Master Thesis

Title

A Refactoring Support for Form Template Method using PDG-based
Code Clone Detection

Supervisor
Prof. Shinji KUSUMOTO

by
Keisuke HOTTA

February 7, 2012

Department of Computer Science
Graduate School of Information Science and Technology
Osaka University

Master Thesis

A Refactoring Support for Form Template Method using PDG-based Code Clone Detection

Keisuke HOTTA

Abstract

Recently, code clones have received much attention. Code clones are defined as source code
fragments that are identical or similar to each other. Code clones are introduced into software sys-
tems by various reasons such as copy-and-paste operations. It is generally said that the existences
of code clones make software maintenance more difficult. This is because if we modify a code
fragment, it is necessary to check its correspondents whether they need the same modifications si-
multaneously or not. To avoid negative effects of code clones, it is effective to remove code clones
with refactoring. Refactoring is a technique to transform one representation form of source code
to another without changing the external behavior of the subject systems. By applying refactoring
techniques to code clones, we can merge them spreading across multiple source files into a sin-
gle module. However, we need much effort to apply manual refactorings to them. Also, applying
manual refactorings is a complicated task, so that human related errors easily occur. Consequently,
techniques or tools for supporting refactoring activities are required.

There are some techniques to remove code clones. Applying “Form Template Method” is one
of the techniques and one of the refactoring patterns. Form Template Method focuses on similar
methods whose owner classes have the same base class. In this refactoring pattern, developers
write an outline of the process into the base class and implement the details of the process in the
derived classes. By applying Form Template Method refactoring, code clones existing in similar
methods are merged into the base class. One of the advantages of using this pattern is that we can
handle differences between target methods.

Some researchers have proposed methods to support Form Template Method refactorings.
However, they still have some issues. The issues are that they cannot handle trivial differences
even though they have no impacts on the behavior of the program, and that they can support
refactorings on only pairs of methods, which means they cannot support refactorings on groups
consisting of three or more methods. This thesis proposes a new method for supporting Form
Template Method applications to resolve all of these issues with program dependence graphs.

Keywords

Code Clones

Refactoring

Form Template Method
Program Dependence Graph
Software Maintenance

Contents

1 Introduction 1
2 Preliminaries 3
2.1 Program Dependence Graph00 3
2.1.1 Generic Definition 3
212 PDGsinThisStudy,
22 CodeClone e 6
221 Definition 6
222 CausesofCreations.
2.3 Code Clone DetectionMethods,
2.3.1 Categorization e 7
2.3.2 Scorpio (PDG-based Code Clone DetectionTool) 11
24 Refactoring e 12
2.4.1 Refactoring Activities L 12
2.4.2 Behavior Preservation 13
2.4.3 Refactoring Patterns Used for Code Clone Removals 13
3 Related Work 19
3.1 Techniques for Refactoringon CodeClones 19
3.2 Techniques for Refactoring on Code Clones withm Template Method . . . 20
3.3 TechniquesforCode Clone Managing, 20
4 Motivation 23
4.1 IssuesofPreviousStudies. L 23
4.1.1 Issue of Trivial Differences, 23
4.1.2 Issue of Groups of Three or More Methods 24
4.2 Objectiveof ThisStudy 26
5 Outline of the Proposed Method 27
51 Inputsand OUtpULS 27
5.2 ProcessingFlow e 28
5.3 Definitions. 29
5.3.1 ADirectedGraph. 29
532 APDG 30
533 ClonePairs 31

6 Supporting for Method Pairs 33

6.1 STEP-P1:Create PDGS it e e e 33
6.2 STEP-P2:DetectCodeClones 33
6.3 STEP-P3: Identify Method Pairs 34
6.4 STEP-P4: Detect Common and Unique Processes 35
6.5 STEP-P5: Detect Sets of Statements Extracted as a Single Method 37
6.5.1 Definition of the Extract Node Set 37
6.5.2 Parametersof ENSs 38
6.53 Outputof ENSs 39
6.5.4 ConditionsforCall 39
6.5.5 Requirements for ENSs to be Extracted as a Single Method 40
6.6 STEP-P6: Detect Pairwise Relationships 43
6.6.1 Requirement P6-1: Requirement the Type of the Return Value 44
6.6.2 Requirement P6-2: Requirement about Conditions forCall 44
6.6.3 An Example of Pairwise Relationships Detection 47
7 Supporting for Method Groups 48
7.1 STEP-S7:Identify Method Groups 48
7.2 STEP-S8: Detect Common and Unique Processes 48
7.3 STEP-S9: Detect RelationshipsonENSs 50
8 Implementation 51
8.1 OQVerview e 51
8.2 Functionalities for Method Pairs, 52
8.3 Functionalities for Method Groups, 57
9 Evaluation 59
9.1 Evaluation of Supporting for Method Pairs 59
9.2 Evaluation of Supporting for Method Groups 61
9.3 Experimentwith Subjects 61
9.3.1 Overview of the Experiment 61
9.3.2 TargetMethod Groups 61
9.3.3 Prodcedure of the Experiment 63

9.3.4 Result 64

10 Discussion 66
10.1 PDGCreation v i e
10.2 Detection of Common Statementso
10.3 Candidates that Needto be Tailored
10.4 Detection of Method Groups e
10.5 Threats to Validity of the Experiment with Subjects

11 Conclusion 69
Acknowledgements 70
References 71

A Algorithms for Detecting Isomorphic Subgraphs 76

List of Figures

© 00 N O O A W DN PP

N N NN R R R R R R R R B
W N EFP O © 0Ww~NO UM WDN R O

24
25
26
27
28
29
30
31
32
33

AnExample of PDG 3
An Example of PDG with Execute Dependence Edges 4
Data Dependence Considering State Changes of Objects

An Example of Clone PairsandClone Sets 6
AnExample of ASTS 9

A Code Clone with a Differnt Order of Statements 10
An Example ofextractClass 14

An Example ofExtract SuperClass L. 14

An Example ofextract Method L L Lo 15

An Example oPullUp Method, 16

An Example of Refactorings withorm Template Method 17
Motivating Example 1 23
Motivating Example 2 L 25
The Output of the Proposed Method 27
ADirected Graph 29
APDG . . e 30
ClonePairs(G1,G2) . v v v v v e e e 31

An example of Method Pairs Including Redundant Clone Pairs 36
An example of the Detectionof ENSs 37
An Example of Inputs and Outputs of ENSs 38
Behavior of Algorithm2 41
An Instance of Segmentalization of Block Statements 43

An Example of Wrong Pairwise Relationships Caused by not Considering Condi-

tionsforCall 45
An Example of Pairwise Relationships 46
An Example of Method Group 49
A Whole Snapshot of Creios (for Method Pairs) 51
A Snapshotof Source Code View 52
ASnapshotof PDG View e 53
A Snapshot of Apposing View of Source Code View and PDG View 54
An Example of Candidate Method Pair 55
A Snapshotof Filtering View 56
AMetricsGraph 56
View of the Metrics Values 57

34
35
36
37

A Whole Snapshot of Creios (for Method Groups)
An Example of Application oForm Template Method with the Proposed Method 59

The Box-Plot of the Time to Appliform Template Method on Synapse

Candidate Method Groups

60

57

62

List of Tables

© 00 N O O M WDN P

The Values of Metrics in the Method Pair of Figure30 55
Target Software Systems 59
The Number of Detected Candidates and Elapsed Time on Method Pairs 60
The Number of Detected Candidates and Elapsed Time on Method Groups 61
The Features of Target Method Groups 63
Groupsof Subjects e 64
Elapsed Time to Finiskorm Template Method Application 65

The Average Time o 65
The Candidates that Need some Maodifications for Creios’s Outputs 67

Vi

List of Algorithms

o O~ WODN B

Removing RedundantClone Pairs 35
Divisionof anENS 42
detecfv, S) e e e 42
pars€S, R) e 42
ForwardSlicdG1, Go, 1,72, R1, R2) 76
BackwardSlice1, Go, r1, 1m0, R1, R2) 77

Vii

1 Introduction

Recently, code clones have received much attention and many research efforts have been per-
formed on them [1, 2]. Code clones are defined as identical or similar code fragments to one
another, and they are created by various reasons such as copy-and-paste operations. Because code
cloning is easy and inexpensive, it can make software development faster and can enable “ex-
perimental” development. However, it has been pointed out that the presence of code clones has
a negative impact on software maintenance because if we modify a code fragment, it is neces-
sary to check its correspondents whether they need the same modifications or not. Therefore,
various techniques and tools have been proposed to detect code clones automatically by many
researchers [3—18].

Refactoring also has been studied intensively in recent years because it is highly expected that
we can improve maintainability of software systems by applying refactorings. In Fowler’s book,
he defined refactoring aghe process of changing a software system in such a way that it does
not alter the external behavior of the code, yet improves its internal strucil@g. It has been
reported that the maintainability of software systems decays over time [20]. Refactoring is usable
in such a case because we can prevent the decay of maintainability with suitable refactorings.
However, applying refactorings requires much effort for maintainers, and it is quite difficult for
maintainers to apply refactorings manually without introducing any human errors [21]. Because of
these factors, techniques to assist refactoring activities are required, and indeed many techniques
have been proposed in recent years [22].

To prevent the influence of code clones, it is effective to remove code clones by applying
some refactorings. We can remove code clones by merging cloned code spreading across multiple
source files into a single module with refactorings. Many research efforts have been performed on
assisting code clone removal with refactorings. A majority of clone removal techniques are based
on “Extract Method” refactoring pattern or Pull-Up Method” refactoring pattern. However,
these techniques have an issue that they cannot handle code clones with some gaps.

A clone removal technique witHForm Template Method” refactoring pattern can overcome
this issue. Form Template Method usesTemplate Method pattern that is one of the design
patterns proposed by Gamma et al. [23]. This pattern targets similar methods whose owner classes
have the same base class. In this pattern, programmers write an outline of similar methods into
the base class and implement detail processes in each derived class. By appiyintemplate
Method, code clones existing between similar methods are merged into the base class. One of
the advantages of clone removal with this pattern is that we can apply this technique to methods
having some gaps.

Some researchers have proposed techniques to support refactoringsowithTemplate

Method [24-26]. However, these techniques cannot support removing code clones if they in-
clude the following differences even if these differences have no impacts on the behavior of the
program:

¢ Different order of code fragments and

¢ Different implementation styles (such as for- and while- loops).

Moreover, the existing methods can handle only pairs of methods thBoigh Template
Method refactoring can be applied to groups consisting of three or more similar methods.

This thesis proposes a new technique to support apphkonm Template Method with pro-
gram dependence graphs, which allows us to resolve the first issue. We also extend the proposed
method to be able to handle groups of three or more similar methods.

The rest of this thesis is organized as follows: In Section 2, we introduce preliminaries related
to this work. We describe related works in Section 3, then we explain our motivation in Section
4. Section 5 describes the outline of the proposed method, then we explain the proposed method
in detail in Section 6 and Section 7. In Section 8, we describe the implementation of the proposed
method. Section 9 reports the evaluation of the proposed method on open source software systems,
and we discuss the result of the evaluation in Section 10. Finally, Section 11 summarizes this thesis
and refers to the future work.

x=0;

y=0;

z = MAX;

while (y < z) {
y=x+1;

method
enter

}
printin(y);

Data Dependence Edge

v\l/ Nouweswne

Control Dependence Edge

Figure 1: An Example of PDG

2 Preliminaries

2.1 Program Dependence Graph
2.1.1 Generic Definition

Program dependence graph (in sh&MDG) is a directed graph that represents dependencies
between the elements of the program [27,28]. A node in a PDG indicates an element of a program
(such as a statement and a conditional predicate), and an edge in a PDG indicates a dependence
between two elements. PDG is created based on flows of data and controls. Therefore, we get the
same PDGs from two programs if their flows of data and controls are same, though the program-
ming styles are not equal.

There are the following two types of dependencies in PDG.

Data Dependence: There is a data dependence from elemdntelement;, if a value is assigned
to variablex in s, andt references: without changing the value af.

Control Dependence: There is a control dependence from elemetd element;, if s is a con-
ditional predicate and it directly determines wheth&r executed or not.

Figure 1 shows an example of PDG. In this example, there are three data dependencies from
the 2nd, 3rd, and 5th lines to the 4th line because variaptesl > are referenced in the 4th line.
On the other hand, there is a control dependence from the 4th line to the 5th line because the
conditional predicate in the 4th line directly controls the execution of the 5th line. In addition,
there is a node labeled witmethod entérthat means the enter node of the method. In general,
PDG contains a method enter node, and there are control dependencies from the enter node to all

2: y=0; enter

3: z= MAX; By A\ \
4: while (y<2) { o \
5: y=x+1;

6: }

7: printin(y);

% Data Dependence Edge
= } Control Dependence Edge

- Execute Dependence Edge

Figure 2: An Example of PDG with Execute Dependence Edges

nodes that are directly contained by the method. Note that we regard a:raxlbeing directly
contained by the method ifhas no control dependencies from any other nodes in the PDG.
2.1.2 PDGs in This Study

PDGs used in this study is specialized for code clones detection and refactoring. The major
differences of a traditional PDG and a specialized PDG are as follows:

e Having execute dependences and

e Tracing state changes of objects.

Execute Dependence

PDGs used in this study has an additional dependence called ‘execute dependence’. The defi-
nition of execute dependence is as follow.

Execute Dependence: There is an execute dependence from eleradatelement, if ¢ can be
executed in the next thatis executed.

Figure 2 shows an example of PDG with execute dependence edges. We can detect more code
clones with PDGs having execute dependence than with traditional PDGs. This is because the
range of program slicing is expanded by introducing this dependence.

1: StringBuilder builder = new StringBuilder();
2: builder.append(“A”);

3: builder.append(“B”);

4: builder.append(“C”);

5: return builder.toString();

(a) Source Code

(b) Traditional (c) Specialized

Figure 3: Data Dependence Considering State Changes of Objects

Tracing State Changes of Objects

In this study, we create data dependence edges with considering state changes of objects caused
by method calls. Concretely, we regard that there is a data dependence from a method call state-
ments to other statemerit if the state of any objects is changedsiandt references the objects
without redefining them.

Figure 3 compares a traditional PDG and a specialized PDG created from the same source
code. In this figure, we omit control and execute dependences and the method enter node. In
this example, the state of an objéxtilder is changed in the 2nd, 3rd, and 4th lines by calling
a methodappend . In the traditional PDG, all the elements that referebugder have data
dependences from the 1st line. This is because the objgicter does not re-defined or re-
assigned until the end of the method. However, the specialized PDG used in this study considers
state changes of objects. Therefore, we get the PDG shown in Figure 3 (c) from the source code.

?f - N
a ,—IeCIone
Pair oy
Clone ’—1
Pair i
\ B Clor\e
_ Pair y,

Clone SeV

Figure 4: An Example of Clone Pairs and Clone Sets

N

Note that it is regarded that states of objects are changed by a method call if the values of any
fields in the objects are changed by the method [29].
2.2 Code Clone
2.2.1 Definition

Code clone is defined as identical or similar code fragments in source code. As shown in
Figure 4, we call a pair of code fragmentsand 5 as a clone pair it and 5 are similar. In
addition, we call a set of code fragmerftsas a clone set if any pair of code fragmentsSiare
clone pairs [30]. Note that there is neither a generic nor strict definition of code clone, therefore
each clone detection method or tool has its own definition of code clone.

Code clones can be categorized into the following 3 types by the degree of their similarities
[31].

Type-1: An exact copy except for white space and comments.
Type-2: Syntactically identical copy; only variable, type, or function identifiers were changed.

Type-3: A copy with further modifications in Type-2; statements were changed, added, or re-
moved.

2.2.2 Causes of Creations

Code clones can be created or introduced by the following factors.

