method groups. We

describe each of them in detail in the following subsections. Note that Creios does not modify

51

Common Statements

An ENS

To Be Extracted as the

Same Signature Method

Figure 27: A Snapshot of Source Code View

the source code by itself. Therefore, users need to perform source code modification by their own

effort.

8.2 Functionalities for Method Pairs

Figure 26 shows a snapshot of Creios for method pairs. The table shows all the candidate

method pairs that Creios detected. When users select a method pair from the table, the source

code of methods included in the pair is shown in the right panel.

Figure 27 shows a snapshot of source code view. In the source code view, common statements

are highlighted with red. Statements highlighted by red mean that they should be pulled up into

the base class as a template method. On the other hand, the other statements are unique processes

in each method. Statements surrounded by the same color rectangles make an ENS. In addition,

if users click statements that are not highlighted by red, an ENS includes the statement are high-

lighted. Moreover, if users click an ENS in one method, Creios also highlights the corresponding

ENS in the other method. ENSs highlighted by the same color are under the correspondence re-

lationship (Sm1 ⇌ Sm2), which indicates that the methods created by extracting them have the

same signature. Additionally, Creios shows the signature of method created from an ENS if users

put cursor on the ENS.

Creios also has PDG view. Figure 28 shows a snapshot of PDG view. Each circle indicates

a node of PDG, and each line indicates an edge of PDG. Nodes colored by red are nodes whose

52

Data Dependence Edge

Control Dependence Edge Common Statements

Unique Statements

Figure 28: A Snapshot of PDG View

owner statements are included in common statements. The blue lines indicate data dependence

edges, and the black broken lines indicate control dependence edges. The character string on each

data dependence edge indicates the name of the variable that the edge represents. Note that Creios

omits the method enter nodes and execute dependence edges in PDG view. To visualize PDGs,

Creios uses APIs provided by JUNG.

Creios can show both the source code view and PDG view at a time. Figure 29 shows the

apposing view of source code view and PDG view. The functionalities of the source code view

and the PDG view in the apposing view are exactly same to the original ones.

In addition, Creios has a filtering function of method pairs with some metrics. All the metrics

are calculated for each method pair. The metrics are as follows under the assumption thatm1 and

m2 are methods in a method pair, andGm is the PDG of methodm.

SIM: The similarity between two methods of each method pair (defined in the formula (26)).

SIM :=
|CommonNodes(Gm1)|+ |CommonNodes(Gm2)|

|VGm1
|+ |VGm2

|
(26)

CN: The number of nodes whose owner statements are included in common statements (defined

in the formula (27)).

CN := |CommonNodes(Gm1(2)
)| (27)

DN+, DN-: The number of nodes whose owner statements are not included in common state-

ments. Note that the values of this metric are different between each method. Therefore,

we define DN+ as the larger one (formula (28)), and DN- as the smaller one (formula (29)),

53

Figure 29: A Snapshot of Apposing View of Source Code View and PDG View

respectively.

DN+ := max (|DiffNodes(Gm1)|, |DiffNodes(Gm2)|) (28)

DN− := min(|DiffNodes(Gm1)|, |DiffNodes(Gm2)|) (29)

LOC+, LOC-: The number of lines of each method. Obviously, the values of this metric are

different between each method. Likewise DN+ and DN-, we define LOC+ as the larger one,

and LOC- as the smaller one, respectively.

DG: The number of new methods that are created by extracting ENSs. DG is defined in the

formula (30), where N is the number of ENSs that have their correspondents in the other

method. Note that the ‘correspondent’ of an ENSS1 is ⇋ (S1).

DG := |DiffNodeSets(Gm1)|+ |DiffNodeSets(Gm2)| −N (30)

DOI: The depth of inheritance from the common base class to the owner classes of the two

methods. If the value is different for each method, we choose the larger one as the value of

DOI.

54

Figure 30: An Example of Candidate Method Pair

Table 1 shows the values of metrics of the method pair shown in Figure 30. Note that the

values of inheritance depth from the common base class are different for each class that has the

target method, therefore the larger value ‘2’ is choosed as the value of DOI in this example.

Users can make a short list of candidate method pairs with the filtering function. The filtering

function returns a list of method pairs whose metrics values are in the range that users specified.

To call the filtering function, users push the button on the top of the table listing the method pairs.

