

ⓒ

A Visualization Technique for Unit Testing and Static

Checking with Caller–Callee Relationships

Yuko Muto, Kozo Okano, Shinji Kusumoto

Graduate School of Information Science and Technology

Osaka University

 Suita, Japan

{y-mutoh, okano, kusumoto}@ist.osaka-u.ac.jp

Abstract—Software visualization techniques fall into two

categories: visualization of software component relationships and

visualization of software metrics. In this paper, we propose a new

hybrid method based on both categories. The proposed method

visualizes the coincidence between specification and

implementation from two aspects: static checking and ordinal

testing by test suites. In our method, each ratio of the coincidence

is shown by pie charts which represent classes of the target

software. The whole software is represented in a weighted

digraph structure. We have prototyped a tool to implement our

proposed method. We have evaluated the utility of the proposed

method by applying the tool to two kinds of software: a

warehouse management program and a telephone directory

management program. We conclude that the proposed method

yields informative results.

Keywords-unit testing; static checking; ESC/Java2; software

quality; visualization

I. INTRODUCTION

Visualization techniques for software have recently been
playing more important roles due to the increase in the size of
software. Visualization techniques fall into two categories: the
visualization of software component relationships and the
visualization of software metrics. The former approach [1]
often shows program flows as PDGs (Program Dependency
Graphs). The latter approach includes the visualization of the
temporal sequence of software metrics which helps in the
analysis of software development [2].

The granularity of the visualization target varies from code
segments to objects, classes, files, or libraries [3]. For object
oriented programs, the unit of a class is considered a suitable
granularity. Paper [4] shows several relationships among
classes.

Some papers [3] and [5] have proposed visualization
methods software components. In [3] it is stated that
visualization is performed in several views: static views which
show the abstract structure of programs, and dynamic views
which depict the dynamic traces of programs. Recently, the
quality of software has become important. Few papers,
however, provide a visualization of the quality of the software.
Our approach overcomes this weakness.

ISO defines the quality of software [6] as consisting of six
properties: functionality, reliability, usability, efficiency,
maintainability, and portability. Functionality is a kind of
metric which defines whether the software satisfies the

required properties. It requires that the software must
implement the requirements. Functionality can be measured by
ordinary unit testing, static checking, model checking, or model
based testing. Ordinary unit testing tests, using sufficiently
many test suites, a given module relative to its specification to
see whether the module satisfies the specification. Ordinary
unit testing is usually performed as an early step of software
tests. A major drawback of ordinary unit testing is that the
quality of the results of such a test sometimes depends on the
quality of the test suites used. If the coverage of the test suites
is low, then some properties cannot be tested.

On the other hand, static checking and model checking do
not require executing the source code. These approaches check
the source code statically (or an abstract model of the source
code which models its behaviour). One famous tool for static
checking is ESC/Java2 [7]. Its input is a Java program
annotated with JML (Java Modeling Language) [8], [9], in a
DbC [13] manner. It checks whether the (behaviour of the)
source code satisfies the property described in the JML. The
quality of the output also depends on the property itself as well
as that of the standard libraries used for ESC/Java. Another
drawback of ESC/Java2 is that it is not easy to understand the
relationships among classes because its outputs are text-based.

Model-based testing is yet another important approach. It
needs a model to create test-suites. Recently, model-based
testing with Spec Explorer has obtained a lot of attention [21].
Spec Explorer was developed by Microsoft Research. It uses
spec# or AsmL [22] as the modeling language.

However, in this paper, we focus on classical unit testing
and static analysis because unit testing is still a popular method
and both static checking and model-based testing need a
modeling language to describe specification of the target
program.

Therefore, a hybrid approach is considered. For example,
[10] provides a method which generates test suites using
counter examples generated by ESC/Java2.

In this paper, we propose a new hybrid method based on
both categories. The proposed method visualizes the
coincidence between specification and implementation from
two aspects: ordinary testing (by test suites) and static checking.
Each verification is performed in a method or function basis
(unit testing). In our method, the ratios of the coincidence are
shown by pie charts which represent classes of the target
software. The software as a whole is represented in a weighted
digraph structure.

ⓒ

The prototype tool runs as a plug-in of Eclipse, a famous
framework for integrated develop environment for software.
We have evaluated the availability of the proposed method by
applying the tool to two kinds of software: a warehouse
management program and a telephone directory management
program. We conclude that the proposed method yields
informative results.

This paper is based on [23], strengthening related work and
the experiment results section.

The contribution of our paper is as follows. We propose a
new hybrid method based on both of the two categories. The
proposed method visualizes coincidence between specification
and implementation from two aspects. We show that such
technique is useful to analyse the quality of a target program.