6

Copy-and-paste Operations

This is the most popular situation that code clones are created. The code reuse by copy-and-
paste operations is a common practice in software development, because it is quite easy, and it
enables us to make software development faster.
Stylized Processing

Processing used frequently (e.g. calculations of the income tax, insertions in queues, or access
to data structures) may cause code duplication.
Lack of Suitable Functions

Programmers may have to write similar processes with similar algorithms if they use program-
ming languages that do not have abstract data types or local variables.
Performance Improvement

Programmers can introduce code duplication intentionally to improve the performance of soft-
ware systems in the case that the in-line expansion is not supported.
Automatically Generated Code

Code generation tools automatically create code based on stylized code. As a result, if we use
code generation tools to handle similar processes, it may generate similar code fragments.
To Handle Multiple Platforms

Software systems that can handle multiple operation systems or CPUs tend to include many
code clones in the processes handling each platform.
Accident

Different developers may write similar code accidentally. However, it is rare that the amount
of similar code generated accidentally becomes high.
2.3 Code Clone Detection Methods
2.3.1 Categorization

There are many methods that detect code clones automatically, and there are also many code
clones detectors implementing these methods. Code clones detectors can be loosely categorized

into the following categories by their detection units [1, 31].

Text-based Techniques

Text-based detection techniques detect code clones by comparing every line of code as a string.
They detect multiple consecutive lines that match in specified threshold or more lines as code
clones. The biggest advantage of this technique is that it can detect code clones quickly compared
with other detection techniques. This technique requires no pre-processing on source code, which
enables the fast detection. However, we cannot detect code clones including differences of coding
styles (e.g. whether long lines are divided into multiple lines or not) with this technique.

The method proposed by Johnson [5] and the method proposed by Ducasse et al. [6] are in-
stances of line-based clone detectors. In these methods, every line of code is compared after white
space and tabs are removed. These methods are language-independent because they compare lines
of code textually.

Token-based Techniques

In a token-based approach, source code is lexed/parsed/transformed to a sequence of tokens.
This technigue detects common subsequences of tokens as code clones. Compared to text-based
approaches, a token-based approach is usually robuster against code changes such as formatting
and spacing. Detection speed is inferior as compared with text-based techniques, meanwhile su-
perior as Tree- or PDG-based approaches. This is because, in token-based approach, source code
has to be transformed into intermediate representations such as AST and PDG.

CCFinder, a clone detector developed by Kamiya et al. [3], is one of the token-based detectors.
CCFinderreplaces user-defined identifiers by special tokens. By this pre-processing, it can detect
code clones with different identifiers. In addition, it can handle multiple widely-used programming
languages such as C/C++, Java, COBOL, and FORTRAN. Moreover, there is a major version up
of CCFindernamedCCFinderX[32]. In this version up, the detection algorithm is changed, and
the detection speed is improved by multithreading.

CP-Mineris also a token-based detectd@P-Mineris developed by Li et al. [7]. Firstly,
lexical and syntax analises are performed on source code. User-defined identifiers are replaced by
special tokens as well &CFinder The major difference betwedP-MinerandCCFinderis in
detection algorithms. II€P-Miner, hash values are calculated from every statement, and then a
frequent pattern mining algorithm is applied to detect code clones. Frequent patterns do not have
to be consecutive, which means tizR-Minercan detect Type-3 clones.

lint num = k + size * 4

[Va riabIeDecIarationStatementJ

Figure 5: An Example of ASTs

Tree-based Techniques

In a Tree-based detection, a program is parsed to a parse tree or an abstract syntax tree (in short,
AST) with a parser of the language in interest. An AST is one of the intermediate representations
that capture the structure of source code. Figure 5 shows an example of ASTs. Common subtrees
are regarded as code clones. This approach considers the structural information of source code,
therefore tree-based detectors do not detect code clones ignoring the structure of source code
such as code clones including a part of a method and a part of another method. However, a
disadvantage of this approach compared with Text- and Token-based approaches is that it requires
more detection costs because of the additional cost required to transform source code to parse trees
or ASTs.

One of the pioneers of AST-based clone techniques is that of Baxter eTlakiesDR[4, 33].
CloneDRcompares subtrees of ASTs by characterization metrics based on a hash function through
tree matching, instead of comparing subtrees of ASTs directly. This processing GlloneDR
to detect code clones quickly from large software systems. It can handle a lot of programming
languages. Moreover, it has a function to assist clone removal.

Koschke et al.'s method [8] and Jiang et al.'s method [9] are tree-based approaches as well
asCloneDR In Koschke et al.'s method, ASTs are compared with a suffix tree algorithm to have

fp3 = base + tokensetsize;

fp = lookaheadset + tokensetsize;
for (I = lookaheas(state) ; | < k ; i++) { if (rp) {
% fpl=LA+i*tokensetsize; while ((j = *rp++) >= 0) {

% fp2 = lookaheadset;
fpl = lookaheadset;

% while (fp2 < fp3) : e
p2 = LA +j * tokensetsize;

% *fp2 =fpl++;

° P2+t |=fplt # while (fp1 < fp3)

} # *pl++ |= ¥fp2++;

1
}
(a) Code Fragment 1 (b) Code Fragment 2

Figure 6: A Code Clone with a Differnt Order of Statements

an increase of detection speed. On the other hand, Jiang et al. use a locality sensitive hashing
algorithm to detect code clones. With the algorithm, Jiang et al.'s method can detect Type-3 code
clones.

PDG-based Techniques

In a PDG-based approach, code clones are detected by comparing PDGs created from source
code. Isomorphic subgraphs are regarded as code clones. PDGs require a semantic analysis for
their creation, therefore this approach requires much cost than other detection techniques. How-
ever, this technique can detect code clones with additions/deletions/changes in statements or those
with some differences that have no impact on the behavior of programs. This is because PDG-
based techniques can consider the meanings of programs.

Figure 6 shows one of the code clones that include some differences that have no impact on the
behavior of programs. Other techniques cannot detect these two code fragments as a code clone
because there is a different order of statements.

One of the leading PDG-based clone detection approach is Komondoor and Horwitz’s method
[10]. Their method detects isomorphic subgraphs of PDGs with program slicing. They also pro-
pose an approach to group identified clones together while preserving the semantics of the original
code for automatic procedure extraction to support software refactoring. Krinke’s method [11],
and Higo et al.'s method [12, 34] are also included in PDG-based techniques. Each detection
method is optimized to reduce detection cost. Krinke sets a limit of the search range of PDGs with
a threshold. By contrast, Higo et al. confine nodes to be base of subgraphs with some conditions.
Moreover, Higo et al. introduce a new dependence named “execution dependence”. That is, there
is an execution dependence from a netd® another nodds if the program element represented

10

by B may only be executed after the program element representetl gy introducing this
dependence, they succeeded to detect code clones that other PDG-based methods could not detect.

Other Detection Techniques

One of the detection techniques that can be categorized into this category is a metrics-based
approach [13]. First, metrics-based detectors calculate metrics on every program module (such as
files, classes, or methods), then detect code clones by comparing the coincidence or the similarity
of these values.

Beside this, there are some file-based detection methods [14, 15]. This detection technique
detects code clones by comparing every file instead of statements or tokens, which let it quick
detections. However, this technique cannot find code clones that exist in a part of a file.

Moreover, incremental detection techniques are under intense studies [16—18]. In incremental
detections, code clone detection results or their intermediate products persist by using databases,
and it is used in the next code clone detection. By reusing previous revisions’ analysis, it can
reduce detection cost on the current revision substantially.

2.3.2 Scorpio (PDG-based Code Clone Detection Tool)

In this subsection, we describe a clone detector, Scorpio [34], used in this research.
Scorpio is one of the PDG-based clone detectors developed by Higo et al. [12]. Currently,
Scorpio can handle software systems written in Java. The major features of Scorpio are as follows.

It can detect code clones with different user-defined variables

Scorpio replaces use-defined identifiers by special characters. Therefore, it can detect code
clones having different user-defined variables.

It can detect Type-3 code clones and non-contiguous code clones
Scorpio can detect Type-3 code clones and non-contiguous code clones because it is a PDG-
based clone detector.

It is robust for detecting contiguous code clones

One of the disadvantages of PDG-based clone detectors is that they cannot regard sequences
of program elements as code clones if every element in the sequences has no dependence between
other elements in the sequences. To improve this matter, Scorpio introduces execute dependence,

11

which enables it to expand the range of program slicing, so that the ability to detect contiguous
code clones is improved.

It uses both of two graph search algorithms

There are two ways to search graphs, forward and backward slicing. Scorpio uses both of
forward and backward slicing, which enlarges code clone detection result because there are similar
subgraphs that cannot be detected by using only forward or backward slicing.

It confines nodes to be bases of slicing

To reduce detection costs, Scorpio limits slice points. Unnecessary slice points are identified
and removed by this heuristic.

2.4 Refactoring
2.4.1 Refactoring Activities

Refactoring is a technique that improves internal structures of software systems without chang-
ing the external behavior of the programs [22]. We can prevent decay of maintainability of running
software systems with suitable refactorings.

The refactoring process consists of several activities as follows [22]:

=

. Identify places that should be refactored,

2. Determine which refactroing(s) should be applied to the places,

3. Guarantee that the behavior of the program is preserved by the selected refactoring(s),
4. Apply the refactoring(s),

5. Assess the effect of the refactoring(s) on quality of the software or the process and

6. Maintain the consistency between the refactored program and other software artifacts (e.g.
documentation, design documents, requirements specification, tests).

Each of these activities can be supported by different tools, techniques or formalisms.

12

2.4.2 Behavior Preservation

The refactoring should not change the behavior of programs accoring to its definition.

The original definition of behavior preservation is suggested by Opdyke [35]. The definition
states that, for the same set of input values, the resulting set of output values should be the same
before and after the refactoring. However, requiring the preservation of input-output behavior is
insufficient, since many other aspects of the behavior may be relevant as well. For example, in
the case ofeal-time softwarean essential ascect of the behavior is the execution time of certain
operations. Thus, refactorings should preserve all the kinds of temporal constrairembemnided
software memory constraints and power consumption are also important aspects. Consequently,
we need a wider range of definitions of behavior that may or may not be preserved by a refactoring,
depending on domain-specific or even user-specific concerns.

Another pragmatic way to guarantee the behavior preservation is using test suites. This means
that if all the test suites are passed before and after refactorings, it is regarded that the refactorings
do not affect the behavior of the program. If we have sufficient test suites, the fact that all the test
suites still pass after the refactorings will be a good evidence that the behavior is preserved.

Another approach is to formally prove that refactorings preserve the full program semantics.
We can prove the behavior preservation formally if a language with a simple and formally defined
semantics is used in the target software systems. However, it is difficult to prove the behavior
preservation for more complex languages such as C++. In such a case, we need to put some
restrictions to prove the behavior preservation.

2.4.3 Refactoring Patterns Used for Code Clone Removals

Herein, we describe refactoring patterns proposed by Fowler used for clone removals [19, 36].

Extract Class/SuperClass

Extract Class indicates extracting a part of a class as a new class. If there is a large and/or
complex class, the class requires much cost to be maintaiBetiact Class is useful in such
a case. If there is a class-level duplication, we can remove code clones by apgktiagt
Class. Figure 7 shows an example of refactoring wightract Class. In this case, there are
duplicate fieldofficeAreaCode andofficeNumber , and duplicate operation about them.
By applyingExtract Class to this example, duplicate fields and duplicate operation are extracted
as a new clas$elephoneNumber , and the classdBerson andCompany uses the class. By
this modification, duplicate code is removed from the two classes.

If duplicate classes do not extend different base clagsdgct SuperClass may be a better

13

Person

Person

name
officeAreaCode
OfficeNumber

name

getTelephoneNumber()

getTelephoneNumber()

TelephoneNumber

areaCode
number

Company Company
address address
officeAreaCode
OfficeNumber

getTelephoneNumber()

getTelephoneNumber()

Figure 7: An Example oExtract Class

Department

getTotalAnnualCost()
getName()
getHeadCount()

Employee

>

getAnnualCost()
getName()
getld()

getTelephoneNumber()

Party

getTotalAnnualCost()
getName()
getHeadCount()

ZF

Department

getAnnualCost()
getHeadCount()

Employee

getAnnualCost()
getld()

Figure 8: An Example oExtract SuperClass

to extend the clagzarty

Extract Method

Extract Method indicates extracting a part of a method as a new method. This refactoring

the duplication of two classd3epartment

14

application ofExtract SuperClass. In this example, a new clagarty

solution for clone removalExtract SuperClass is similar toExtract Class. The difference is
thatExtract SuperClass uses the inheritance; meanwhidgtract Class uses the delegation. In
Extract SuperClass, duplication between two (or more) classes is extracted as a new class and
all the original classes are changed to extend the new class. Figure 8 shows an example of the

andEmproyee , then the two classes are changed

is created by extracting

void printTaxi(int amount) { void printTaxi(int amount) {
String name = getTaxiName(); String name = getTaxiName();
print(name, amount);

System.out.printIn(“name: “ + name); }
System.out.printIn(“amount: “ + amount);
} void printBus(int amount) {
» String name = getBusName();
void printBus(int amount) { print(name, amount);
String name = getBusName(); }
System.out.printIn(“name: “ + name); void print(String name, int amount) {
System.out.println(“amount: “ + amount); System.out.printin(“name: “ + name);
} System.out.printIn(“amount: “ + amount);

}

Figure 9: An Example oExtract Method

pattern is often used for improving reusability by segmentalizing too long and/or too complex
methods into short and simple methods. We can remove code clones by extracting them as a new
method and replace them by method call instructions for the method. Figure 9 shows an example
of the application oExtract Method. In this example, there are same statements between two
methodgrintTaxi andprintBus . By applyingExtract Method, these duplicate statements

are extracted as a new methaiht , and the original statements are replaced by the method call.

As a result, code clones between the two methods are merged into a single method. An advantage
of this pattern as clone removal technique is that it can be applied if a part of a method contain
code clones and the other part does not contain code clones. In addition, this pattern is capable of
wide application because it does not use class hierarchies. Therefore, this pattern is useful in such
a case that versatile processes that can be merged as a library are scattered across source code as
code clones. However, this pattern introduces many methods if multiple clone fragments exist in
a single method and there are some non-clone fragments between every two fragments.

Pull Up Method

Pull Up Method indicates pulling up identical methods existing in derived classes into their
common base class as a new method. This pattern is effective if there are some methods that
behave the same way in all the derived classes. By applying this pattern, duplicate methods are
merged into a base class, which means that code clones existing in derived classes are removed.
Figure 10 shows an example of the applicatiorPafl Up Method. In this case, two duplicate
methodsgetName in classSalesman andEngineer are pulled up into the same base class
Employee . This pattern can be applied if and only if target methods are exactly same. Moreover,
this pattern uses inheritance relationship of classes. Therefore, the range of application of this

15

Employee Employee

getName()

e A

Salesman Engineer Salesman Engineer

getName() getName()

Figure 10: An Example dPull Up Method

pattern is narrower than that Biktract Method refactoring pattern.

Parameterize Method

If there are similar methods in a single class, the duplication may be removdrbyne-
terize Method. Parameterize Method is used in a case that several methods do similar things
but with different values contained in the method body. In this pattern, a new method that uses a
parameter for different values is created.

Pull Up Constructor

This pattern is very similar to thBull Up Mehtod. The only difference is the target of this
pattern is not a method but a constructor.

Form Template Method

Form Template Method refactroing pattern is a hybrid dExtract Method and Pull Up
Method refactoring patterns. This pattern targets similar methods existing in derived classes that
have a same base class. In this pattern, processes that are common in all the target methods are
pulled up into the base class wiBull Up Method refactoring pattern. On the other hand, the
processes that are not common in the target methods remain in each derived class. The remaining
processes are unique in each derived classes. These unique processes are extracted as a new
method withExtract Method refactoring pattern.