A filtering view is launched when users push the button. Figure 31 shows a snapshot of the

filtering view. The filtering view consists of three parts: a metrics graph, a list of metrics values,

and a list of method pairs that pass the filtering. Figure 32 shows a metrics graph. Users specify

the thresholds of each metric by dragging the graph. The area whose background color is gray

Table 1: The Values of Metrics in the Method Pair of Figure 30

SIM CN DN+ DN- LOC+ LOC- DG DOI

0.769 5 3 1 9 6 2 2

55

Metrics Graph

Metrics Values

List of Method Pairs

that Pass the Filter

Figure 31: A Snapshot of Filtering View

The number of

selected method pairs / all the method pairs

Metrics

Each method pair corresponds to a single polygonal curve

the red one is in the range at all the metrics

the gray one is not in the range at some of metrics

The range of values

of each metric

Figure 32: A Metrics Graph

56

The Lower Limit The Upper Limit

Figure 33: View of the Metrics Values

List of

Method Groups

List of Methods

in the Selected

Method Group

Source Code of the

Selected Methods

A

B-1

B-2

C-1 C-2

Figure 34: A Whole Snapshot of Creios (for Method Groups)

indicates the range of thresholds for every metric, and the area whose background color is white

indicates the outside of the range. In the metric graph, each polygonal curve corresponds a method

pair. The polygonal curve becomes red if and only if all the metrics of the method pair represented

by the polygonal curve are in the specified threshold. If any of the metrics is not in the threshold,

the polygonal curve becomes gray. The specified lower limit and the specified upper limit of each

metric are shown in the metrics values view (Figure 33). The list of selected method pairs is shown

in the right of the filtering view. Users can view the source code and the PDGs of method pairs

that are listed in the view. The functionalities of the source code view and the PDG view in the

filtering view are exactly same to the original ones.

8.3 Functionalities for Method Groups

Figure 34 shows a snapshot of Creios for method groups. The left table shows all the candidate

method groups that Creios detected. When users select a method group from table A, all the

57

methods in the selected method group are shown in the tables B-1 and B-2. Note that the tables

B-1 and B-2 show the same contents. If users choose one of the methods in table B-1, the source

code of the selected method is shown in the source code view C-1. Similarly, if users choose one

of the methods in table B-2, its source code is shown in the source code view C-2. The source

code view and the PDG view are the same to those of described in 8.2.

58

CCCheckout

if (getPreserveTime()) {

…

}

…

if (getReserved()) {

…

} else {

…

}

…

checkOption(cmd)

CCCheckin

checkOption(cmd)

ClearCase ClearCase

checkOption(cmd)

checkOther(cmd)

CCCheckout

checkOther(cmd)

CCCheckin

checkOther(cmd)

if (getReserved()) {

cmd.createArgument().setValue(FLAG_RESERVED);

} else {

cmd.createArgument().setValue(FLAG_UNRESERVED);

}

…

if (getNoWarn()) {

cmd.createArgument().setValue(FLAG_NOCOMMENT);

}

if (getComment() != null) {

getCommentCommand(cmd);

} else {

if (getCommentFile() != null) {

getCommentFileCommand(cmd);

} else {

cmd.createArgument().setValue(FLAG_NOWARN);

}

}

cmd.createArgument().setValue(getViewPath());

pull up

: Code Clone

method : abstract method

extract

extract

A

B

C

A

B

C

if (getComment() != null) {

getCommentCommand(cmd);

} else {

if (getCommentFile() != null) {

getCommentFileCommand(cmd);

} else {

cmd.createArgument().setValue(FLAG_NOCOMMENT);

}

}

if (getNoWarn()) {

cmd.createArgument().setValue(FLAG_NOWARN);

}

if (getPreserveTime()) {

cmd.createArgument().setValue(FLAG_PRESERVETIME);

}

…

cmd.createArgument().setValue(getViewPath());

if (getComment() != null) {

…

} else {

…

}

if (getNoWarn()) {

…

}

checkOther(cmd);

cmd.createArgument().setValue(getViewPath());

Figure 35: An Example of Application ofForm Template Method with the Proposed Method

9 Evaluation

In order to evaluate the proposed method, we conducted experiments on two open source

software systems. Table 2 shows the target software systems, their scale, and the environment of

the experiments. The following subsections describe each of the experiments.

9.1 Evaluation of Supporting for Method Pairs

Table 3 shows the the number of detected candidates, and elapsed time to execute Creios on

each target software system. The numbers of candidate method pairs are 226 and 45, so that it can

be difficult for users to identify all the candidates manually. In addition, Creios can detect all the

candidates in a few minutes although the target software systems have hundreds of source files.