This paper is organized as follows. Chapter II briefly
discusses related work. Chapter III provides some definitions
of words as a preliminary. Chapter IV will describe our
proposed method. We give an overview of our prototype tool
in Chapter V, followed by experimental results and a
discussion in Chapters VI and VII. Finally, Chapter VIII
concludes the paper.

II. RELATED WORK

There are many works related to our work.

A. Visualization

GraphTrace [4] has proposed a visualization method for
OOP, to understand the dynamic behaviour of the program.
The target language is OO Lisp. It has structural and
behavioural views, which show tree views of class inheritance
and method call structures using the source code and runtime
execution information.

Some case-study examples are provided in [4], showing
that visualization is useful. One of the drawbacks of the method
is that it uses only source code information and execution
information, thus other information, such as test coverage,
cannot be obtained. Therefore, the method can provide only
what the program implementor intends. Such a drawback is
common among methods based on the analysis of only
products.

B. Combining Unit Testing and Static Cheking

Check’n’Crash [10] combines ordinary unit testing and
static checking. The approach can automatically find some
faults. ESC/Java2 produces some counter examples. Then test
suites are automatically produced based on the counterexample,
which are used in unit testing to identify faults. It is effective in
the sense that it produces only suitable test suites for suspected
faults.

It does not cover points where the test suites are not
generated. ESC/Java2 is neither sound nor complete, thus such
points might have some serious faults. Therefore, it will miss
some possibilities of runtime execution’s causing errors, such
as memory faults.

That paper performed ordinary unit testing after static
checking. The opposite way is used in [11]. Tests cannot find
corner case bugs. The method in [11] firstly performs testing
relative to the target and obtains its coverages. Secondly it
performs static checking on the complementary part of the

coverages. Thus, the static checking can be applied to a limited
area of the target source code; and it gains in scalability.

It, however, misses the bugs which are passed by the tests
but are detected by static checking. It might still fail to detect
some corner case bugs. For example, even the branch coverage
does cover the combination of branch conditions; while corner
case bugs may be detectable only for some specific values of
variables which are not tested.

Figure 1. Main class and Person class with JML

Figure 2. Visualization of static checking for Main class and Person class

III. PRELIMINARY

This chapter gives some definitions and explanations of
unit testing and static checking.

A. Unit Testing

(Ordinary) unit testing is performed for each module of
agiven software. Conventionally the testing is performed by
test suites. Famous metrics of unit testing include statement
coverage, branch coverage, condition coverage, and so on.
These coverages are used as metrics for the quality of the test
suites themselves as well as that of the results of unit testing.

JUnit is the de facto standard framework for unit testing.
JCoverage [12] calculates some coverages including statement
coverage. djUnit is a plug-in for Eclipse which exports the
coverage reports of JCoverage.

B. Static Checking

1) JML: JML (Java Modeling Language) [8], [9] is a

specification language used for annotation in Java

programming. Based on DbC (Design by Contract) [13], we

can assert invariants, pre-conditions and post-conditions for a

method.

01: class Main {

02: public static void main(String[] args) {

03: Person p = new Person(); // call Person

04: p.setFullName("John Smith"); // call Person

05: System.out.println(p.getFamilyName()); // call Person

06: }

07: }

08: class Person {

09: private String fullName = "";

10: public Person() {}

11: /*@ public behaviour

12: requires nm != null && !nm.equals("");

13: ensures fullName.equals(nm); @*/

14: public void setFullName(String nm) {

15: fullName = nm;

16: }

17: public String getFamilyName() {

18: return fullName.split(" ")[1];

19: }

20: }

ⓒ

Figure 1 shows an example of JML annotation. Person class
has a name field and a setter method, setName. The field name
must be always non-null, thus, the annotation of the third line is
given. Method setName has a pre-condition that nm is neither
Null nor null String, thus, the annotation of the fifth line is
given. Also the ensure clause gives the post-condition which
means that name has the same value as nm.

2) ESC/Java2: ESC/Java2 [14] is a static checking tool

which verifies whether the source code satisfies the annotation

described in JML for each method. In theory, neither

soundness nor completeness is guaranteed, however it

efficiently finds bugs in normal usage. It is one of the useful

tools in the sense of a light-weight formal approach. It

supports Java version1.4. Some of major libraries have been

annotated in JML or built-in. The verification is performed by

translating the source code and associated JML annotation into

a logical expression, and evaluating by a theorem prover

called simplify [24].
It requires the Java source code and outputs a result as text

messages which say pass or fail for each property and each
method. If it reports fail, its counter-example also generated.
Such approaches are also taken in Spec#, a C# based language
with specification annotation features. A translator translates
Spec# program code into a logical language designed for
general programs, Boogie2 [20]. The translated language is
then evaluated by the SMT (Satisfiability Modulo Theories)
solver, Z3 [19].