The steps for applyingorm Template Method are as follows:

1. Detect common processes in all the target methods,
2. Extract unique processes as new methods kxtinact Method refactoring pattern,

3. Rename methods to make correspondence of signatures. The targets of renaming are meth-
ods that created in 2. and called in the same point of the common processes and

16

4 double tax = base * Site.RA /| double tax = method2();

/| return base + tax;

Site double base = units * rate; J Site double base = method1();
\TE;

return base + tax; 7

double base = method3();

/ double base = units * rate * 0.2;
1 double tax = base * Site.RATE * 0.5;

y return base + tax; v
return base + tax;)74 - —— e ,»
I 7 ResidentialSite |{ LifelineSite
ResidentialSite LifelineSite i:lgetBiIIabIeAmount()/ getBiIIabIeAmount()/
getBillableAmount() | | getBillableAmount() ‘method1() method3()-.. . P
method2() methpd4() { return Iunl'cs rate O.ZJ
‘ return base * Site.Rate;J ‘ return base * Site.Rate * O.S;J
(a) before refactoring (b) after stepl and step2
Site double base = getBase(); Site
4 double tax = getTax(); -
/| return base + tax; 7 getBillableAmount()- double base = getBase();
getBase() _ o
double base = getBase(); getTax() double tax = getTax();
T return base + tax; 7 return units * rate;
. ResidentialSite |{ LifelineSite | - | m— 1
E;getBiIIabIeAmount()'} getBiIIabIeAmount()" "‘ReSIdentIaISIte LifelineSite
‘getBase() getBase() ... — Py getBase() getBase() . — o
getTax() ... getTa}(() 1 return lunlts rate 0‘2’1J getTax() ... getTax() i return Iunlts rate O‘ZQJ
‘ return base * Site.Rate;lJ ‘ return base * Site.Rate * O.S;IJ ‘ return base * Site.Rate;lJ ‘ return base * Site.Rate * O.S;J
(c) after step3 (d) after refactoring

Figure 11: An Example of Refactorings wiBorm Template Method

4. Pull up common processes as a new method in the base clagsulithp Method refac-
toring pattern.

Figure 11 shows an example of refactorings with this pattern. There are two classes that have
the same base clasSite and these two classes have the methods that are similar to each other,
getBillableAmount

To applyForm Template Method to this target, at first, we have to distinguish the common
and unique processes in the two methods. In this example, the differences of the two methods are
in the calculation ways of variablémseandtax.

Secondly, we extract each of the calculationbasgeandtaxas new methods (shown in Figure
11(b)). We get 4 methods as a result of this step (currently, they are nameattasd 1 method2
method3andmethod3.

In the next step, we rename 4 new methods to make correspondence of signatures (shown in
Figure 11(c)). In this examplenethodln ResidentialSitandmethod3n LifelineSiteare called as
the first processing of the original methods. AlswthodZandmethod4are called as the second
processing of the original methods. Therefore, we renarathodland method3to make their

17

signatures correspondent. In this exampiethodlandmethod3are renamed agetBaseAmount
Similary, methodzandmethod4are renamed agetTaxAmount

Finally, we pull up the common processes as a new method. Note that we have to define
getBaseAmourdnd getTaxAmounas abstract methods in the base class. Figure 11 shows the
code that the refactoring has finished.

By applying this refactoring pattern to similar methods, code clones existing between these
methods are merged into a base class. An advantage of clone removal with this pattern compared
with Pull Up Methodis that this pattern can be more widely thRall Up Methodbecause this
pattern can be applied to methods that are not exactly same. Compared with clone removal with
Extract Methodefactoring pattern, the application range of this pattern is narrower. However, this
pattern is effective in such a case that common processes are segmentalized by unique processes.
This is because separated common processes can be merged as a single metfmoadnwitm-
plate Methodrefactoring pattern, meanwhile each fragment of common processes is extracted as
a method withExtract Methodrefactoring pattern.

In the rest of this thesis, we call a method created in base classes by pulling up the common
processes aemplate method

18

3 Related Work

3.1 Techniques for Refactoring on Code Clones

Fowler, a pioneer in the field of refactoring, mentioned that theriber one in the stink parade
is duplicate cod&[19]. He also presented some sets of operations for merging code clones. How-
ever, because itis quite difficult for maintainers to apply refactorings manually without introducing
any human errors, many research efforts have been performed on refactoring assistance [22].

Higo et al. proposed a method for merging code clones [36]. Their method consists of 2
phases. The first phase is the quick detectioref#ctoring-oriented code clondsom the source
code. The second phase is the measurement of metrics indicating how the refactoring-oriented
code clones should be merged. They implemented their method as a tool, ARIES. Using ARIES
in the refactoring process, maintainers of the software system can readily know which and how
code clones can be merged. They conducted a case study with ARIES, and they confirmed that
ARIES performs the process successfully.

CLONEDR, which is an implementation of the AST-based technique, presents not only the
locations of code clones but also forms of merged code fragments [4]. The forms help users
understand what operations are required to merge code clones. However, the tool does not care
about the positional relationship between code clones in the class hierarchy.

Bakazinska et al. proposed a refactoring method for the duplicate methods [37]. Their method
provides the differences between code clones, which help users to determine whether code clones
can be merged or not. Also, their method measures the coupling between a duplicated method
and its surrounding code. In their method, code clones are removed by using two design pattern
“Strategy” and “Template Method".

Cottrell et al. implemented a tool that visualizes the detailed correspondences between a pair
of classes [38]. The classes are generalized to form an intermediate, AST-like structure that dis-
tinguishes between what is common and what is specific to each class. The specific instructions
will influence the degree of relatively between the classes. The tool works after users identify 2
classes that should be merged.

Komondoor et al. proposed an algorithm for procedure extraction [39]. The inputs to the
algorithm are (1) the CFG (control-flow graph) of a procedure and (2) a set of nodes in the CFG.
The goal of the algorithm is to revise the CFG with the following conditions:

e The set of nodes that are extractable from the revised CFG;

e The revised CFG is semantically equivalent to the original CFG.
The implementation of this algorithm adopts heuristics for enhancing scalability. Although the

19

algorithm has a worst-case exponential time complexity, their experimental results indicated that
it may work well in practice. However, the algorithm can be applied only to a single code clone.
Different techniques are needed to determine how two or more code clones can be extracted as a
single procedure with preserving semantics.

3.2 Techniques for Refactoring on Code Clones witfrorm Template Method

The majority of clone removal techniques is based=atract Method or Pull-Up Method
refactorings, and there are few techniques basdtbom Template Method refactoring. Juillerat
et al. proposed a method to automatically appbym Template Method to a pair of similar
methods with ASTs [24]. Their method can show source code after the application of the pattern,
and the execution time and memory space required to the calculation are not so high.

Masai et al. proposed a method to support refactorings Fottm Template Method with
ASTs likewise Juillerate et al. [25]. Their method consider the structural information of ASTs
to detect unique processing, meanwhile Juillerat et al. compare ASTs with token sequences that
are made from ASTs. Therefore, their method can extract code fragments that have some func-
tionalities as unique processing. One of the differences between Masai et al’s method and the
proposed method is that their method suggests different sets of code fragments that should be
merged in a specified method pair by expanding different part between methods consisting of the
method pair. Also, they implemented a function to suggest suitable divisions between common-
and different-part on the specified method pair to users with a cohesion metric COB [26].

3.3 Techniques for Code Clone Managing

At present, there is a huge body of work on empirical evidence on code clones, starting with
Kim et al.’s report on clone genealogies [40]. They performed experiments on the repositories of
open source software systems to investigate how code clones appear and disappear. The experi-
mental results revealed the following points.

e Some code clones are short-lived. Merging (applying refactoring to) them does not improve
the maintainability of the software systems.

e Most long-living code clones are not suited to be refactored because there is no abstraction
function of the programming language that can handle them.

Kapser and Godfrey also suggested that, based on their experience, code clones are not always
harmful [41]. They reported several situations where code duplication is a reasonable or even
beneficial way to handle large-scale complex software systems. Also, Bettenburg et al. reported

20

that duplicate code does not have much a negative impact on software quality [42]. On the other
hand, Monden et al. reported the opposite opinion, which is that the existence of code clones
affects the quality of software systems [43]. They investigated the relation between software
quality and code clones on the file unit. Their experiment selected a large scale legacy system,
which was being operated in a public institution, as the target. The result showed that modules
that included code clones were%Q0ower quality than modules that did not include code clones.
Moreover, they reported that the larger code clones a source file included, the lower quality it was.
Lozano et al. investigated whether the presence of code clones was harmful or not [44], and they
reported that methods including code clones tend to be more frequently modified than method
including no code clone.

Krinke hypothesized that if code clones are less stable than non-cloned code, maintenance
cost for code clones is greater than non-cloned code, and he conducted a case study in order to
investigate whether the hypothesis is true or not [45]. The experimental result showed that non-
cloned code was momalded deleted andmodifiedthan cloned code. Consequently, he concluded
that the presence of code clones did not necessarily make it more difficult to maintain source code.

Gode et al. replicated Krinke's experiment [46]. Krinke’s original experiment detected text-
based code clones meanwhile their experiment detected token-based code cloens. The experimen-
tal result was the same as Krinke’s one. Cloned-code is more stable than non-cloned code in the
viewpoint ofaddedanddeleted On the other hand, frordeletedviewpoint, non-cloned code is
more stable than cloned-code.

Also, Gode et al. conducted an empirical study on a clone evolution [47]. They performed
a detailed tracking to detect when and how code clones had been changed. In their study, they
traced clone evolutions and counted the number of changes on each clone genealogy. They man-
ualy inspected the result in one of the target systems, and categorized all the modifications on
clones into consistent or inconsistent. In addition, they carefully categorized inconsistent changes
into intentional or unintentional. They reported that almost all code clones were never changed
or only once during their lifetime, and onB/% of the modifications had high severity. There-
fore, they concluded that many of clones does not cause additional change effort. They consisted
that it is important to identify code clones with high threat potential for the effective code clone
management.

Rahman et al. investigated the relationship between code clones and bugs. They analyzed 4
software systems written in C language with bug information stored in a bug management system,
Bugzilla. They reported that only a small part of bugs located on code clones, and the presence of
code clones did not dominate bug appearance [48].

21

Our research group also coudncted empirical studies to investigate the influence of code clones
on software maintenance. We conducted an empirical study on 15 open source software systems
with 4 clone detectors, and compare their modification frequency [49]. As a result, we found
that code clones tend to be less frequently modified than non-cloned code. Consequently, we
concluded that the presence of code clones did not necessarily have a negative impact on soft-
ware maintenance. Moreover, we compared the experimental result of our investigation method
with other 2 investigation methods [50]. We found that the result (whether the presence of code
clones has a negative impact on software evolution or not) differs from every investigation method
although the target software systems are same to one another.

At present, there is no consensus for the question whether the presence of code clones affects
software maintenance or not. This is because the results of empirical studies vary according to
research methods or target software systems. However, it can be said that removing all the code
clones existing software systems is not effective because some researchers reported that code
clones did not necessarily make it more difficult to maintain source code. Thus, it is important to
focus on code clones that have a negative impact on software maintenance, or to remove them.

22

public int calc() {
int result = 0;

int dc = getDC(getRegion());
result +=dc;

int sum = 0;
E int points = 0;

Item item = getList().get(i);

E for (int i = 0; i < getList().size(); i++) {i|[:

11 points += item.getPoints();

public int calc() {
int result = 0;

i int points = 0;
1

i while (i < getList().size()) {

]
|
i i
iinti=0; i
]
]
f Item item = getList().get(i); |
i
1

s += item.getPrice();

public int calc() {
int result = 0;

int dc = getDC(getRegion());
result +=dc;

int sum=0;

int points = 0;

for (inti=0; i < getList().size(); i++) {
Item item = getList().get(i);

public int calc() {
int result = 0;
ints=0;
int points = 0;

inti=0;
while (i < getList().size()) {
Item item = getList().get(i);

i
E sum += item.getPrice(); gapsft ; i+t __sum += item.getPrice(); A i++;
i pointst+; i | points++; «<————gaps
t) {| i addPoints(points); _ _ . j } addPoints(points);
i result += sum * TAX_RATE; il int dc = getDC(getRegion()); result += sum * TAX_RATE; int dc = getDC(getRegion());
{addPoints(points); .M\ resulte=de .. G P |peisl) esilii =Gl
! result += s * TAX_RATE;] result += s * TAX_RATE;
return result; Duplicate || ©*= = =rmrmrmrmrme T return result; Duplicate
} Statements || return result; } Statements || return result;
} }

(a) The Method Proposed by Juillerat et al. [24] (b) The Proposed Method

Figure 12: Motivating Example 1

4 Motivation

4.1 |ssues of Previous Studies

As described in Section 3, there are some studies to suppart Template Method refac-
toring application. However, they still have some issues as follows.

e They cannot handle trivial differences that have no impact on the behavior of programs.

e They cannot handle groups of three or more similar methods in spite dfdhatt Template
Method itself can be applied to them.

In the following subsections, we describe these issues in detail.

4.1.1 Issue of Trivial Differences

In previous studies, all the differences between target methods are regarded as unique process-
ing even if some of them do not affect the meaning of programs. The following situations may be
instances of the differences that do not affect the behavior of programs are as follows.

e The order of code statements is different in target methods. However, the behavior of the
program is preserved even if we reorder the order of them.

e |terations are implemented with for statements in a method of target methods, meanwhile
they are implemented with while statements in another method of target methods. However,
the meanings of the iterations are exactly same except the implementation styles.

23

Figure 12 shows an example of our motivating example for this issue. In this example, there
is a difference of the order of code statements, and there is also a difference of the implemen-
tation style of loop statements. However, these differences do not influence the meaning of the
program. The only meaningful difference of these two methods is the ways of calculations of
variablepoints Nevertheless the methods described in previous studies regard these trivial differ-
ences as gaps between the two methods. Therefore, they can suggest only four lines as duplicate
statements in the two methods (shown in Figure 12(a)). In this study, we aim to improve this issue
by using PDGs, and we will suggest 11 lines except the calculations of vapiainisas duplicate
statements (shown in Figure 12(b)).

4.1.2 Issue of Groups of Three or More Methods

Form Template Method can be applied to a group of three or more similar methods. Never-
theless, the previous methods can handle only a pair of similar methods. Supporingem-
plate Method application on only a pair of similar methods is not sufficient for clone removal.
This is because code clones should remain after a refactoring-aith Template Method on a
pair of methods if there are three or more similar methods.

In the example shown in Figure 13, there are four similar methods in four different classes,
and these four classes have the same base class. If weFapplyTemplate Method refactoring
on the pair ofmethod()in ClassAandmethod()in ClassB we get source code shown in Figure
13(b). As the figure shows, there are still code clones betwesthod()in ClassCandmethod()
in ClassDbecause we did not modify these two methods. Also, there are code clones between
the template method amdethod()in ClassCandClassD Moreover, it is difficult to remove code
clones from the source code of Figure 13(b) wibrm Template Method refactoring. That is
because a conflict of two template methods should occur if we dpin Template Method on
a pair ofmethod()in ClassCandmethod()in ClassD However, we can appliForm Template
Method on all the four similar methods at a time. If we do so, we get the source code shown in
Figure 13(c). As the figure shows, code clones are completely removed by the refactoring.

Moreover, some researchers reported that the quality of software systems after some refactor-
ings is affected by the order of the refactorings [51,52]. In the case that refactorings on only a pair
of methods are supported, the number of the candidates (pairs of methdesnofTemplate
Method refactorings is equal to the number of 2-combinations from a set of all the target meth-
ods. ltis too difficult to detect the most appropriate order of refactorings from such a huge number
of candidates. In the example of Figure 13, there are 6 pairs of methods that can be refactored
with Form Template Method. However, it is difficult to decide which pair is most suitable to be
refactored.

24

SuperClass
Code Clones
ZP
[I I 1
ClassA ClassB ClassC ClassD
methodA() methodB() method(() methodD()
(a) before refactoring
SuperClass
template()
Code Clones
ZP
[T I I |
ClassA J, ClassB ClassC ClassD
newMehtod() newMethod() methodC() methodD()
(b) after refactoring on two methods
SuperClass
method()
[1 I I ¥ |
ClassA J, ClassB ClassC l, ClassD
newMehtod() newMethod() newMethod()

newMethod()

(c) after refactoring on all the four methods

Figure 13: Motivating Example 2

25

For these reasons, it is necessary to handle three or more methods at a time for effective clone
removal withForm Template Method refactoring pattern. In this study, therefore, we expand
proposed refactoring support technique on pairs of methods to be able to handle groups of three or
more methods.

4.2 Objective of This Study

In this thesis, we propose a new refactoring support method Fatin Template Method
refactoring pattern. We aim to resolve the first issue of previous studies (described in Section
4.1.1), and we aim to resolve the second issue described in Section 4.1.2 by expanding the pro-
posed method on pairs of methods to be able to handle groups of three or more methods.