Figure 35 shows a refactoring candidate in Ant detected by Creios and the result of the refac-

Table 2: Target Software Systems

Name In Short LOC # of Files Environment

Apache-Ant Ant 212,401 829
CPU: Xeon 2.27GHz(8 core)，RAM: 32GB

Apache-Synapse Synapse 58,418 383

59

0

500

1000

1500

2000

2500

3000

[sec] Elapsed Time to Refactor

Figure 36: The Box-Plot of the Time to ApplyForm Template Method on Synapse

toring. In this example, there is a base class,ClearCase, and there are two derived classes,CC-

CheckoutandCCCheckin.There are also similar methods in the derived classes,checkOption. By

applyingForm Template Method to this target, duplicate statements are pulled up into in the

methodcheckOptiondefined in the base class and new methodscheckOtherare created to imple-

ment the unique statements in each derived class. Note that there is a difference of the order of

code fragments in code clones: inCCCheckoutthe code fragments labeled A, B, and C are exe-

cuted in this order, however inCCCheckinthe order of code fragments is B-A-C. Therefore, this

example is an instance that the previous techniques cannot detect.

In addition, we appliedForm Template Method refactoring to all the 45 candidates that the

proposed method had suggested in Synapse in order to confirm the adequacy and the efficiency of

the proposed method as a technique to support refactorings. In this experiment, we successfully

refactored all the 45 candidates detected with Creios in Synapse, and confirmed that the behavior

of the program is preserved by using test suites attached to the software system. Additionally, we

measured the time needed to each of the refactorings. Figure 36 shows the box-plots of the time

needed to apply refactorings. Because Creios suggests that all the candidates can be refactored at

a time, we run Creios at once and apply refactorings using the output. The time to execute Creios

to Synapse is 95 seconds as shown in Table 3. As a result, we could apply refactorings in few

Table 3: The Number of Detected Candidates and Elapsed Time on Method Pairs

Name # of Candidates Elapsed Time [s]

Ant 226 178

Synapse 45 66

60

minutes in average nevertheless we are unfamiliar with the software.

9.2 Evaluation of Supporting for Method Groups

Table 4 shows the number of detected method groups, the number of them that have 3 or more

methods, and elapsed time to detect them on each target software.

Likewise on method pairs, we appliedForm Template Method refactoring to all the 6 method

groups that the proposed method had suggested in Synapse. As a result, we successfully refactored

all the candidates and confirmed that the behavior is preserved by using test suites.

9.3 Experiment with Subjects

9.3.1 Overview of the Experiment

We conducted an experiment with 7 subjects. All the subjects belong to Osaka University’s

Graduate School of Information and Technology (IST) or Osaka University’s Department of In-

formation and Computer Sciences in School of Engineering Science (ICS). The breakout of the

subjects is that: 3 master’s students in IST, 3 undergraduate students of fourth grader in ICS, and

1 research student in IST.

The objective of this experiment is to investigate the effectiveness of the proposed method as

refactoring support method. In this experiment, subjects applyForm Template Method refactor-

ing after a short introduction and practice, and we measure elapsed time that they need to finish

the refactoring. All the subjects refactored 2 method groups described in 9.3.2. Subjects applied

refactorings to one candidate method group with Creios, and they applied refactorings to the other

candidate withCCFinder.

9.3.2 Target Method Groups

As described above, subjects appliedForm Template Method to 2 method groups. The 2

method groups do not differ depending on the subjects. We call the 2 method groupsCandidate-

A andCandidate-B, respectively.

Table 4: The Number of Detected Candidates and Elapsed Time on Method Groups

Name # of Candidates
of Candidates

Elapsed Time [s]
(3 or more methods)

Ant 48 18 195

Synapse 6 2 68

61

: Common Statements : ENSs

public PlanarImage executeDrawOperation() {

BufferedImage bi = new BufferedImage(width, height,

BufferedImage.TYPE_4BYTE_ABGR_PRE);

Graphics2D graphics = (Graphics2D) bi.getGraphics();

if (!stroke.equals(“transparent”) {

BasicStroke bStroke = new BasicStroke(stroke_width);

graphics.setColor(ColorMapper.getColorByName(stroke));

graphics.setStroke(bStroke);

graphics.draw(new Ellipse2D.Double(0, 0, width, height);

{

if (!fill.equals(“transparent”)) {

graphics.setColor(ColorMapper.getColorByName(fill));

grahpics.fill(new Ellipse2D.Double(0, 0, width, height));

}

for (int i = 0; i < instructions.size(); i++) {

ImageOperation instr = ((ImageOperation) instructions.elementAt(i));

if (instr instanceof DrawOperation) {

PlanarImage img = ((DrawOperation) instr).executeDrawOperation();

graphics.drawImage(img.getAsBufferedImage(), null, 0, 0);

} else if (instr instanceof TransformOperation) {

graphics = (Graphics2D) bi.getGraphics();

PlanarImage image = ((TransformOperation) instr)

.executeTransformOperation(PlanarImage.wrapRenderedImage(bi));

bi = image.getAsBufferedImage();

}

}

return PlanarImage.wrapRenderedImage(bi);