IV. OUR PROPOSED METHOD

This chapter describes our method.

A. Overview

Figure 2 presents the result of static checking for Figure 1.
The caller–callee relation of the given target program is shown
in a digraph, where each node and each edge represent,
respectively, a class and a caller–callee relation. Each node also
represents a pie-chart which gives the passage rate of the
corresponding class. The passage rate is evaluated based on
unit testing and static checking. The weight of an edge
corresponds to the number of method calls relating to the
classes. We use the caller–callee relation instead of the class
hierarchy relation used typically in class diagram, because in
this paper we focus on modular verification/testing, where
properties of classes or methods and their relations are
important. Of course, such a structure can be visualized using a
similar way to ours.

B. Definition of Passage Rate Metrics

Here, we have to think of the following four kinds of
metrics: (1) metrics for the quality of the test suites, (2) metrics
of the quality of assertions, (3) metrics for the results of
ordinary unit testing, and (4) those for the results of static
checking. In this paper, we focus on the metrics for (1), (3) and
(4). We discuss the metrics for (2) in Chapter VII.

1) Passage Rate for quality of the test suites: We adopt

also statement coverage as a passage rate of unit testing. The

reason is that statement coverage is simple and easy to

calculate; the value of branch coverage generated by djUnit is

different from the original value; and condition coverage is not

supported by JCoverage.

2) Passage Rate for Results of Unit Testing: We adopt

also statement coverage as a passage rate of the result of unit

testing. More precisely, we define Passage Rate for as the

number of test suites passed divided by the total number of

test suites. The test suites passed should be defined as the test

suites executed whose results satisfy a reference level which is

prepared in advance. Currently, for simplicity, the tool regards

the metrics for (1) and (2) as being the same.

3) Passage Rate for Results of Static Checking: Let

Mpassed(A) and M(A) be the number of passed methods in a

class A, and the total number of methods in a class A,

respectively. The passage rate of static checking for the class

A is defined by

Cs(A) = Mpassed(A) / M(A).

We give an example for the metrics using Figure 1. From
the output by ESC/Java2, we can infer that the constructor and
method setFullName are both valid, however method
getFamilyName is not valid. Therefore Mpassed (Person)=2
and M (Person)=3, respectively. Cs (Person) is 66%.

4) Some discussion of metrics for the quality of the test

suites and for the results of ordinary unit testing: As a result,

we adopt the same statement coverage as passage rates for

both metrics: that for the quality of the test suites and that for

the results of ordinary unit testing. It would be a good idea to

give different metrics for the two qualities. One of the ideas is

that for the quality of the test suites, we define the statement

coverage based on a syntactical calculus but the real passage

rate. Such a definition would produce different values against

test suites with random behaviour or dynamic binding.

However, in this paper, we use the same statement coverage.

C. Definition of the Caller–Callee Relation

If method m1 appears in method m2 as a method call
statement, we say m2 calls m1. If a method in class A calls
some method in class B, we say A calls B. Let nAB be the
number of calls such that class A calls class B. We say A calls
B nAB times. The following explains the caller–callee relation
and the number. In Figure 1, Main class calls the constructor of
Person class in line 3, method setFullName in line 4, and
method getFamilyName in line5. Thus, Main class calls Person
class three times.

V. IMPLEMENTATION

Here, we give simple descriptions of our prototyped tool.
The tool is implemented as a plug-in of Eclipse. The size of the
program is about 2000 LOC without comments, with 14
packages and 33 classes. The program is mainly written in Java
1.6, developed on Eclipse Galileo. We use PDE (Eclipse Plug-
in Development Environment) in order to implement it as a
plug-in. We use libraries MASU and JUNG as part of the tools.
MASU provides general metrics measurement and a program
analysis library [1]. We use MASU in order to analyse caller-
callee relation of the given program. JUNG, Java Universal
Network/Graph Framework, is a graph visualization library
[15]. We use it to draw the output digraph.

ⓒ

Currently, the tool only deals with: (3) metrics for the
results of ordinary unit testing, and (4) those for the results of
static checking.

A. Input

The inputs of the tool are the directory of the target source
code files, the XML generating scripts, and the location of the
XML files. The tool requires that the target source code files
are written in Java version 1.4. The version restriction is due to
the restrictions of ESC/Java2. The XML generating scripts are
replaceable according to the metrics.

B. XML documents

Here, we give overview of the XML document. Figure 3
shows the format of an XML document. The class tag
corresponds to a Java class. It contains the Package name, class
simple name, coverage, as well as information on methods. The
method tag corresponds to a Java method. The attributes tag is
used for displaying the information.