Moreover, we aim to assist users in detecting refactoring candidated~aith Template
Method. Users need to specify refactoring candidate (a pair of methods) for using the previous
Form Template Method application assistance methods. The approach of previous studies is
useful for actual modifications in source code associated with refactoring activities. However, it is
not possible to reduce efforts required for identifying opportunities on which users want to apply
Form Template Method refactorings in this approach. Because software systems become more
large and more complex, it is difficult to comprehend structures of software systems appropriately.
Hence, it is difficult to identify suitable clone removal candidates. This is the reason why we aim
to support the detection of refactoring candidates.

To reduce efforts for identifying refactoring candidates, the proposed method detects refac-
toring candidates automatically, and suggests all the candidates to its users. Consequently, the
proposed method can suggest refactoring candidates of which users are not aware. In addition, the
proposed method also suggests common processing and unique processing in each of refactoring
candidate to reduce efforts required for modifying source code to &umply Template Method
refactoring pattern.

Note that the proposed method aims to suggest candidatesatinbé refactored, nathould
be refactored. The reason is that there is not strict and generic standard to judge whether code
clones should be removed. Also, there is not strict and generic standard to judge vidoether
Template Method should be used to remove code clones. Accordingly, the proposed method
leaves such decisions to its users whether they need to apply refactorings on each candidate that
the proposed method suggests.

26

public void validate() { public void validate() { |
IE’ _____________________________ E To be extracted as same
Jif (isReference()) { | |t verifySettings(); signature methods
i getCheckedRef().validate(); R —— oo
iy dieOnCircularReference(); _ Common
e _ Processes
dieOnCircularReference(); ; String errmsg = getError();
iif (errmsg != null) { i | b Unique
Enumeration e = selectorElements(); i throw new BuildException(errmsg); | | i Processes
while (e.hasMoreElements()) { i}_______________________________________i
Object o = e.nextElement();
((BaseSelector) o).validate(); Enumeration e = selectorElements();
} while. (e.hasMoreElements()) { Code fragments
} Object o = e.nextElement(); surrounded with a
((BaseSelector) o).validate(); rectangle are extracted
} as a single method
}

Figure 14: The Output of the Proposed Method

5 Outline of the Proposed Method

5.1 Inputs and Outputs

The proposed method takes source code of target software systems as its input. Then, the pro-
posed method detects all the candidateBarin Template Method refactoring, and it suggests
them to users. For each of the refactoring candidates, the proposed method suggests program state-
ments that can be merged into the base class as the common processes, and program statements
that should be remain in each derived class as the unique processes. Additionally, for the unique
processes, the proposed method suggests the following two information.

e Sets of program statements that should be extracted as a single method.

¢ Relationships of new methods created by extracting the unique processes between the de-
rived classes. This relationship means that the new methods under this relationship can be
extracted as methods whose signatures are the same as each other.

Figure 14 shows the output information of the proposed method. In this example, there are two
similar methods namedhlidate and the owner classes of these two methods have the same base
class. The proposed method detects the common and unigue processes between these methods.
Herein, program statements highlighted with orange are the common processes that should be
merged into the base class. Program statements that are not included in the common processes are
regarded as the unique processes in each derived classes. For the unigue processes, the proposed
method detects sets of program statements that can be extracted as a single method. In this case,
we get three sets of program statements (labeled with ‘A, ‘B’ and ‘C’ in the figure). The proposed

27

method also detects relationships of new methods created by extracting the unique processes. In
this example, the proposed method detect a relationship between 'A and ‘B’, which means that
the new methods created by extracting ‘A" and ‘B’ should have the same signature to each other.
Here, there is no correspondence of ‘C’. In this case, we have to write an empty method that has
the same signature of the method created from ‘C’ in the owner class of the left method.

5.2 Processing Flow

The processing of the proposed method can be separated into method-pairs version and method-
groups version. The method-groups version is implemented as an extended version of method-
pairs version.

The processing flow of the proposed method on pairs of methods is shown below.

STEP-P1: Analyze target source code, and create PDGs.

STEP-P2: Detect code clones with PDGs.

STEP-P3: Identify pairs of methods on whidRorm Template Method can be applied.
STEP-P4: Detect common processes and unique processes for each of method pairs.

STEP-P5: Detect sets of statements included in unique processes that should be extracted as a
single method.

STEP-P6: Detect pairwise relationships between new methods created by extracting unique pro-
cesses.

STEP-P7: Show all the analysis results.

The method-groups version uses the result of the method-pairs version. Therefore, processing
steps from STEP-S1 to STEP-S6 are exactly identical to the processing steps from STEP-P1 to
STEP-P6. The processing flow of the proposed method on method groups after STEP-S6 is shown
below.

STEP-S7: Detect groups of methods on whiEbrm Template Method can be applied with the
information about pairs of methods.

STEP-S8: Detect common processes and unique processes for each of method groups.
STEP-S9: Detect relationships between new methods created by extracting unique processes.
STEP-S10: Show all the analysis results.

We describe each step in detail in Sections 6 and 7.

28

Figure 15: A Directed Graph

5.3 Definitions

Here, we describe definitions of terms referenced in the following explanations.

5.3.1 A Directed Graph

A directed graphG is represented &S = (f, V, E), where,V is a set of nodegy is a set of
edges, and is a map from edges to ordered pairs of nodés £ — V x V). In this thesis, we
write the set of nodes ity asV, the set of edges it¥ as ¢, and the map between edges and

ordered pairs of nodes @ as f, respectively.
Figure 15 shows an example of directed graphs. Given that the graph of the figur&is
E¢q, and fg become as follows.

Vo = {A,B,C,D,E, F}

Eg = {e1,e2,e3,€4,€5,¢€6, €7, €5}

fa(er) = (A, B), fa(e2) = (A,C), fa(es) = (A, D
fales) = (E,0), fales) = (C. F), fa(er) = (F, D

5 o5
[
= ®
GG

We define a tail of an edgec E astail(e) and a head of ashead(e). The definitions are as
follows.

Definition 5.1 (tail(e), head(e)). We definetail(e) as the first element of; (e), andhead(e) as
the last element ofz(e). In other wordstail(e) := uw andhead(e); = v, wherefg(e) = (u,v).

For example, for an edgg in the graph of Figure 15ail(e;) = A andhead(e1) = B.

29

—> Data Dependence --> Control Dependence

Figure 16: APDG

In the next, we define sets of edg&sckwardEdges(v) and ForwardEdges(v) for v €
V. BackwardEdges(v) is a set of edges whose headvigdefined in the formula (1)), and
ForwardEdges(v) is a set of edges whose tailigdefined in the formula(2)).

Definition 5.2 (BackwardEdges(v), ForwardEdges(v)).

BackwardEdges(v) := {e € Eq | head(e) = v} 1)
ForwardEdges(v) = {e € Eg | tail(e) = v} 2

For a node”' in the graph of Figure 153ackwardEdges(C') and ForwardEdges(C') become
as follows.

BackwardEdges(C) = {ea,e5}
ForwardEdges(C) = {eg}

5.3.2 APDG

A PDG is one of the directed graphs. Given a POG- (f,V, E), a node of= corresponds to

an element of programs, and an edgé-aforresponds to a dependence between two elements. In

this study, an element of programs indicates a statement of programs. Note that we build a PDG

in each of methods, therefore every method has a corresponding PDG.
As described above, there are two types of dependences in PDGs.

30

O Cloned Node

Gl 0 ONon-CIoned Node

Figure 17:ClonePairs(G1, G2)

Definition 5.3 (Data Dependence and Control Dependenéd write data dependencesdeta,

and control dependences eantrol. We definetypeas a map from edges to the types of depen-
dences that the edges represemid : £ — Edge Type), whereEdge Type = {data, control}. In

addition, a data dependence edge has the information about the variable that the edge represents.
We definevar(ey) as the represented variable by a data dependencesgdge

In the PDG of Figure 16type andvar become as follows.

type(e1) = data, type(es) = data, type(es) = data, type(es) = data
type(es) = control, type(eg) = control, type(er) = data, type(es) = data

var(e1) = xz, var(ez) = x, var(es) = x, var(eqy) =y, var(er) = z, var(es) =y

5.3.3 Clone Pairs

In the proposed method, code clones are detected with PDGs. PDG-based clone detectors
regard isomorphic subgraphs of PDGs as code clones. Here, we définePairs(G1, G2) as a
set of isomorphic subgraphs between POGsandGs.

Definition 5.4 (ClonePairs(G1, Ge)andaclonepair). We defineClonePairs(G1, G2) in the for-
mula (3), and we call every element 6fonePairs(G1,G2) as a clone pair.

ClonePairs(G1,G2) == {(G},G5) | G1 C G1 NG, C Ga NG| =2 G4y} (3)

where,G; andG4 are PDGs given as input dai@, C G indicatesG’ is a subgraph of7, and
G’ = G@” indicatesG’ andG” are isomorphic subgraphs to each other.

In the example of Figure 17, there are two isomorphic subgraphs betieandG,. There-
fore, ClonePairs(G1,G2) become as follows.

ClonePairs(G1,G2) = {(G',GY), (G, G5)}

31

where,Vg, = {A, B,C, D}, Vg, = {1,2,3,4}, Vgr = {E, F, G}, andVgy = {5,6,7}.
We also define duplicate relationships on nodes of PDGs as follows.

Definition 5.5 (Duplication of nodes) The two nodes;, € Vg, andvs € Vi, are duplicated
to each other if and only if they satisfy the formula (4). We represent vs if v; andvy are

duplicated to each other.

(G, Gy) € ClonePairs(Gy, Ga)[v1 € Vg Az € Vay Ap(vr) = vg] 4)

where,GG; andG;, are PDGs, ang indicates the isomorphism betweét) andG,, (G} = GY).

In the example of Figure 17, the binary relatisrbecomes as follows.

~= {(Av 1)a (B72)7 (C7 3)7 (Da4>7 (Ev5>7 (Fv 6)a (G77)}

32

6 Supporting for Method Pairs

6.1 STEP-P1: Create PDGs

The proposed method internally uses an existing PDG-based clone detector, Scorpio [34], to
detect code clones. In addition, Scorpio internally uses a source code analysis tool, MASU [53],
to create PDGs. The first step of the proposed method is covered with MASU.

In PDGs created by MASU, a node corresponds to a statement of programs. Additionally,
PDGs created by MASU have another dependence, “execution dependence”, in addition of tradi-
tional two dependences, data and control dependences. Execution dependences indicate execution-
next links.

Note that PDGs used in the proposed method need not to be always created by MASU. We
can apply the proposed method on PDGs created by other tools if we can detect code clones on
them with the way described in the next subsection.

6.2 STEP-P2: Detect Code Clones

As described above, we use Scorpio to detect code clones. Therefore, the second step of the
proposed method is fully covered with Scorpio. Here, we describe the clone detection algorithm
used in Scorpio briefly.

First, Scorpio calculates hash values for every node of PDGs. The hash values are calculated
with information about the structure of the statement that every node represents. Scorpio replace
variables’ name or literals by their types, which enables to detect code clones with different vari-
ables’ name or literals. Next, Scorpio classifies every node with its hash value. Nodes having
the same hash value are classified as an equivalence class. Then, evéry, pajrof nodes are
selected from every equivalence class, and two isomorphic subgraphs that includdr, are
identified. Both forward and backward slices are used to identify isomorphic subgraphs. Details
of the slicing are described in Appendix A. Isomorphic subgraphs detected in this step is regarded
as a clone pair. We set a minimal size of each isomorphic subgraph to 6 nodes to be detected as
code clones. In the next step, Scorpio removes uninteresting clone pairs. The algorithm is that if a
clone pair(sy, s2) is subsumed by another clone pgit, s), it is removed from the set of clone
pairs. Finally, clone sets are generated from clone pairs sharing the same isomorphic subgraphs.

Note that it is not necessary to detect code clones with this way to use the proposed method.
The proposed method only nee@®nePairs(Gp,, , Gm,) for any pair of methodém,, ms) con-
tained in the target programs, whe¥g,, indicates a PDG of methoa;. The proposed method
does not care how they are identified.

33

6.3 STEP-P3: Identify Method Pairs

In this step, we detect pairs of methods on whidrm Template Method can be applied
with the information about code clones detected by Scorpio. We regard a pair of methods as a
refactoring candidate if it satisfies following requirements.

Requirement A: The two methods in the method pair are defined in different classes.
Requirement B: The owner classes of the two methods have the same base class.
Requirement C: There is at least one clone pair between the method pair.

We discuss these requirements in detail.

Requirement A

Form Template Method can not be applied on methods defined in the same class because it
uses the inheritance relationships and the polymorphism. Thus, the method pair that the proposed
method targets has to be defined in different classes.

Requirement B

Form Template Method targets similar methods whose owner classes have the same base
class. Itis possible that we apdhprm Template Method on methods whose owner classes do
not have the same base class. The way is that we insert a new class into class hierarchy and make
the owner classes inheriting the new class. However, refactorings with this way may decay the
quality of programs because two non-related classes are forced to be jointed in the class hierarchy.
For this reason, the target method pairs are limited to having the same base class.

Requirement C

If there is no duplicate statemerfprm Template Method can not be applied on such a
method pairs because no statement is pulled up into the base class. Therefore, we make a re-
quirement that there is at least one clone pair between the two methods of every target method
pair.

Suppose thats,,, and G,,, are PDGs of methods:; andmy. If there is no clone pair
between a method pairn;, msa), ClonePairs(Gp,,Gm,) IS empty. Therefore, we can check
whether there is at least one clone by checking whettietePairs(G.,,, Gm,) IS empty or not.

In other words, the method pdim;, m2) must satisfy the formula (5).

ClonePairs(Gpmy, Gm,) # 0 (5)

34

Algorithm 1 Removing Redundant Clone Pairs
Require: ClonePairs(Gum,, Gm,)
Ensure: ClonePairs(G,,,,Gn,) after repaired

1. CopyOfClonePairs = ()

2: CopyOfClonePairs <-'-—ClonePai7”s(Gm1 ,Giny)

3: forall (G,,,,G),,) € CopyOfClonePairs do

4. forall (G}, ,G..) € CopyOfClonePairs do

my

5: if (Jvy € Gy, [v1 € Gy, &G, # Gh,,) then
6: if |G7,,| < |G, | then

7: ClonePairs(Gum,, Gmy) < (G, s Gin,)
8: else

9 ClonePairs(Gom,,Gm,) < (G, Gm,)
10: end if

11 end if

12: if (Jup € Gy, [v2 € G N)&(G,, # Gr) then
13: if |G7,,| < |G, | then

14: ClonePuairs(Gum,,Gm,) < (G, Gra,)
15: else

16: ClonePairs(Gum,, Gm,) < (G, Gom.)
17: end if

18: end if

19: end for

20: end for

6.4 STEP-P4: Detect Common and Unique Processes

In this step, the proposed method detects common and unique processes in each method pair.
Suppose that a method pair of; andms is the given method pair, arﬁmm) is the PDG of
methodm; ().

The proposed method regards statements as common processes if and only if included in code
clones existing between the two methods of the given method pair. We dgfingionNodes (G, (2))
as a set of nodes if¥,, ,, whose representing statements form common processes. The formula
(6) represents the definition, wheg,, ,, indicates the PDG of method, ().

1(2)

CommonNodes(G, ,,) = {v € VG, | Jw e VG, [v ~ w]} (6)
However, a node irt,,, ,, can be duplicated between two or more node&jp, ,,. In other
words, the formula (7) can be satisfied in some cases, considering the two clo&pairs;,,,), (G, ,Gn,,) €

ClonePairs(Gpm, , Gm,)-

3 Var Van 7
vEVa, o€ Vay,] ™

In this case, we cannot merge all the nodes that are duplicate to other nodes in the other method.

35

method m, method m,

Figure 18: An example of Method Pairs Including Redundant Clone Pairs

We remove some clone pairs fro@ionePairs(Gp, , Gm,) to resolve this problem. Algorithm 1
shows the algorithm for removing clone pairs. Note tigtmeans the number of elements in a
setR andR < r means the process to remove an elemenm R.

By applying this algorithm, we can ensure that there is at most one duplicate node in the other
method for all nodes in method; andms. Nodes should be pulled up into the base class if they

are contained ilCommonNodes (G, ,,) after this processing.