}

(a) Candidate-A

: Common Statements : ENSs

public void execute throws BuildException {

Commandline commandline = new Commandline();

Project aProj = getProjcet();

int result = 0;

if (getViewPath() == null) {

setViewPath(aProj.getBaseDir().getPath());

}

commandLine.setExecutable(getClearToolCommand());

commandLine.createArgument().setValues(COMMAND_MKBL);

checkOption(commandLine);

if (!getFailOnErr()) {

getProject().log(“Ignoring any errors that occur for: “ +

getBaselineRootName(), Ptoject.MAG_VERBOSE);

}

result = run(commandline);

if (Execute.isFailure(reault) && getFailOnErr()) {

String msg = “Failed executing: “ + commandLine.toString();

throw new BuildException(msg.getLocation());

}

}

(b) Candidate-B

Figure 37: Candidate Method Groups

62

Figure 37 shows the source code and the outputs of Creios on each candidate. The features of

the 2 method groups are shown in Table 5.

9.3.3 Prodcedure of the Experiment

The procedure of the experiment consists of five steps as follows.

1. We give a brief introduction to subjects.

2. Subjects applyForm Template Method to a simple example.

3. We divide subjects into 4 groups. Table 6 shows the groups and assignments of each subject.

4. Subjects apply refactorings to the assigned method group.

5. Subjects apply refactorings to the other method group.

Introduction to subjects

At first, we gave an introduction to subjects about the background of this study and the exper-

imental procedure. The introduction includes the following information.

• Code clones and their removal techniques.

• Form Template Method refactoring pattern.

• How to applyForm Template Method.

• How to use Creios.

• The procedure of the experiment.

Practice

Second, we have subjects practice applyingForm Template Method with a simple method

group. The target method group consists of 2 methods, and it contains 2 ENSs (note that we count

a pair of ENSs (S1, S2) as 1 ENS ifS1 ⇌ S2). The purposes of the practice are (1) to have subjects

Table 5: The Features of Target Method Groups

Label # of Methods # of Common Nodes # of ENSs

Candidate-A 3 19 3

Candidate-B 12 9 5

63

understand refactoring steps ofForm Template Method, and (2) to have subjects be familiar with

the tool.

Grouping

In the next, we divide subjects into 4 groups. Table 6 shows the groups of subjects. As this

table shows, the differences between each group are as follows:

• Which candidate do they refactor first?

• Which candidate do they use Creios?

Apply Refactoring

Subjects apply refactoring to the assigned target method group. For example, subjects in Group

1 refactor candidate A with Creios. We measure the elapsed time required to finish the refactoring

for every subject.

9.3.4 Result

Table 7 shows the elapsed time to finishForm Template Method for every subject. The

numeric characters in this table ‘hh:mm:ss’ indicates that the subject needhh hours andmm

minutes andss seconds to finish their refactoring tasks. For example, Subject 1 had finished

applying refactoring on Candidate-A in 22 minutes and 45 seconds. ‘N/A’ means that the subject

cannot finish refactoring in the case.

As the table shows, the time required to finish refactoring tasks varies greatly among subjects.

There is also great variability among Candidate-A and Candidate-B; all the subjects required much

time on Candidate-B than Candidate-A. This is because the degree of difficulty of Candidate-B

Table 6: Groups of Subjects

Group ID Assigned Subjects First Target and Using Tool Second Target and Using Tool

1
Subject 1 Candidate-A Candidate-B

Subject 2 Creios CCFinder

2 Subject 5
Candidate-B Candidate-A

Creios CCFinder

3
Subject 6 Candidate-A Candidate-B

Subject 7 CCFinder Creios

4
Subject 3 Candidate-B Candidate-A

Subject 4 CCFinder Creios

64

is higher than that of Candidate-A. Table 8 shows the average time to finish the refactorings. As

the table shows, the elapsed time with Creios is higher than that withCCFinder in Candidate-

A, meanwhile the opposite result is shown in Candidate-B. As a result, Creios cannot reduce

time required for the refactorings in the easier candidate, but it can reduse time required for the

refactorings in the more difficult candidate. Therefore, Creios is useful in a case that the target

method group is complex and it has a number of the methods.

Table 7: Elapsed Time to FinishForm Template Method Application

Subjects Group ID Candidate-A Candidate-B

Subject 1 1

with Creios

0:22:45

with CCFinder

0:50:30

Subject 2 1 0:52:00 1:17:00

Subject 3 4 0:19:22 N/A

Subject 4 4 0:09:58 0:27:45

Subject 5 2

with CCFinder

0:12:04

with Creios

0:25:30

Subject 6 3 0:22:55 0:50:28

Subject 7 3 0:35:20 1:04:15

Table 8: The Average Time

Candidate-A Candidate-B Both

with Creios 0:28:14 0:46:44 0:34:54

with CCFinder 0:23:26 0:51:45 0:37:36

Both 0:25:50 0:49:15 0:36:09

65

10 Discussion

10.1 PDG Creation

There are some other dependences except data, control, and execute dependence that should

be considered in PDGs. In the proposed method, dependence of break and continue statements

and dependence of exception are considered. However, the proposed method does not consider

dependence caused by the following factors.

• Library call.

• Alias.

• Presence of innner classes.

• Reflection.

Of these factors, we can consider dependence caused by library calls by giving the source code

of libraries as additional input of the proposed method. However, it is quite difficult to give the

source code of all the libraries that are used in the target software systems as the input.

In the experiments of this study, we cannot find instances that suffer any problems by depen-

dence that are not considered in the proposed method. However, there is a risk that the proposed

method suggest refactoring candidate incorrectly by these dependence. Thus, it is necessary to

consider these factors to make the proposed method robust.

10.2 Detection of Common Statements

As described in 6.4, the proposed method omits clone pairs except the most largest one in the

case that there are duplications of clone pairs. The purpose of this is to suggest more nodes as

common statements. However, in some cases, this selection may be not appropriate. We can avoid

this problem by delegating the selection to users. However, the proposed method does not have

this function at present.

10.3 Candidates that Need to be Tailored

As we described in Section 9.1, we appliedForm Template Method refactoring to 45 method

pairs detected in Synapse on method pairs. In some cases, we had to make some modifications

that Creios did not indicate, or we had to make some tailoring to the output of Creios to apply

the pattern. Table 9 shows the modifications or adjustments needed to apply refactorings, and the

number of candidates that needed them. The definitions of the terms in the table are as follows:

66

the term “modify ENS” means the cases in which we had to modify ENSs or their pairwise rela-

tionships between two methods that Creios suggests; the term “move methods into base class or

change their visibility” means the cases in which some methods defined in derived classes are used

in common processes and we had to move those methods into the base class and/or change their

visibilities; and the term “replace field references to calls of getter methods” indicates the cases in

which some fields are used in duplicate statements and they are not visible from the base class and

we had to replace references of these fields to calls of getter methods of them.

Issues of Visibility

The proposed method does not consider the visibility of methods and fields in the source code.

Therefore, code fragments that should be pulled up into template method can call methods or

reference fields that are not accessible from the base class. In such cases, we need additional

modifications on the source code to applyForm Template Method. We can apply the pattern to

such candidates by changing the visibility of methods and fields. However, it is not desirable that

code clone removal requires increasing the visibility of methods or fields, because such changes

could cause vulnerability [55]. For fields, if fields have getters and setters, we can resolve this

problem by using them.

Issues of ENSs and their Relationships

The proposed method automatically detects ENSs and correspondence relationships of ENSs.

However, the automatically detected ENSs or relationships of ENSs may not fit with users’ sensi-

bilities. Although the automatically detected ENSs and their relationships do not always suitable,

they can help users apply refactoring.

10.4 Detection of Method Groups

The proposed method forms method groups from all the methods that satisfy the requirements

described in 6.3. However, it may be more suitable to form method groups from a subset of

Table 9: The Candidates that Need some Modifications for Creios’s Outputs

of candidates that need no modifications 29

of candidates that need some modifications 16

modify ENS 12

move methods into base class and/or change their visibilities 4

replace field references to calls of getter methods 2

67

the methods. We can improve this issue by delegating the selection of methods that should be

included in method groups to users. However, the proposed method currently does not have this

functionality.

10.5 Threats to Validity of the Experiment with Subjects

In the experiment with subjects, we confirmed that the proposed method reduces time to refac-

tor in a case that the target is complex and there is a number of methods in the target method group.

However, we found the opposite result in a case that the target is not complex. There might be

bias of subjects’ abilities, so that the result might occur. We may get another result with different

grouping of subjects.

68

11 Conclusion

In this thesis, we proposed a new technique to assist developers to applyForm Template

Method refactorings to code clones. It detects refactoring candidates automatically and suggests

them to its users. It uses program dependence graphs as its data structure, which enables us to assist

developers removing code clones having trivial differences that have no impact on the meanings

of the program. Moreover, it can handle a group of three or more methods, which increases the

practicality of code clones removal.

We implemented the proposed method as a tool, and conducted an experiment to evaluate the

proposed method. We appliedForm Template Method to all the candidates that the tool suggests

in an open source software, and confirmed that we can refactor the candidates with preserving the

behavior of the program.