Figure 18 shows an instance of method pairs that contain redundant clone pairs. There are two
clone pairs; one is labeled with*, and another one is labeled with”. The clone pairx consists
of ({a,b,c,d,e},{A, B,C, D, E}), and the clone pajs consists of {a, b, d, e}, {F, G, H,I}). In
this case, the algorithm seleetss the remaining clone pair, and remogdsom ClonePairs(Gu, , Gm,)
because the number of elementsd$ larger than those ¢f. As a result, the common statements
that the proposed method detects in this method (pair, m2) become as follows.

CommonNodes(G,,) = {a,b,c,d e}
CommonNodes(Gr,,) = {A,B,C,D,FE}

On the other hand, the proposed method regards that program statements form unique pro-
cesses in a given method pair if they are not included in the common processes. We define
DiffNodes(Gn, ,) as a set of nodes i&,,, ,, that need to remain in the derived class that has
methodm, (). Formula (8) shows the definition (ﬁiﬁNodes(Gml(Q)).

DiffNodes(Gm,) = {v € Vg | v ¢ CommonNodes(Gm,,,)} (8)

my(2)

36

Figure 19: An example of the Detection of ENSs

In the method pai(m., m2) shown in Figure 18DiffNodes(Gnm, ,,) becomes as follows.

DiffNodes(Gr,,) = {f}
DiffNodes(Gy,,) = {F,G,H,I,J}

6.5 STEP-P5: Detect Sets of Statements Extracted as a Single Method

In this step, the proposed method detects sets of statements that can be extracted as a single
method in the unique processes. For apphiogm Template Method refactorings, it is neces-
sary that nodes remaining in derived classes are extracted as new methods. Therefore, we have to
detect sets of program statements includefiffNodes(Gy,, (2)), each of which can be extracted
as a single method. In the reminder of this thesis, we call a set of nodes that should be extracted
as a single method as &xtract Node Set(in short,ENS).

6.5.1 Definition of the Extract Node Set

In the proposed method, we regard nodes inclubiéfiNodes(Gin, ,,) as an ENS if there is at
least one path that does not include nodeSémmonNodes(Gm, ,,) for any pairs of the nodes in
it ignoring directions of each edges. In other words, we regard a set of :mg§ - VGml(Q) as
an ENS if there is at least one path that satisfies the formula (9) for any two nadg$v, # vy,)
iN Sy -

Vi€ {1...n}[v; € DiffNodes(Gm,)] 9)
In the example shown in Figure 19 we can find two ENSs; one considié, o} and the other
consists of b, ¢, h, k, 1}. As shown in this example, each of methods in refactoring candidates can

37

Before

1: double width = triangle.getWidth();
2: double height = triangle.getHeight();
= ——————————— - —— - 1

1 3: double area = width * height / 2: 1
4: System.out.printin(“The area is “ + area);

After

1: double width = triangle.getWidth();
2: double height = triangle.getHeight();

o e e st e 2 e e

13: double area = calcArea(width, height): |

4: System.out.printin(“The area is “ + area);

Figure 20: An Example of Inputs and Outputs of ENSs

contain multiple ENSs. We defin@iﬂ’NodeSets(Gml(2)) as a family of ENSs in methogh).
Suppose that; indicates the name of the method shown in the figure (apdindicates its PDG,
then, in the example of Figure 19;ffNodeSets(G,,,) becomes as follows.

DiffNodeSets(Gn,,) = {{d, g}, {b,c,h, k,1}}

Note that any node iiffNodes(Gy,, ,) must be included in a ENS iDiffNodeSets(Gm, ,,)
(forumla (10)).

Vv € DiffNodes(G) 3S € DiffNodeSets(Gm, .,)[v € S] (10)

mi(2)

6.5.2 Parameters of ENSs

Parameters of the method created by extracting an ENM&n be defined as variables repre-
sented by data dependence edges whose heads are inclgt@adnvhose tails are not included in
S. Assume thafz indicates a PDG, anfl indicates an ENS af. Under these assumptions, we de-
fine a set of data dependence edges whose tails are not incluSeshthwhose heads are included
in S asInputDataFEdges(G, S). Formula (11) shows the definition dfputDataEdges(G, S).

InputDataEdges(G, S) := {e € Eg | (tail(e) ¢ S) A (head(e) ¢ S) A (type(e) = data)} (11)

Here, we define a set of variables of which parameters of the method created by extsacting
consist agnput Variables(S) in forumla (12).

InputVariables(G, S) := {p | e € InputDataEdges(G, S)[var(e) = p|} (12)

38

In the example of Figure 20, there is an ENS consisting of the 3rd line. In thiskaseDataFEdges(G, S)
andInputVariables(G, S) become as follows

InputDataEdges(G,S) = {e1,ea}
InputVariables(G,S) = {width, height}

Thus, a method created by extracting the ENS need 2 parameters,wiaghisand the other is
height.

6.5.3 Output of ENSs

Suppose that; indicates a PDG of a method, atindicates an ENS ofs. The output
values of the method created by extractfhgre defined as variables that are represented by data

dependence edges whose heads are not includedum whose tails are included i
First, we defineOutputDataFEdges(G, S) as a set of data dependence edges whose tails are
included inS and whose heads are not includedsinThe definition is shown in formula (13).

OutputDataFEdges(G, S) := {e € Eg | tail(e) € S A head(e) ¢ S A type(e) = data} (13)

Herein, we can define a set of output variableS @fith this definition. We define it a®utput Variables(G, S)
in the formula (14).

OutputVariables(G, S) := {p | Je € OutputDataEdges(G,S)[p = var(e)]} (14)

In the example of Figure 2Q)utputDataEdges(G, S) and Output Variables(G, S) become as
follows.

OutputDataFEdges(G,S) = {es}
OutputVariables(G,S) = {area}

Therefore, a method created from the ENS need to return a vallmubie .

6.5.4 Conditions for Call

The conditions to call methods created by extracting ENSs are represented by control depen-
dence edges. For example, if there are control dependences from a conditional predicate of
statement to all the nodes included in an ESlS method created froisi should be called in the

case that the conditional predicate is satisfied.

First, we definelnputControlEdges(G, S) as a set of control dependence edges whose tails
are notincluded it and whose heads are includedsiin the formula (15), wheré; is a PDG of
a method and is an ENS ofG.

InputControlEdges(G, S) := {e € E¢ | tail(e) ¢ S A head(e) € S A type(e) = control} (15)

39

In the next, we define nodes that have control dependences to nodes incl§detiput ControlNodes(G, S).
The definition is shown in formula (16).

InputControlNodes(G, S) := {v € Vg | 3e. € InputControlEdges(G, S)[v = tail(e.)|} (16)

As described above, a PDG has a method enter node, and there is control dependence from
the node to all the nodes that directly contained by the method. In addition, nodes contained in
conditional blocks have control dependence from the conditional predicates of the blocks. In this
case, there is no control dependence from the method enter node to nodes contained in conditional
blocks because these nodes are not directly contained by the method. Therefore, all the nodes
except the method enter node have at least and at most 1 control dependence from other nodes.

6.5.5 Requirements for ENSs to be Extracted as a Single Method

In some cases, we cannot extract each of ENSs as a single method. Concretely, we cannot
extract an ENS as a single method if it satisfies the following conditions.

e There are multiple return values in the method created fsom

e S includes a part of nodes in a block statement, and it also includes some nodes out of the
block statement.

Multiple Return Values

It is necessary that an ENShas at most one return value to be extracted as a method. There-
fore, if there are two or more return values$fit cannot be extracted as is.
To resolve this problem, we divid€ into multiple ENSs satisfying the condition. Here, we

describe the algorithm.
First, we define a set of nodes.$hthat are boundary end points of data dependences between
S and out ofS as BoundaryNodes(G, S). Formula (17) is its definition.

BoundaryNodes(G, S) = {v € Vi | e € OutputDataEdges(G, S)[tail(e) = v]} a7)

Then, we divideS with the Algorithms 2, 3, and 4. Note thadl <ir means adding an ele-
mentr into a setR. Besides,detect(v, S) and parse(S, R) indicates the following processing,
respectively.

detect(v,S): Return an ENS’ satisfying the condition thaBoundaryNodes(G, S’) = {v} by
dividing the original ENSS.

40

After Resolved

Figure 21: Behavior of Algorithm 2

parse(S, R): Return a node sek’ created by adding some nodes into the specified nodR.set
The added nodes must be reached from a nodely tracing an edge in the reverse direc-
tion. Moreover, the addition of nodes must preserve the conditionBoatdaryNodes(G, R)| =
1.

Here, we describe the behavior of the algorithm with the example shown in Figure 21.

In the beginningBoundaryNodes(G, S) = {n, o}. Here we consider the case thlatect(n, S)
is called in the 3rd line in Algorithm 2.

In detect(n,S), a node seR is initialized withn, thenR is expanded by trace edges in the
reverse direction. ObviouslyBoundaryNodes(G, R)| = 1.

In the next,parse(S, R) is called. At first, we reach a nodeand we need to judge whether
it can be added int@& or not. In this casef has no dependences to nodes exegpherefore we
judge that it can be included iR. In the next, we reach another node The nodef has two
dependences whose tail fsone is tok, and the other is to another nodeHerein, the node are
not included inR. Consequently, if we add into R, BoundaryNodes(G, R) becomes| f,n}.
Thus we judge that we cannot adldnto R. parse(.S, R) stops here because there is no nodes that
can be a candidate of expansion, and it retuths- {k,n}.

Then the algorithm backs to the 3rd line in Algorithm 2. Hefetect(o, R) is called, and it

41

Algorithm 2 Division of an ENS

Require: G, S

Ensure: SeparetedNodeSets
1: while S # () do
2: forall v € BoundaryNodes(G, S) do
3 SeparetedNodeSets <-|-—detect(v7 S)
4: end for
5. forall T € SeparetedNodeSets do
6 forall v" € T do

7

8

S v
end for
9: endfor
10: end while

Algorithm 3 detecfv, .S)

Require: v, S
Ensure: R

1. R+ {v}
2: while |R| # |parse(S, R)| do
3: forall v' € parse(S, R) do
4; R
5: end for

6: end while

Algorithm 4 parsdS, R)

Require: S, R
Ensure: R’

1. R =R

2: forall v € Rdo

3: forall e € BackwardEdges(v) do

4 if tail(e) € S A tail(e) ¢ R then

5 if Veq € ForwardDataEdges(tail(e))[head(eq) € R] then
6: R <+—ta7il(e)

7 end if

8 end if

9: end for
10: end for

42

. if (x> 0) {

Y=X% /! >

1
2:
3: z=x%*2;
4
5

D}

P WEX+Y+z;

Figure 22: An Instance of Segmentalization of Block Statements

returnsR’ = {d, e, g, h,i,l,m, 0}.

Then the algorithm goes to the 5th line in Algorithm 2. Here, nodes included in any element
in SeparetedNodeSets are removed from the original EN& In this caseSeparetedNodeSets =
{{k,n},{d,e, g, h,i,l,m,o}}, thereforeS becomess = {f, c}.

The algorithm repeats this process ustik~ (. Finally, we get 3 ENSS,, S,,, and.S; from
the original ENSS, and all of them have to return only a single valye, andi, respectively.

Segmentalization of Block Statements

Suppose thalodes(b) indicates a set of nodes that are included in the given block statement
b. If an ENSS satisfies all the following formulae (18) and (19), we cannot extract it as a single
method.

Jv € Nodes(b)(v € S) A Fu € Nodes(b)(u ¢ 5) (18)
Jv € S(v € Nodes(b)) A Ju € S(u ¢ Nodes(b)) (19)

Figure 22 shows an instance of ENSs that satisfy these formulae. As this figure shows, we
cannot extrach as is. This is because one nodéiis included inif statement, and the other node
is not included in the statement. To resolve this problem, we restrict nodes in each of ENSs to be
in the same block statement. By this restriction, the 3rd line and the 5th line in Figure 22 can be
included in the same ENS. Therefore, we get 2 ENSs in this example, and each of them can be
extracted as a single method.

6.6 STEP-P6: Detect Pairwise Relationships

In this step, we detect pairwise relationships of ENSs in a given method pair. In other words,
assuming that= indicates the pairwise relationships afigl, ,, is an ENS of method;), for
each ofSy,, ,, € DiffNodeSets(Gy, ,) we detect whethe$,,,, ,, € DiffNodeSets(Gm,,,) sat-

isfies S,,,, = Sy, exists or not. Note that,,, = S,,, indicates thatS,,, and S,,, can be

43

extracted as methods whose signatures are the same as each other. If 8iim&N$ correspon-
dent in the other method, we have to make an empty method whose signature is the Saime as
the derived class that does not hae

We regard a pair of ENSS,,,, and S,,,, asS,,, = Sp, if they satisfy the following two
requirements.

Requirement P6-1 The types of return values &f,,, andS,,, are the same as each other.

Requirement P6-2 The conditions to call the new methods created by extradjpgands,,,
are the same as each other.

We describe these requirements in detail in the following subsections. H@M@m1<2)
means the method created by extracting the BNS,, -

6.6.1 Requirement P6-1: Requirement the Type of the Return Value

To makeEM g, and EMg,, having the same signature, it is necessary that the types of
return values oM, andEM g, are same to each other.

As described in 6.5.3, the return value g/ Smy(a) AT€ defined a®utput Variables(Gim, 5 s Sy s)
(formula (14)). In addition, the number of elementgintput Variables(Gm1(2) , Sml(g)) is at most

1 because of the processing described in 6.5.5.
We define thattM g, and EM g, have the same type of the return value if they satisfy
formula (20).

(| Output Variables(Gy , Smy)| = | Output Variables(Gyy Smy)|)
A (Vp € OutputVariables(Gm, , Sm,)3q € OutputVariables(Gry, Smy)

[var Type(p) = varType(q)]) (20)

Note that we do not consider parameterstdf s, and EM g, to detect the pairwise re-
lationships. This is because we can make them having the same signature by adding non-used
parameters in the case that the parameterBldfs,, and EM g, are different. For example,
suppose that’M g, needs one parameter whose type is integeriad;,, needs one parameter
whose type is string. In this case, we can match the signaturésfaf, andEM s, by adding
a string parameter itM s,, and an integer parametéi\/ s, .

6.6.2 Requirement P6-2: Requirement about Conditions for Call

To extractEM 5, andEM g, as same signature methods, it is necessaryfag,, and
EMsg,,, are called under the same conditions.

44

if (x ==0) { Al if (x ==0) { B1

[System.out.println(”an line”);]& /[System.out.println(”an”);]
} }
if (y == 1) { A2 if (y==1){ B2

| System.out.printIn(“6th line”); J«| [System.out.printin(“6th”);]
} }

method A method B
if(x==0){ | e eeeeoeeee .

| process2ndLine(); <——Hi

System.out.printin E System.out.printin
(“2nd line”); if (y == 1) { i (“6th”);

/,,_—>proce556thLine(); < "\
}

System.out.printin E System.out.println
(“6th line”); E (“2nd”);

behavior is changed |--------- '

Figure 23: An Example of Wrong Pairwise Relationships Caused by not Considering Conditions
for Call

Figure 23 shows an example of wrong correspondence of ENSs. This is caused by not con-
sidering the conditions for call of each ENSs. In this example, there are two BENSad A2 in
methodA, and there are also two ENB$ and B2 in methodB. All of the ENSs are iif state-
ments, which means that methods created by extracting these ENSs are called if the conditional
predicates of the correspondiifgstatements are satisfied. However, the pairwise relationships
shown in the figure do not consider the conditions, therefore the behavior of methodB is changed

after the refactoring.

As described in 6.5.4, the conditions to cEM5m1(2> are represented by control dependence
edges, and all the nodes always have 1 control dependence from other nodes. In addition, all the
nodes in an ENS are contained by a single block statement or contained by their owner method
directly by the process described in 6.5.5. Consequently, all the control dependence eglges to
have the same tail node. In other words, the formula (21) is always satisfied for ever§.ENS

| InputControlNodes(G, S)| =1 (21)

Here, we defindCN g as the unique element imputControlNodes(G, S). We regard a pair of

45

method
m2

method

e

Q
»
‘% b

st.r(String) VI

___________ &

"“7 V'u
o fe t n,..
i(int text(String)
o “¥” means
O: Clone Nodes O : Non-Clone Nodes Method Enter
&~ : Data Dependence <=: Control Dependence Node
a B Y) Input Control Node
a 6
int String int String P Y
| * c * C
\l, c~C \ \7
Satisfy Requirement P6-1 Satisfy Requirement P6-2

\s azy, B=6 /

Figure 24: An Example of Pairwise Relationships

ENSs 6,.,, Sm,) as having same conditions for call if and only if they satisfy the formula (22).

(ICNs,, ~ICNg,)V (3S] € DiffNodeSets(Gpm,)3Sy € DiffNodeSets(G,)
S, = S, A ICNs, €8, AICNs,, €S1) (22)

46

6.6.3 An Example of Pairwise Relationships Detection

Figure 24 shows an example of pairwise relationships detection. Due to space limitation, we
do not write method enter nodes and control dependence from them in the figure.

In this example, there are two ENGsand g in methodm1, and there are also two ENSs
~ andd in methodm2. Return values of*M, and E'M,, are integer values, and return values
of EMg and E'M; are string values. Consequently, two pairs of EN&@sy) and (3, §) satisfy
Requirement P6-1.

Then, the proposed method checks the correspondence of call conditions. In this example,
ICN, andICN ., are the method enter nodes, which means that a pair of ENS§ satisfies
Requirement P6-2. In the case (@f, §), ICNg is ¢, andICN; is C. Consequently, the pair of
ENS(3, 9) satisfies Requirement P6-2 because C.

As aresult, we get two pairs of EN$a,) and(3,) in this example.

a7

7 Supporting for Method Groups

In this section, we describe the steps of proposed method for method groups. As described
in 5.2, we use method pair information calculated in STEP-P1 to STEP-P6, therefore the steps
from STEP-S1 to STEP-S6 are identical to from STEP-P1 to STEP-P6. Therefore, we describe
the steps after STEP-S6 in the following subsections.

7.1 STEP-S7: Identify Method Groups

In this step, we detect groups of methods on witohm Template Method can be applied.
In the reminder of this thesis, suppose that = ms indicates that a pair of methods; andms
is a refactoring candidate detected in the process described in 6.3.

Obviously, the binary relatiog: is a symmetric relationg; = me = msy = m1). However,
it is not a transitive relation. Assume that there are 3 methogdsmy andms, andm; = ms,
ms = mg. In this case, there is at least 1 clone pair betwegrandms, and betweemns and
mg because of the definitions ef. However, there is no clone pair between andmg if all the
clone pairs betweem; andms are not overlapped by any of clone pairs betweenandms. If

there is no clone pair betweem andms, m1 # ms because of its definitions.
However, the proposed method temporarily regards a group of methods as a candidate method
group if it satisfies the formula (23).

Vm € MS, Im’ € MS (m =m') (23)

Under this definition, ifm; = ms andms = mg are satisfied, a group of methods, m-, and

mg is regarded as a candidate method group regardless of whethér mj is satisfied or not.

If there is no clone pairs betweem; andmg, the proposed method omits the method group from
candidate method groups in the next step.

7.2 STEP-S8: Detect Common and Unique Processes

In this step, the proposed method detects common processes and unique processes in every
method group. Suppose thatS indicates a method group aiigl,,, means the PDG of method
my;.

Statements must be duplicate between all the methods in the method group to be pulled up
into a base class as a template method. We définemonNodes group(Gm;) @s a group of nodes
in Vg,,. that are pulled up into a base class. The definition is shown in formula (24).

CommonNodes group(Gm,;) == {v; € Va,., | Ym; € MS, Jv; € VGmi [v; ~ v;]} (24)

48

O : Common Nodes

O : Unique Nodes

Figure 25: An Example of Method Group

We defineDiffNodes ,,,(Gm,) as a group of nodes that need to remain in the derived class that
has methodn;. The definition is shown in the formula (25).

DiffNodes (Gm,) = {vi € Vg, | vi ¢ CommonNodes group(Gm;)} (25)

group

Figure 25 shows an example of method group. In this example, there are 3 methbds (
m?2, andm3) and all the pairs of them are detected as candidate method pairs, in other words
ml = m2, m2 = m3, andml = m3. In this example,CommonNodes goup(Gm,) and
DiffNodes ;. 0,,,(Gm,) beCOme as follows.

CommonNodes group(Gm,) = {a,b,c,i}

DiﬁNodesgmup(Gml) = {d,e, f,g,h}

In some cases, some nodes includedimmonNodes(G,,) are omitted to mak€ommonNodes group(Gm,)-
Consequently, the amount of common processes on method groups might be quite small than that
on method pairs. As a result, the number of element§dammonNodes(G,,,) might be less
than the threshold of minimum code clone size that is specified by users. Therefore, the proposed
method omits method groups if the number of their common nodes is less than the minimum clone
size. Consequently, in the case that = mo, mo = mg, andm, # mg, the proposed method
omit the method group that consistsraf, ms andms.

In the next, the proposed method detects ENSs for every methidd ifThere is no difference
in the definitions of ENSs between method pairs and method groups because the detection of ENSs

49

is closed in each method.

7.3 STEP-S9: Detect Relationships on ENSs

In this step, the proposed method detects correspondences of ENSs between meti®ds in

Likewise on method pairs, the correspondence relationship means that ENSs in a correspon-
dence relationship can be extracted as methods whose signatures are the same. As described in
6.6, the proposed method regards a pair of ESSsandsS,,, assS,,, = Sn, if they satisfy the
requirements about their return values and their call conditions. We can detect this relationship by
expanding that on method pairs.

Suppose tha$,,,, Sp,, andS,,, are ENSs in methods:;, mg, andms, respectively. In ad-
dition, assume that,,, = S,,, andS,,, = Sy,,. Moreover, assume th#t)/ ¢ means a method
created by extracting an EN& Under this assumption, the types of return valigg s, and
EMsg,,, are the same. Moreover, thosefd¥/ 5, andEM s, are also the same. Therefore, the
return values ofEM g, and EM g, are the same. Similarly, the call conditions &1/ s, ,

EMsg,,,, andEM g, are same to each other. Consequently, the binary relatiorsligpa transi-
tive relation G, = Smy A Sy = Sms = Sy = Smg)-

Obviously, the binary relatios= is a symmetric relationY,,,, = Sm, = Smy, = Sm,)-
Moreover, it is also a reflexive relatio®,, = S,,,). Consequently, the binary relatiesa is an
equivalence relation.

Therefore, we can detect correspondence relationships between 3 or more ENSs by detecting
equivalent classes.

50

L filering Sourca Gode | PDG | Bath]
Meth.. Meth.. Super . SIM DN- DN+ DG DOL Flisers¥-hotia¥Documents¥data¥apache=nin L. =

e e e T R ol Source Code of the Methods
in the Selected Method Pair

ine from what we got. the format is
tians..] [viewpath]

S

List of Method Pairs

OnG. G [DataTy. 08 19 1 1 1 I 3

Figure 26: A Whole Snapshot of Creios (for Method Pairs)

8 Implementation

8.1 Overview

We have implemented the proposed method as a tool n@reds (Clone Removal Expediter
by Identifying Opportunities with Scorpin Java. Creios can handle software systems written in
Java, because Scorpio, the clone detection tool used in Creios, can handle only Java. However, the
proposed method can be applied to other programming languages if PDGs are built.

The LOC of Creios is 17,290 with comments and white lines. It becomes 11,125 without
comments and white lines. Moreover, Creios consists of 136 source files. In addition, it uses the
external libraries as follows.

Scorpio: Scorpio is a PDG-based code clone detector. Creios uses it to detect code clones from
the target source code [34].

MASU: MASU (Metrics Assesment plugin platform for Software Yista source code analysis
platform [53]. Creios uses it to analyze the source code. MASU is also used in Scorpio.
MASU is an open source project in SourceForge.

JUNG: JUNG @ava Universal Network/Graph FramewQris a framework that provides soft-
ware libraries for the modeling, analysis, and visualization of data that can be represented as
a graph or network [54]. Creios uses it to visualize PDGs. JUNG is an open source project
in SourceForge likewise MASU.

Creios has two modes. One is for method pairs, and the other is for method groups. We
describe each of them in detail in the following subsections. Note that Creios does not modify

51

Il

m

public void executel) thraws BuildException {
Project aProj = getProjectl);

/¢ Default the "'EWW"”D‘U{ basedr if it is not specified 107 /#/ Default the viewpath to basedir if it is not specified

101 if (getViewPath(] == nul -
102 if (getWViewPath() == null) {
e o Pt aPro et
2 | Eetiiwath aProjgetBaseDirl) getPath() 109 setVien PathiaProj ze1BaseDirl) setPath(})
11 1
104
. 111
105 A build the command line from what we got. the format is PR pap " .
:gg % cleartool checkin [options..] [viewpath d h ‘;i‘;g&; T;;E"E;Sﬂ;;"?l'mm what we got the format is
as specified in the GLEARTOO LEXE hel TO Be Ext ra cte as t e o -
108 as specified in the CLEARTOOL EXE helj
108 commandLine oreateArgument() setalus{GO Mi# .
1o Same Sighature Method [rmsmlineorestetreument)zatishe(COMMAND LOCK

01 cheskOptionsfeommandLinl

B 7+ Check the command line options
112 119 checkOptionsicammandLine);
113 if UgetFailOnEr]) { 120
114 egetPraject() log{" Tenoring any errars that occur for: ™
. 121 #F For debugeging

115 i + getWiemPathBasename(), Project MSG_WVERBOSEN \12\ FF System out printin{commandLine toStringd)):;

3
17

L 12 if (lzetFailonEr() {

i if (Execute | 125 e=tFroject() log(" lenoring any srrors that aoour for:
120 lgﬁ , + egetOpTypel), Project MSG_VERBOSEY

An ENS if (Execute. {

Figure 27: A Snapshot of Source Code View

the source code by itself. Therefore, users need to perform source code modification by their own

effort.

8.2 Functionalities for Method Pairs

Figure 26 shows a snapshot of Creios for method pairs. The table shows all the candidate
method pairs that Creios detected. When users select a method pair from the table, the source
code of methods included in the pair is shown in the right panel.

Figure 27 shows a snapshot of source code view. In the source code view, common statements
are highlighted with red. Statements highlighted by red mean that they should be pulled up into
the base class as a template method. On the other hand, the other statements are unique processes
in each method. Statements surrounded by the same color rectangles make an ENS. In addition,
if users click statements that are not highlighted by red, an ENS includes the statement are high-
lighted. Moreover, if users click an ENS in one method, Creios also highlights the corresponding
ENS in the other method. ENSs highlighted by the same color are under the correspondence re-
lationship 6, = Sm,), Which indicates that the methods created by extracting them have the
same signature. Additionally, Creios shows the signature of method created from an ENS if users
put cursor on the ENS.

Creios also has PDG view. Figure 28 shows a snapshot of PDG view. Each circle indicates
a node of PDG, and each line indicates an edge of PDG. Nodes colored by red are nodes whose

52

¥Uszers¥k-hotta¥ Documents¥data¥apache-ant- 1.8, 1¥src¥ main¥ore¥apache¥took ional¥clearcas. ¥Uszers¥k-hotta¥ Documer pache—ant—18.1 e¥apack [ional¥clearcs,

| Control Dependence Edge |

Na Dependence Edge

Unique

Figure 28: A Snapshot of PDG View

owner statements are included in common statements. The blue lines indicate data dependence
edges, and the black broken lines indicate control dependence edges. The character string on each
data dependence edge indicates the name of the variable that the edge represents. Note that Creios
omits the method enter nodes and execute dependence edges in PDG view. To visualize PDGs,
Creios uses APIs provided by JUNG.

Creios can show both the source code view and PDG view at a time. Figure 29 shows the
apposing view of source code view and PDG view. The functionalities of the source code view
and the PDG view in the apposing view are exactly same to the original ones.

In addition, Creios has a filtering function of method pairs with some metrics. All the metrics
are calculated for each method pair. The metrics are as follows under the assumptiopn dmak
me are methods in a method pair, afig, is the PDG of methodh.

SIM: The similarity between two methods of each method pair (defined in the formula (26)).

| CommonNodes(G,)| + | CommonNodes(G)|
Ve, | +1Va,,|

SIM := (26)
CN: The number of nodes whose owner statements are included in common statements (defined
in the formula (27)).
CN := |CommonNodes(Gpm,)| (27)

DN+, DN-: The number of nodes whose owner statements are not included in common state-
ments. Note that the values of this metric are different between each method. Therefore,
we define DN+ as the larger one (formula (28)), and DN- as the smaller one (formula (29)),

53

nCheckot

7 4/ build the command line from what we eot the format is
1 cleartool uncheckout [options.] Fviewpath .1
/7 a5 specified in the OLEARTOOLEXE hel

void newllethodd (org.apache.tools-ant -types .Comnand! ine commandLin

Gl 1 CGheck C¥llzer

CURCheckodt

Figure 29: A Snapshot of Apposing View of Source Code View and PDG View

respectively.

DN+ = maz(|DiffNodes(Gpm,)l,|DiffNodes(Gm,)|) (28)
DN— = min(|Diff Nodes(Gm,)|, | DiffNodes(Gm,)|) (29)

LOC+, LOC-: The number of lines of each method. Obviously, the values of this metric are
different between each method. Likewise DN+ and DN-, we define LOC+ as the larger one,
and LOC- as the smaller one, respectively.

DG: The number of new methods that are created by extracting ENSs. DG is defined in the
formula (30), where N is the number of ENSs that have their correspondents in the other
method. Note that the ‘correspondent’ of an ENiSs = (S1).

DG := |DiffNodeSets(Gnm,)| + | Diff NodeSets(Gp,)| — N (30)
DOIl:. The depth of inheritance from the common base class to the owner classes of the two

methods. If the value is different for each method, we choose the larger one as the value of
DOI.

54

BaseClass

T

: Common Statements

| | {EERaat]
Bl
SubClassA SubClassB P . +ENSs
.\\ !“---_----J
SubClassC
.

builder.append(“A”);
builder.append(“B”);
bullder append(”C”)

return buiIder.toString();

StringBuilder builder = new StringBuilder();

H

StringBuilder bwlder = new StrmngIder()

HESettihg sVerbaselil
System.out.printin(“create a string”);

“builderappend(“Any; < TTTTTTTTTTTTTTTT

builder.append(“B”);

bullder append(”C”)

return buiIder.toString();

Figure 30: An Example of Candidate Method Pair

Table 1 shows the values of metrics of the method pair shown in Figure 30. Note that the
values of inheritance depth from the common base class are different for each class that has the

target method, therefore the larger val@ei$ choosed as the value of DOI in this example.

Users can make a short list of candidate method pairs with the filtering function. The filtering
function returns a list of method pairs whose metrics values are in the range that users specified.
To call the filtering function, users push the button on the top of the table listing the method pairs.

A filtering view is launched when users push the button. Figure 31 shows a snapshot of the
filtering view. The filtering view consists of three parts: a metrics graph, a list of metrics values,
and a list of method pairs that pass the filtering. Figure 32 shows a metrics graph. Users specify
the thresholds of each metric by dragging the graph. The area whose background color is gray

Table 1: The Values of Metrics in the Method Pair of Figure 30

SIM CN DN+

DN-

LOC+

LOC- DG DOl

0.769 5 3

1

9 6 2 2

55

p 176/227 e sected

-I ______________

fextract

sethebx ml

List of Method Pairs
that Pass the Filter

public int read() throms I0Exception |
if

1787227 are selected
1

02

1M

The number of
selected method pairs / all the method pairs

‘200

Figure 31: A Snapshot of Filtering View

, 200

20 2
|

Each method pair corresponds to a single polygonal curve
the red one is in the range at all the metrics
the gray one is not in the range at some of metrics

n

-LoG

Metrics

56

1an

+LOGC

Figure 32: A Metrics Graph

The range of values
of each metric

DGl Dol

The Lower Limit The Upper Limit

S 0463602 | ~ 10 +DN 0 ~ 36 DG 0 ~ 22
CH 0| ~ 73 -LoG 0 ~ 200 DGI 0 ~ 20
-DN 0] ~ an +LOG 0] ~ 200 DoL 0 ~ 1

Figure 33: View of the Metrics Values

8 [¥src¥main¥ore¥spache¥tools¥..