As future works, we are going to improve our method for assuring behavior preservation,

and implement a function that suggests the source code after the application ofForm Template

Method. Also, we are going to expand the proposed method to delegate selections for the issues

as follows.

• Methods that should be included in a method group.

• Common statements between methods in a method group.

• Statements that should be included in a set of nodes that should be extracted as a single

method.

• Relationships of ENSs.

Moreover, we are going to improve the proposed method to be able to focus on code clones

that affect maintainability significantly such as frequently modified code clones. Also, we are

going to evaluate the effectiveness of the proposed method by additional experiments.

69

Acknowledgements

During this work, I have been fortunate to have received assistance from many people. This

work could not have been possible without their valuable contributions.

First, I would like to express my sincere gratitude to my supervisor, Professor Shinji Kusumoto,

at the Osaka University, for his considerate support, encouragement, and adequate guidance for

this work.

Also, I would like to thank to Associate Professor, Kozo Okano, at the Osaka University for

his guidance, valuable suggestions and discussions for this work.

I am also deeply grateful to Associate Professor, Hiroshi Igaki, at the Osaka University for his

helpful comments and valuable suggestions.

I would like to express my heartfelt appreciation to Assistant Professor, Yoshiki Higo, at the

Osaka University for his zealous coaching, continuous support, and encouragement throughout

this work.

My sincere thanks go to all the subjects who take the time to the experiment for their effort,

comments, and close cooperation for this work.

Finally, I would like to thank all of my friends in the Department of Computer Science at

the Osaka University, especially the members in Kusumoto Laboratory, for their helpful advices,

suggestions and assistance.

70

References

[1] Y. Higo, S. Kusumoto, and K. Inoue. A survey of code clone detection and its related tech-

niques.IEICE Transactions on Information and Systems, Vol. 91-D, No. 6, pp. 1465–1481,

June 2008. (in Japanese).

[2] T. Kamiya, Y. Higo, and N. Yoshida. Evolving and hot topics on code clone detection tech-

niques.Journal of Computer Software, Vol. 28, No. 3, pp. 28–42, Aug. 2011. (in Japanese).

[3] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-linguistic token-based code

clone detection system for large scale source code.IEEE Transactions on Software Engi-

neering, Vol. 28, No. 7, pp. 654–670, July 2002.

[4] I. Baxter, A. Yahin, M. Anna L. Moura, and L. Bier. Clone detection using abstract syntax

trees. InProc. of the 14th International Conference on Software Maintenance, pp. 368–377,

Mar. 1998.

[5] J.H. Johnson. Substring matching for clone detection tools. InProc. of the 10th International

Conference on Software Maintenance, pp. 120–126, Sep. 1994.

[6] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting

duplicated code. InProc. of the 15th International Conference on Software Maintenance,

pp. 109–118, Aug. 1999.

[7] Z. Li, S. Myagmar, S. Lu, and Y.Zhou. Cp-miner : Finding copy-paste and related bugs in

large-scale software code.IEEE Transcations on Software Engineering, Vol. 32, No. 3, pp.

176–192, Mar. 2006.

[8] R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix trees. In

Proc. of the 13th Working Conference on Reverse Engineering, pp. 253–262, Oct. 2006.

[9] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard : Scalable and accurate tree-based

detection of code clones. InProc. of the 29th International Conference on Software Engi-

neering, May 2007.

[10] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code. InProc.

of the 8th International Symposium on Static Analysis, pp. 40–56, 2001.

[11] J. Krinke. Identifying similar code with program dependence graphs. InIn Proc. the 8th

Working conference on Reverse Engineering, pp. 301–309, Oct. 2001.

71

[12] Y. Higo and S. Kusumoto. Code clone detection on specialized pdgs with heuristics. InProc.

of the 15th European Conference on Software Maintenance and Reengineering, pp. 75–84,

Mar. 2011.

[13] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function

clones in a software system using metrics. InProc. of the 12th International Conference on

Software Maintenance, pp. 244–253, Nov. 1996.

[14] J. Ossher, H. Sajnani, and C. Lopes. File cloning in open source java projects: The good, the

bad, and the ugly. InProc. of the 27th International Conference on Software Maintenance,

pp. 283–292, Sep. 2011.

[15] Y. Sasaki, T. Yamaoto, Y. Hayase, and K. Inoue. File clone detection for a large scale

software system.IEICE Transactions on Information and Systems, Vol. J94-D, No. 8, pp.

1423–1433, Aug. 2011. (in Japanese).

[16] N. Göde and R. Kosheke. Incremental clone detection. InProc. of the 13th European Con-

ference on Software Maintenance and Reengineering, pp. 219–228, Mar. 2009.

[17] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code clone detection:

Incremental, distributed, scalable. InProc. of the 26th International Conference on Software

Maintenance, pp. 1–9, Sep. 2010.

[18] Y. Higo, Y. Ueda, M. Nishino, and S. Kusumoto. Incremental code clone detection: A pdg-

based approach. InProc. of the 18th Working Conference on Reverse Engineering, pp. 3–12,

Oct. 2011.

[19] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.Refactoring: Improving the

Design of Existing Code. Addison-Wesley Professional, 1999.

[20] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus. Does code decay?

assessing the evidence from change management data.IEEE Transactions on Software En-

gineering, Vol. 27, No. 1, pp. 1–12, Jan. 2001.

[21] E. Murphy-Hill and A. P. Black. Breaking the barriers to successful refactoring. InProc. of

the 30th International Conference on Software Engineering, pp. 421–430, May 2008.

[22] T. Mens and T. Tourẃe. A survey of software refactoring.IEEE Transactions on Software

Engineering, Vol. 30, No. 2, pp. 126–139, Feb. 2004.

[23] E. Gamma, R. H., R. Johnson, and J. M. Vlissides.Design Patterns : Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional, 1995.

72

[24] N. Juillerat and B. Hirsbrunner. Toward an implementation of the “form template method”

refactoring. InProc. of the 7th International Working Conference on Source Code Analysis

and Manipulation, pp. 81–90, Sep. 2007.

[25] T. Masai, N. Yoshida, M. Matsushita, and K. Inoue. Supporting difference extraction for

merging similar methods. InIEICE Technical Report, pp. 45–50, May 2010. (in Japanese).

[26] M. Ioka, N. Yoshida, T. Masai, Y. Higo, and K. Inoue. A tool support to merge similar

methods with a cohesion metric cob. InProc. of the 3rd International Workshop on Empirical

Software Engineering in Practice, pp. 23–24, Nov. 2011.

[27] M. Weiser. Program slicing. InProc. of the 5th International Conference on Software En-

ginieering, pp. 439–449, Mar. 1981.

[28] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use

in optimization.ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3,

pp. 319–349, 1987.

[29] N. Tsantalis and A. Chatzigeorgiou. Identification of extract method refactoring opportuni-

ties for the decomposition of methods.Journal of Systems and Software, Vol. 84, No. 10, pp.

1757–1782, Oct. 2011.

[30] K. Inoue, T. Kamiya, and S. Kusumoto. Code-clone detection methods.Computer Software,

Vol. 18, No. 5, pp. 529–536, 2001. (in Japanese).

[31] S. Bellon, R. Koschke, G. Antniol, J. Krinke, and E. Merlo. Comparison and evaluation

of clone detection tools.IEEE Transactions on Software Engineering, Vol. 31, No. 10, pp.

804–818, Oct. 2007.

[32] CCFinderX. available at<http://www.ccfinder.net/ccfinderx-j.html>.

[33] CloneDR. available at<http://www.semdesigns.com/Products/Clone/>.

[34] Scorpio. available at<http://www-sdl.ist.osaka-u.ac.jp/˜higo/cgi-bin/moin.cgi/scorpio>.

[35] W. F. Opdyke. Refactoring: A Program Restructuring Aid in Designing Object-Oriented

Application Frameworks. PhD thesis, University of Illinois, 1992.

[36] Y. Higo, S. Kusumoto, and K. Inoue. Identifying refactoring opportunities for removing code

clones with a metrics-based approach. In K. Cai, editor,Java in Academia and Research,

chapter 3, pp. 57–82. Concept Press Ltd., 2011.

73

[37] M. Balazinska, E. Merlo, M. Dagenais, and B. Lague. Advanced clone-analysis to sup-

port object-oriented system refactoring. InProc. of the 7th Working Conference on Reverse

Engineering, pp. 98–107, Nov. 2000.

[38] R. Cottrell, J. J. Chang, R. J. Walker, and J. Denzinger. Determing detailed structural cor-

respondence for generalization tasks. InProc. of the 6th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, pp. 165–174, 2007.

[39] R. Komondoor and S. Horwitz. Semantics-preserving procedure extraction. InProc. of

the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Language, pp.

155–169, 2000.

[40] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An empirical study of code clone

genealogies. InProc. of the ACM SIGSOFT Symposium on the Foundations of Software

Engineering, pp. 187–196, 2005.

[41] C. J. Kapser and M. W. Godfrey. “cloning considered harmful” considered harmful.Empir-

ical Software Enginieering, Vol. 13, No. 6, pp. 645–692, Dec. 2008.

[42] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams, Y. Zou, and A. E. Hassan. An empir-

ical study on inconsistent changes to code clones at the release level.Science of Computer

Programming in Press, 2011.