Bas. 7
Lnp [
Task
Co 5
Co
7 2 Def.. 0639
Det. .25
Tack 12 .
b lofoen lost List of Methods
1[Iz [Cle.. [051.5 S h T q n n 10 Exce)
13 5 Gen.. 076..2 H g
bt in the Selected
17 ask 157 int readt) ‘hmwi I0Exception { uhhr:(int read(} thruws{ 10Exception {
if
18 ack 159 h d - 2 i
[N R [P Method Group &
E Dire_|088 101 1
25 Dire..| 086, 108 102
o [pie o 0 105
- 108 El 104
g? _Friﬁl; : 106 it 1 105 {
‘as . 107 106 =
33 2 iEH l]:i m o Ma. Cla. Ra. GN DN }gé it {line. { :g; if (line. {
.
n read |Line. D& 12 12 10 Yelse { L4 109 telze
st 0576 i Tine = line substring(1% i
las " 12 111 1
e 2 lread [Stip.j048 [12 |13 13 Felse { 112 Yebe (P
Bos 146 3 read [Sore.pde 12 [13 11e i
2 |Dat. 094, 116 for (ine = readLined} Iine 1= rull] s = readLine(J) | 115 for {line = readLine(}] Tine = null]fine = readLine(}}{
2 at.. |06 17 116 oolean matches = true]
7 = 18 ++. "7 for (int i = 0 matches && i < T
2 |Bas.|061.. i 1 R regexp|
— 19 [= (ReeularExpression) regexps glement At}
120 Regexp re = ject0y]
A 121 inatches = re matches(line}]
122 13
122 it {matches ™ isNegated(})] {
124 breaky
126 13
. 126 1
List of 127 it [
128
129 1
Method Groups o
p 1
132 1
- 133 -
l _— —

Figure 34: A Whole Snapshot of Creios (for Method Groups)

indicates the range of thresholds for every metric, and the area whose background color is white
indicates the outside of the range. In the metric graph, each polygonal curve corresponds a method
pair. The polygonal curve becomes red if and only if all the metrics of the method pair represented
by the polygonal curve are in the specified threshold. If any of the metrics is not in the threshold,
the polygonal curve becomes gray. The specified lower limit and the specified upper limit of each
metric are shown in the metrics values view (Figure 33). The list of selected method pairs is shown
in the right of the filtering view. Users can view the source code and the PDGs of method pairs
that are listed in the view. The functionalities of the source code view and the PDG view in the
filtering view are exactly same to the original ones.

8.3 Functionalities for Method Groups

Figure 34 shows a snapshot of Creios for method groups. The left table shows all the candidate
method groups that Creios detected. When users select a method group from table A, all the

57

methods in the selected method group are shown in the tables B-1 and B-2. Note that the tables
B-1 and B-2 show the same contents. If users choose one of the methods in table B-1, the source
code of the selected method is shown in the source code view C-1. Similarly, if users choose one

of the methods in table B-2, its source code is shown in the source code view C-2. The source

code view and the PDG view are the same to those of described in 8.2.

58

ClearCase

Y
o

ClearCase

checkOption(cmd) }é|;e(

checkOther(cmd) \\
}

pullup if (getNoWarn()) {
CCCheckout CCCheckin .l ! CCCheckout CCCheckin }
7\

if (getComment() != null) {

checkOption(cmd)

checkOption(cmd) | * «I> checkOther(cmd)

checkOther(cmd)

cmd.createArgument().setValue(getViewPath());|

— I { - \f
—7 4 /IR
extract « 1
if getReserved() { 7 extract
cmd.createArgument().setValue(FLAG_RESERVED); i
} else { : if (getComment() != null) { \
cmd.createArgument().setValue(FLAG_UNRESERVED); getCommentCommand(cmd); \
} I Yelse { \
. if (getCommentFile() != null) { \
3 B getCommentFileCommand(cmd); = «
("~ if (getNowarn()) { }else { \
A cmd.createArgument().setValue(FLAG_NOCOMMENT); cmd.createArgument().setValue(FLAG_NOCOMMENT);
N} } \
if (getComment() 1= null) { } \
getCommentCommand(cmd); V7if (getNoWarn()) { \

Yelse {
if (getCommentFile() != null) {
getCommentFileCommand(cmd);
Yelse {
cmd.createArgument().setValue(FLAG_NOWARN);
}
}

C | cmd.createArgument().setValue(getViewPath());

\|

A cmd.createArgument().setVaIue(FLAG_NOWARN)"
N 1

if (getPreserveTime()) {
cmd.createArgument().setValue(FLAG_PRESERVETIME);
}

C| cmd.createArgument().setValue(getViewPath());

if (getPreserveTime()) {

)

if (getReserved()) {
} é'l'se {

)

: Code Clone

method : abstract method

Figure 35: An Example of Application dform Template Method with the Proposed Method

9 Evaluation

In order to evaluate the proposed method, we conducted experiments on two open source

software systems. Table 2 shows the target software systems, their scale, and the environment of

the experiments. The following subsections describe each of the experiments.

9.1 Evaluation of Supporting for Method Pairs

Table 3 shows the the number of detected candidates, and elapsed time to execute Creios on

each target software system. The numbers of candidate method pairs are 226 and 45, so that it can

be difficult for users to identify all the candidates manually. In addition, Creios can detect all the

candidates in a few minutes although the target software systems have hundreds of source files.

Figure 35 shows a refactoring candidate in Ant detected by Creios and the result of the refac-

Table 2: Target Software Systems

Name In Short LOC # of Files Environment
Apache-Ant Ant 212,401 829
CPU: Xeon 2.27GHz(8 core)RAM: 32GB
Apache-Synapse Synapse 58,418 383

59

3000

2500

2000

1500
1000

500 ——

0
[sec] Elapsed Time to Refactor

Figure 36: The Box-Plot of the Time to Appkorm Template Method on Synapse

toring. In this example, there is a base cl&SkgarCase and there are two derived class€s;-
CheckouandCCCheckinThere are also similar methods in the derived classesckOption By
applying Form Template Method to this target, duplicate statements are pulled up into in the
methodcheckOptiordefined in the base class and new methdusckOtheare created to imple-

ment the unique statements in each derived class. Note that there is a difference of the order of
code fragments in code clones: @CCheckouthe code fragments labeled A, B, and C are exe-
cuted in this order, however i@CCheckinthe order of code fragments is B-A-C. Therefore, this
example is an instance that the previous techniques cannot detect.

In addition, we applied~orm Template Method refactoring to all the 45 candidates that the
proposed method had suggested in Synapse in order to confirm the adequacy and the efficiency of
the proposed method as a technique to support refactorings. In this experiment, we successfully
refactored all the 45 candidates detected with Creios in Synapse, and confirmed that the behavior
of the program is preserved by using test suites attached to the software system. Additionally, we
measured the time needed to each of the refactorings. Figure 36 shows the box-plots of the time
needed to apply refactorings. Because Creios suggests that all the candidates can be refactored at
a time, we run Creios at once and apply refactorings using the output. The time to execute Creios
to Synapse is 95 seconds as shown in Table 3. As a result, we could apply refactorings in few

Table 3: The Number of Detected Candidates and Elapsed Time on Method Pairs
Name # of Candidates Elapsed Time [s]
Ant 226 178
Synapse 45 66

60

minutes in average nevertheless we are unfamiliar with the software.

9.2 Evaluation of Supporting for Method Groups

Table 4 shows the number of detected method groups, the number of them that have 3 or more
methods, and elapsed time to detect them on each target software.

Likewise on method pairs, we appliedrm Template Method refactoring to all the 6 method
groups that the proposed method had suggested in Synapse. As a result, we successfully refactored
all the candidates and confirmed that the behavior is preserved by using test suites.

9.3 Experiment with Subjects
9.3.1 Overview of the Experiment

We conducted an experiment with 7 subjects. All the subjects belong to Osaka University’s
Graduate School of Information and Technology (IST) or Osaka University’s Department of In-
formation and Computer Sciences in School of Engineering Science (ICS). The breakout of the
subjects is that: 3 master’s students in IST, 3 undergraduate students of fourth grader in ICS, and
1 research student in IST.

The objective of this experiment is to investigate the effectiveness of the proposed method as
refactoring support method. In this experiment, subjects apptyn Template Method refactor-
ing after a short introduction and practice, and we measure elapsed time that they need to finish
the refactoring. All the subjects refactored 2 method groups described in 9.3.2. Subjects applied
refactorings to one candidate method group with Creios, and they applied refactorings to the other
candidate withlCCFinder.

9.3.2 Target Method Groups

As described above, subjects applieakm Template Method to 2 method groups. The 2
method groups do not differ depending on the subjects. We call the 2 method @angsiate-
A andCandidate-B, respectively.

Table 4: The Number of Detected Candidates and Elapsed Time on Method Groups
of Candidates

Name # of Candidates Elapsed Time [s]
(3 or more methods)
Ant 48 18 195
Synapse 6 2 68

61

public PlanarImage executeDrawOperation () {
?ufferedlmage bi = new BufferedImage (width, height,

\

1
l, BufferedImage.TYPE_4BYTE ABGR PRE) ;i
Graphics2D graphics = (Graphics2D) bi.getGraphics();

if (!stroke.equals(“transparent”) {
BasicStroke bStroke = new BasicStroke(stroke width);
graphics.setColor (ColorMapper.getColorByName (stroke)) ;
graphics.setStroke (bStroke) ;
:graphics.draw(new Ellipse2D.Double (0, 0, width, height); i

{
if (!fill.equals (“transparent”)) {
graphics.setColor (ColorMapper.getColorByName (fill)) ;

grahpics.fill (new Ellipse2D.Double (0, 0, width, height));
}

for (int i = 0; i < instructions.size(); i++) {
ImageOperation instr = ((ImageOperation) instructions.elementAt (i));
if (instr instanceof DrawOperation) {
PlanarImage img = ((DrawOperation) instr).executeDrawOperation();

graphics.drawImage (img.getAsBufferedImage(), null, 0, 0);

} else if (instr instanceof TransformOperation) {
graphics = (Graphics2D) bi.getGraphics();
PlanarImage image = ((TransformOperation) instr)

.executeTransformOperation (PlanarImage.wrapRenderedImage (bi)) ;

bi = image.getAsBufferedImage();

}

}

return PlanarImage.wrapRenderedImage (bi) ;

: Common Statements e I i : ENSs

(a) Candidate-A

public void execute throws BuildException {
Commandline commandline = new Commandline () ;

{Project aProj = getProjcet (); !
int result = 0;
if (getViewPath() == null) {

setViewPath (aProj.getBaseDir () .getPath());

commandLine.setExecutable (getClearToolCommand ()) ;
icommandLine.createArgument().SetValues(COMMANDiMKBL);:

checkOption (commandLine) ;

if (!getFailOnErr()) {
getProject () .log(“Ignoring any errors that occur for: “ +
getBaselineRootName (), Ptoject.MAG VERBOSE) ;

result = run (commandline) ;
if (Execute.isFailure (reault) && getFailOnErr()) {
String msg = “Failed executing: “ + commandLine.toString() ;
throw new BuildException (msg.getLocation()) ;
}
}
: Common Statements f_ _____ j {’_ j : ENSs

(b) Candidate-B

Figure 37: Candidate Method Groups

62

Figure 37 shows the source code and the outputs of Creios on each candidate. The features of
the 2 method groups are shown in Table 5.

9.3.3 Prodcedure of the Experiment
The procedure of the experiment consists of five steps as follows.
1. We give a brief introduction to subjects.
2. Subjects applfform Template Method to a simple example.
3. We divide subjects into 4 groups. Table 6 shows the groups and assignments of each subject.
4. Subjects apply refactorings to the assigned method group.

5. Subjects apply refactorings to the other method group.

Introduction to subjects

At first, we gave an introduction to subjects about the background of this study and the exper-
imental procedure. The introduction includes the following information.

e Code clones and their removal techniques.

Form Template Method refactoring pattern.

How to applyForm Template Method.

How to use Creios.

The procedure of the experiment.

Practice

Second, we have subjects practice applyiHogm Template Method with a simple method
group. The target method group consists of 2 methods, and it contains 2 ENSs (note that we count
a pair of ENSs§1, S2) as 1 ENS ifS; = S,). The purposes of the practice are (1) to have subjects

Table 5: The Features of Target Method Groups
Label # of Methods # of Common Nodes # of ENSs
Candidate-A 3 19 3
Candidate-B 12 9 5

63

understand refactoring stepskgrm Template Method, and (2) to have subjects be familiar with
the tool.

Grouping

In the next, we divide subjects into 4 groups. Table 6 shows the groups of subjects. As this
table shows, the differences between each group are as follows:

e Which candidate do they refactor first?

e Which candidate do they use Creios?

Apply Refactoring

Subjects apply refactoring to the assigned target method group. For example, subjects in Group
1 refactor candidate A with Creios. We measure the elapsed time required to finish the refactoring
for every subject.

9.3.4 Result

Table 7 shows the elapsed time to finisbrm Template Method for every subject. The
numeric characters in this tablé/i:mm:ss’ indicates that the subject neéd hours andnm
minutes andss seconds to finish their refactoring tasks. For example, Subject 1 had finished
applying refactoring on Candidate-A in 22 minutes and 45 seconds. ‘N/A means that the subject
cannot finish refactoring in the case.

As the table shows, the time required to finish refactoring tasks varies greatly among subjects.
There is also great variability among Candidate-A and Candidate-B; all the subjects required much
time on Candidate-B than Candidate-A. This is because the degree of difficulty of Candidate-B

Table 6: Groups of Subjects

Group ID | Assigned Subjects First Target and Using Tool Second Target and Using Tool
1 Subject 1 Candidate-A Candidate-B
Subject 2 Creios CCFinder
5 Subject 5 Candi(#ate—B Candi.date—A
Creios CCFinder
Subject 6 Candidate-A Candidate-B
3 Subject 7 CCFinder Creios
4 Subject 3 Candidate-B Candidate-A
Subject 4 CCFinder Creios

64

is higher than that of Candidate-A. Table 8 shows the average time to finish the refactorings. As
the table shows, the elapsed time with Creios is higher than that@@thinderin Candidate-

A, meanwhile the opposite result is shown in Candidate-B. As a result, Creios cannot reduce
time required for the refactorings in the easier candidate, but it can reduse time required for the
refactorings in the more difficult candidate. Therefore, Creios is useful in a case that the target
method group is complex and it has a number of the methods.

Table 7: Elapsed Time to Finidform Template Method Application

Subjects Group ID Candidate-A Candidate-B
Subject 1 1 0:22:45 0:50:30
Subject 2 1 .) 0:52:00| . i 1:17:00
Subject 3 4 with Creios 0:19:22 with CCFinder N/A
Subject 4 4 0:09:58 0:27:45
Subject 5 2 0:12:04 0:25:30
Subject 6 3 with CCFinder | 0:22:55| with Creios | 0:50:28
Subject 7 3 0:35:20 1:04:15

Table 8: The Average Time

Candidate-A Candidate-B Both
with Creios 0:28:14 0:46:44 | 0:34:54
with CCFinder 0:23:26 0:51:45| 0:37:36
Both 0:25:50 0:49:15| 0:36:09

65

10 Discussion

10.1 PDG Creation

There are some other dependences except data, control, and execute dependence that should
be considered in PDGs. In the proposed method, dependence of break and continue statements
and dependence of exception are considered. However, the proposed method does not consider
dependence caused by the following factors.

e Library call.
e Alias.
e Presence of innner classes.

o Reflection.

Of these factors, we can consider dependence caused by library calls by giving the source code
of libraries as additional input of the proposed method. However, it is quite difficult to give the
source code of all the libraries that are used in the target software systems as the input.

In the experiments of this study, we cannot find instances that suffer any problems by depen-
dence that are not considered in the proposed method. However, there is a risk that the proposed
method suggest refactoring candidate incorrectly by these dependence. Thus, it is necessary to
consider these factors to make the proposed method robust.

10.2 Detection of Common Statements

As described in 6.4, the proposed method omits clone pairs except the most largest one in the
case that there are duplications of clone pairs. The purpose of this is to suggest more nodes as
common statements. However, in some cases, this selection may be not appropriate. We can avoid
this problem by delegating the selection to users. However, the proposed method does not have
this function at present.

10.3 Candidates that Need to be Tailored

As we described in Section 9.1, we applfemtm Template Method refactoring to 45 method
pairs detected in Synapse on method pairs. In some cases, we had to make some modifications
that Creios did not indicate, or we had to make some tailoring to the output of Creios to apply
the pattern. Table 9 shows the modifications or adjustments needed to apply refactorings, and the
number of candidates that needed them. The definitions of the terms in the table are as follows:

66

the term “modify ENS” means the cases in which we had to modify ENSs or their pairwise rela-
tionships between two methods that Creios suggests; the term “move methods into base class or
change their visibility” means the cases in which some methods defined in derived classes are used
in common processes and we had to move those methods into the base class and/or change their
visibilities; and the term “replace field references to calls of getter methods” indicates the cases in
which some fields are used in duplicate statements and they are not visible from the base class and
we had to replace references of these fields to calls of getter methods of them.

Issues of Visibility

The proposed method does not consider the visibility of methods and fields in the source code.
Therefore, code fragments that should be pulled up into template method can call methods or
reference fields that are not accessible from the base class. In such cases, we need additional
modifications on the source code to apptyym Template MethadWe can apply the pattern to
such candidates by changing the visibility of methods and fields. However, it is not desirable that
code clone removal requires increasing the visibility of methods or fields, because such changes
could cause vulnerability [55]. For fields, if fields have getters and setters, we can resolve this
problem by using them.

Issues of ENSs and their Relationships

The proposed method automatically detects ENSs and correspondence relationships of ENSs.
However, the automatically detected ENSs or relationships of ENSs may not fit with users’ sensi-
bilities. Although the automatically detected ENSs and their relationships do not always suitable,
they can help users apply refactoring.

10.4 Detection of Method Groups

The proposed method forms method groups from all the methods that satisfy the requirements
described in 6.3. However, it may be more suitable to form method groups from a subset of

Table 9: The Candidates that Need some Modifications for Creios’s Outputs

of candidates that need no modifications 29
of candidates that need some modifications 16
modify ENS 12

move methods into base class and/or change their visibilities 4
replace field references to calls of getter methods 2

67

the methods. We can improve this issue by delegating the selection of methods that should be
included in method groups to users. However, the proposed method currently does not have this
functionality.

10.5 Threats to Validity of the Experiment with Subjects

In the experiment with subjects, we confirmed that the proposed method reduces time to refac-
tor in a case that the target is complex and there is a number of methods in the target method group.
However, we found the opposite result in a case that the target is not complex. There might be
bias of subjects’ abilities, so that the result might occur. We may get another result with different
grouping of subjects.

68

11 Conclusion

In this thesis, we proposed a new technique to assist developers toFgrpty Template
Method refactorings to code clones. It detects refactoring candidates automatically and suggests
them to its users. It uses program dependence graphs as its data structure, which enables us to assist
developers removing code clones having trivial differences that have no impact on the meanings
of the program. Moreover, it can handle a group of three or more methods, which increases the
practicality of code clones removal.

We implemented the proposed method as a tool, and conducted an experiment to evaluate the
proposed method. We appli€@drm Template Method to all the candidates that the tool suggests
in an open source software, and confirmed that we can refactor the candidates with preserving the
behavior of the program.

As future works, we are going to improve our method for assuring behavior preservation,
and implement a function that suggests the source code after the applicaiormoflemplate
Method. Also, we are going to expand the proposed method to delegate selections for the issues

as follows.

e Methods that should be included in a method group.
e Common statements between methods in a method group.

e Statements that should be included in a set of nodes that should be extracted as a single

method.

e Relationships of ENSs.

Moreover, we are going to improve the proposed method to be able to focus on code clones
that affect maintainability significantly such as frequently modified code clones. Also, we are
going to evaluate the effectiveness of the proposed method by additional experiments.

69

Acknowledgements

During this work, | have been fortunate to have received assistance from many people. This
work could not have been possible without their valuable contributions.

First, | would like to express my sincere gratitude to my supervisor, Professor Shinji Kusumoto,
at the Osaka University, for his considerate support, encouragement, and adequate guidance for
this work.

Also, | would like to thank to Associate Professor, Kozo Okano, at the Osaka University for
his guidance, valuable suggestions and discussions for this work.

| am also deeply grateful to Associate Professor, Hiroshi Igaki, at the Osaka University for his
helpful comments and valuable suggestions.

I would like to express my heartfelt appreciation to Assistant Professor, Yoshiki Higo, at the
Osaka University for his zealous coaching, continuous support, and encouragement throughout
this work.

My sincere thanks go to all the subjects who take the time to the experiment for their effort,
comments, and close cooperation for this work.

Finally, | would like to thank all of my friends in the Department of Computer Science at
the Osaka University, especially the members in Kusumoto Laboratory, for their helpful advices,
suggestions and assistance.

70

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Y. Higo, S. Kusumoto, and K. Inoue. A survey of code clone detection and its related tech-
nigues.EICE Transactions on Information and Systemsl. 91-D, No. 6, pp. 1465-1481,
June 2008. (in Japanese).

T. Kamiya, Y. Higo, and N. Yoshida. Evolving and hot topics on code clone detection tech-
niques.Journal of Computer Softwar&ol. 28, No. 3, pp. 28-42, Aug. 2011. (in Japanese).

T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-linguistic token-based code
clone detection system for large scale source cd&&E Transactions on Software Engi-
neering Vol. 28, No. 7, pp. 654-670, July 2002.

I. Baxter, A. Yahin, M. Anna L. Moura, and L. Bier. Clone detection using abstract syntax
trees. InProc. of the 14th International Conference on Software Maintengoge368-377,
Mar. 1998.

J.H. Johnson. Substring matching for clone detection toolBrde. of the 10th International
Conference on Software Maintenanpe. 120-126, Sep. 1994.

S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting
duplicated code. IfProc. of the 15th International Conference on Software Maintenance
pp. 109-118, Aug. 1999.

Z. Li, S. Myagmar, S. Lu, and Y.Zhou. Cp-miner : Finding copy-paste and related bugs in
large-scale software codéEEE Transcations on Software Engineeringl. 32, No. 3, pp.
176-192, Mar. 2006.

R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix trees. In
Proc. of the 13th Working Conference on Reverse Enginegnimg?53—-262, Oct. 2006.

L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard : Scalable and accurate tree-based
detection of code clones. Rroc. of the 29th International Conference on Software Engi-
neering May 2007.

R. Komondoor and S. Horwitz. Using slicing to identify duplication in source cod@rdn.
of the 8th International Symposium on Static Analysjis 40-56, 2001.

J. Krinke. ldentifying similar code with program dependence graphdn Proc. the 8th
Working conference on Reverse Engineerimg 301-309, Oct. 2001.

71

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Y. Higo and S. Kusumoto. Code clone detection on specialized pdgs with heuristRsmcln
of the 15th European Conference on Software Maintenance and Reenginegring—384,
Mar. 2011.

J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function
clones in a software system using metricsPhoc. of the 12th International Conference on
Software Maintenancgp. 244—253, Nov. 1996.

J. Ossher, H. Sajnani, and C. Lopes. File cloning in open source java projects: The good, the
bad, and the ugly. IiProc. of the 27th International Conference on Software Maintenance
pp. 283-292, Sep. 2011.

Y. Sasaki, T. Yamaoto, Y. Hayase, and K. Inoue. File clone detection for a large scale
software systemIEICE Transactions on Information and Systerdsl. J94-D, No. 8, pp.
1423-1433, Aug. 2011. (in Japanese).

N. Gode and R. Kosheke. Incremental clone detectiorPrbt. of the 13th European Con-
ference on Software Maintenance and Reengineeppg219-228, Mar. 2009.

B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code clone detection:
Incremental, distributed, scalable. Pmoc. of the 26th International Conference on Software
Maintenancepp. 1-9, Sep. 2010.

Y. Higo, Y. Ueda, M. Nishino, and S. Kusumoto. Incremental code clone detection: A pdg-
based approach. Iroc. of the 18th Working Conference on Reverse Enginegrmg3—12,
Oct. 2011.

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. RobertRefactoring: Improving the
Design of Existing CodeAddison-Wesley Professional, 1999.

S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus. Does code decay?
assessing the evidence from change management @& Transactions on Software En-
gineering Vol. 27, No. 1, pp. 1-12, Jan. 2001.

E. Murphy-Hill and A. P. Black. Breaking the barriers to successful refactoringrdn. of
the 30th International Conference on Software Engineenimg 421-430, May 2008.

T. Mens and T. Tour@. A survey of software refactorindEEE Transactions on Software
Engineering Vol. 30, No. 2, pp. 126-139, Feb. 2004.

E. Gamma, R. H., R. Johnson, and J. M. Vlissidessign Patterns : Elements of Reusable
Object-Oriented SoftwareAddison-Wesley Professional, 1995.

72

[24] N. Juillerat and B. Hirsbrunner. Toward an implementation of the “form template method”
refactoring. InProc. of the 7th International Working Conference on Source Code Analysis
and Manipulation pp. 81-90, Sep. 2007.

[25] T. Masai, N. Yoshida, M. Matsushita, and K. Inoue. Supporting difference extraction for
merging similar methods. IHEICE Technical Reporpp. 45-50, May 2010. (in Japanese).

[26] M. loka, N. Yoshida, T. Masai, Y. Higo, and K. Inoue. A tool support to merge similar
methods with a cohesion metric cob.Rroc. of the 3rd International Workshop on Empirical
Software Engineering in Practicep. 23—-24, Nov. 2011.

[27] M. Weiser. Program slicing. IRroc. of the 5th International Conference on Software En-
ginieering pp. 439-449, Mar. 1981.

[28] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use
in optimization.ACM Transactions on Programming Languages and Systéohs9, No. 3,
pp. 319-349, 1987.

[29] N. Tsantalis and A. Chatzigeorgiou. Identification of extract method refactoring opportuni-
ties for the decomposition of methodkurnal of Systems and Softwaxel. 84, No. 10, pp.
1757-1782, Oct. 2011.

[30] K.Inoue, T. Kamiya, and S. Kusumoto. Code-clone detection meti@aisiputer Softwate
Vol. 18, No. 5, pp. 529-536, 2001. (in Japanese).

[31] S. Bellon, R. Koschke, G. Antniol, J. Krinke, and E. Merlo. Comparison and evaluation
of clone detection toolslEEE Transactions on Software Engineeringl. 31, No. 10, pp.
804-818, Oct. 2007.

[32] CCFinderX. available athttp://www.ccfinder.net/ccfinderx-j.html
[33] CloneDR. available athttp://www.semdesigns.com/Products/Clane/
[34] Scorpio. available athttp://www-sdl.ist.osaka-u.ac.jp/ higo/cgi-bin/main.cgi/scorpio

[35] W. F. Opdyke. Refactoring: A Program Restructuring Aid in Designing Object-Oriented
Application FrameworksPhD thesis, University of lllinois, 1992.

[36] Y. Higo, S. Kusumoto, and K. Inoue. Identifying refactoring opportunities for removing code
clones with a metrics-based approach. In K. Cai, editava in Academia and Reseaych
chapter 3, pp. 57-82. Concept Press Ltd., 2011.

73

[37] M. Balazinska, E. Merlo, M. Dagenais, and B. Lague. Advanced clone-analysis to sup-
port object-oriented system refactoring. Rroc. of the 7th Working Conference on Reverse
Engineering pp. 98-107, Nov. 2000.

[38] R. Cottrell, J. J. Chang, R. J. Walker, and J. Denzinger. Determing detailed structural cor-
respondence for generalization tasks. Pimc. of the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineeringp. 165-174, 2007.

[39] R. Komondoor and S. Horwitz. Semantics-preserving procedure extractiofromn of
the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Langyage
155-169, 2000.

[40] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy. An empirical study of code clone
genealogies. IrProc. of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering pp. 187-196, 2005.

[41] C. J. Kapser and M. W. Godfrey. “cloning considered harmful” considered har&fapir-
ical Software Enginieeringvol. 13, No. 6, pp. 645-692, Dec. 2008.

[42] N. Bettenburg, W. Shang, W. M. lbrahim, B. Adams, Y. Zou, and A. E. Hassan. An empir-
ical study on inconsistent changes to code clones at the release $&¥ehce of Computer
Programming in Pres2011.

[43] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software quality analysis by
code clones in industrial legacy software. Rroc. of the 8th IEEE Internaitional Software
Metrics Symposiunpp. 87-94, June 2002.

[44] A. Lozano and M. Wermelinger. Evaluating the harmfulness of cloning: A change based
experiment. InProc. of the 4th International Workshop on Mining Software Repositories
May 2007.

[45] J.Krinke. Is cloned code more stable than non-cloned cod@?oln of the 8th International
Working Conference on Source Code Analysis and Manipulabipn57—66, Sep. 2008.

[46] N. Gode and J. Harder. Clone stability. Broc. of the 15th European Conference on Soft-
ware Maintenance and Reengineeripg. 6574, Mar. 2011.

[47] N. Gode and R. Koschke. Frequency and risks of changes to clond3totn of the 33rd
International Conference on Software Engineeripg. 311-320, May 2011.

74

[48] F. Rahman, C. Bird, and P. Devanbu. Clones: What is that smelPrdn of the 7th IEEE
Working Conference on Mining Software Repositgngs 72—-81, May 2010.

[49] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is duplicate code more frequently modified
than non-duplicate code in software evolution?: An empirical study on open source software.
In Proc. of the ERCIM Workshop on Software Evolution and International Workshop on
Principles of Software Evolutiqmpp. 73-82, Sep. 2010.

[50] Y. Sasaki, K. Hotta, Y. Higo, and S. Kusumoto. Is duplicate code good or bad? an empirical
study with multiple investigation methods and multiple detection toolrat. of the 22nd
International Symposium on Software Reliability Engineeriigv. 2011.

[51] S. Lee, G.Bae, H. S. Chae, D. Bae, and Y. R. Kwon. Automated scheduling for clone-based
refactoring using a competent g&oftware: Practice and Experienceol. 41, No. 5, pp.
521-550, Apr. 2010.

[52] M. F. Zibran and C. K. Roy. A constraint programming approach to conflict-aware optimal
scheduling of prioritized code cloen refactoring.Rroc. of the 11th International Working
Conference on Source Code Analysis and Manipulappn 105-114, Sep. 2011.

[53] MASU. avilable at<http://sourceforge.net/projects/masu/
[54] JUNG. avilable akhttp://jung.sourceforge.net/

[55] K. Maruyama and T. Omori. A security-aware refactoring tool for java program&rdo.
of the 4th Workshop on Refactoring Taglp. 22—-28, May 2011.

75

Algorithm 5 ForwardSlicdG1, Ga, r1, 2, R1, R2)
Require: Gy, Ga, 71,72, R1, Ra, 11 =172
Ensure: R; &£ Ry

1. Ry <ir1

2. Ry Jrg

3: for all e; € ForwardEdges(ry) do

4: forall e; € ForwardEdges(ry) do

5:] < head(ey)

6: rh < head(ez)

7 if | # r} then

8: continue

9: end if
10: if i € Ry orrh, € Ry then
11: continue
12: end if
13: if ¥} € Ry orrh, € Ry then
14: continue
15: end if
16: ForwardSlice(G1, Ga, ', 7%, R1, Ra)
17: end for
18: end for

A Algorithms for Detecting Isomorphic Subgraphs

Supposgr; andGs are the target PDGs. The algorithm to detect isomorphic subgraphs be-
tweenG, and G, with the forward slice is shown in Algorithm 5. Note th&{ and R, must be
initialized as empty sets to run this algorithm. In Scorpio, hash values are used to compare two
nodes. Therefore;; = ro indicates that the hash value of is equal to that of-,. Also, the
algorithm with the backward slice is shown in Algorithm 6. Both of the forward and backward
slices are used to detect code clones in Scorpio.

76

Algorithm 6 BackwardSlicé&1, Go, 71, 72, R1, R2)

Require: G1, Ga, 11,72, R1, Ro, 71 =19
Ensure: R; &£ Ry

1. Ry <ir1

2. Ry <i7’2

3: for all e; € BackwardEdges(r1) do
4: forall e; € BackwardEdges(ry) do

5:]« tail(er)

6: rh « tail(es)

7 if v # r} then

8: continue

9: end if
10: if i € Ry orrh, € Ry then
11: continue
12: end if
13: if ¥; € Ry orrh, € Ry then
14: continue
15: end if
16; ForwardSlice(G1, Ga, ', 7%, R1, Ra)
17: end for
18: end for

77