[43] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software quality analysis by

code clones in industrial legacy software. InProc. of the 8th IEEE Internaitional Software

Metrics Symposium, pp. 87–94, June 2002.

[44] A. Lozano and M. Wermelinger. Evaluating the harmfulness of cloning: A change based

experiment. InProc. of the 4th International Workshop on Mining Software Repositories,

May 2007.

[45] J. Krinke. Is cloned code more stable than non-cloned code? InProc. of the 8th International

Working Conference on Source Code Analysis and Manipulation, pp. 57–66, Sep. 2008.

[46] N. Göde and J. Harder. Clone stability. InProc. of the 15th European Conference on Soft-

ware Maintenance and Reengineering, pp. 65–74, Mar. 2011.

[47] N. Göde and R. Koschke. Frequency and risks of changes to clones. InProc. of the 33rd

International Conference on Software Engineering, pp. 311–320, May 2011.

74

[48] F. Rahman, C. Bird, and P. Devanbu. Clones: What is that smell? InProc. of the 7th IEEE

Working Conference on Mining Software Repositories, pp. 72–81, May 2010.

[49] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is duplicate code more frequently modified

than non-duplicate code in software evolution?: An empirical study on open source software.

In Proc. of the ERCIM Workshop on Software Evolution and International Workshop on

Principles of Software Evolution, pp. 73–82, Sep. 2010.

[50] Y. Sasaki, K. Hotta, Y. Higo, and S. Kusumoto. Is duplicate code good or bad? an empirical

study with multiple investigation methods and multiple detection tools. InProc. of the 22nd

International Symposium on Software Reliability Engineering, Nov. 2011.

[51] S. Lee, G. Bae, H. S. Chae, D. Bae, and Y. R. Kwon. Automated scheduling for clone-based

refactoring using a competent ga.Software: Practice and Experience, Vol. 41, No. 5, pp.

521–550, Apr. 2010.

[52] M. F. Zibran and C. K. Roy. A constraint programming approach to conflict-aware optimal

scheduling of prioritized code cloen refactoring. InProc. of the 11th International Working

Conference on Source Code Analysis and Manipulation, pp. 105–114, Sep. 2011.

[53] MASU. avilable at<http://sourceforge.net/projects/masu/>.

[54] JUNG. avilable at<http://jung.sourceforge.net/>.

[55] K. Maruyama and T. Omori. A security-aware refactoring tool for java programs. InProc.

of the 4th Workshop on Refactoring Tools, pp. 22–28, May 2011.

75

Algorithm 5 ForwardSlice(G1, G2, r1, r2, R1, R2)
Require: G1, G2, r1, r2, R1, R2, r1 = r2

Ensure: R1
∼= R2

1: R1 ←+ r1

2: R2 ←+ r2

3: for all e1 ∈ ForwardEdges(r1) do

4: for all e2 ∈ ForwardEdges(r2) do

5: r′1 ← head(e1)

6: r′2 ← head(e2)

7: if r′1 ̸= r′2 then

8: continue

9: end if

10: if r′1 ∈ R1 or r′2 ∈ R2 then

11: continue

12: end if

13: if r′1 ∈ R2 or r′2 ∈ R1 then

14: continue

15: end if

16: ForwardSlice(G1, G2, r
′
1, r

′
2, R1, R2)

17: end for

18: end for

A Algorithms for Detecting Isomorphic Subgraphs

SupposeG1 andG2 are the target PDGs. The algorithm to detect isomorphic subgraphs be-

tweenG1 andG2 with the forward slice is shown in Algorithm 5. Note thatR1 andR2 must be

initialized as empty sets to run this algorithm. In Scorpio, hash values are used to compare two

nodes. Therefore,r1 = r2 indicates that the hash value ofr1 is equal to that ofr2. Also, the

algorithm with the backward slice is shown in Algorithm 6. Both of the forward and backward

slices are used to detect code clones in Scorpio.

76

Algorithm 6 BackwardSlice(G1, G2, r1, r2, R1, R2)
Require: G1, G2, r1, r2, R1, R2, r1 = r2

Ensure: R1
∼= R2

1: R1 ←+ r1

2: R2 ←+ r2

3: for all e1 ∈ BackwardEdges(r1) do

4: for all e2 ∈ BackwardEdges(r2) do

5: r′1 ← tail(e1)

6: r′2 ← tail(e2)

7: if r′1 ̸= r′2 then

8: continue

9: end if

10: if r′1 ∈ R1 or r′2 ∈ R2 then

11: continue

12: end if

13: if r′1 ∈ R2 or r′2 ∈ R1 then

14: continue

15: end if

16: ForwardSlice(G1, G2, r
′
1, r

′
2, R1, R2)

17: end for

18: end for

77