Figure 3. XML format

C. Views

Figure 4 is a screenshot of the Tool. It has Main View for
showing the digraph and Method View for showing detailed
method information.

Main view in Figure 4 shows the caller–callee relations by
edges. The thickness of the edge expresses the number of calls.
For example, if class A calls class B n times and class A calls
class C m times, then the edge between A and B is thicker than
that between A and C provided that n > m.

Main View supports several features, such as a filtering
feature. Using the filtering feature, we can select a class and its
related classes. Figure 5 shows an example. From the Main
View, if we select Request Class and perform the filter feature,
then the view below is obtained. The view only shows Request
class and its related classes. The related classes are selected by
caller–callee relation metrics.

Figure 6 shows the architecture of the tool. Each of the
XML files is generated by its specific script which calls an
adequate tool, djUnit or ESC/Java2.

Figure 4. Screenshot

Figure 5. Filtering feature

<?xml version="1.0" encoding="utf-8"?>
<class>

 <packageName> package name </packageName>

 <simpleName> class id </simpleName>
 <methodCount> the number of methods

 </methodCount>

 <coverage> coverage </coverage>
 <methods>

 <method id="1">

 <name> method id </name>
 <parameter> arg1,arg2,... </parameter>

 <attributes>

 <attribute>
 <title> attribute title </title>

 <value> value of attribute </value>

 </attribute>
 </attributes>

 </method>

 <method id="2">
 ...

 </method>

 </methods>
</class>

ⓒ

Figure 6. Architecture

VI. EXPERIMENT

In order to evaluate our proposed method, we applied the
tool to two programs.

A. The Evaluation Approach

We applied our tool to the following two programs.

1) Targets: We use two programs, one is a warehouse

management program, and the other one is a personal

telephone directory.
The warehouse management program is implemented in

Java1.4. The program has seven classes of about 400 LOC
except for JML annotations and the test suites have seven
classes of 200 LOC. The program and its JML annotations
were written by an undergraduate student in order to verify the
usefulness of JML annotations and ESC/Java2 in [16]. We
have written its test suites to use them in this paper.

The personal telephone directory is also written in Java1.4.
It has five classes of about 260 LOC except for JML
annotations and its test suites have ten classes of 800 LOC. Its
original program was an assignment for an undergraduate
exercise. A member of the teaching staff of our university
wrote it and its test suites. We reused the core of the program
and test suites. In this paper, we added JML annotations.

Figure 7. Class constitution of the warehouse management program

2) Condition: We make an assumption.

Assumption 1: We assume that the warehouse management

program has valid JML annotations with poor test suites,

whereas the personal telephone directory has poor JML

annotations with sufficient test suites.
In fact, the former assumption is guaranteed by [16], and

the latter has 800 LOC of test suites to 260 LOC of source code
files.

B. Warehouse Management Program

The warehouse management program consists of seven
classes: ContainerItem, Customer, Item, ReceptionDesk,
Request, Storage and StockState. Figure 7 shows the UML
diagram of the program. The program manages stock items of
a warehouse of a liquor shop. Inputs are lists of container items
and lists of request orders; while outputs are empty container
lists and lists of shipping orders. The management has to
decide the outputs according to the current status of warehouse.

Because the program already has JML annotation with
checking, we just added test suites for the unit testing. The test
suites only check constructors and setter/getter methods. Thus,
the quality of the test suites is low. Though the Storage class
has fields named containerlist and allitemlist and their getter
methods, we didn’t describe their test suites, because setter
methods for the fields are not implemented in the class.

C. Personal Telephone Directory

The personal telephone directory has the following five
classes: AddressBook, Entry, NameComparator,
TelComparator, and MailDomainComparator.

The program manages a personal telephone directory. It has
sorting features by three kinds of keys.

The personal telephone directory has sufficient test suites,
thus, we regard the program is valid from the point of view of
unit testing. On the other hand, the JML annotation is not
sufficient.

D. Results

Figures 8 and 9 show the digraphs representing unit testing
and static checking, respectively, for the warehouse
management program. Figures 10 and 11 show the digraphs
representing unit testing and static checking, respectively, for
the personal telephone directory.

E. Discussion

1) Unit Testing: Let us discuss the unit testing results of

each program.

a) Warehouse Management Program: In Figure 8, thick

arcs show that the source class calls many methods in the sink

class. By observing the arcs, we can estimate the number of

stabs needed for unit testing. Every terminal node (class) has

high values of passage rate. This shows that such a class tends

to be a typical Java bean, thus they have only simple

setter/getter methods.

b) Personal Telephone Directory: Sufficient test suites

are given, the passage rates of every class are all 100%. Entry

class is called from every other class; thus, its quality affects

the whole the program. Developers should look carefully at

ⓒ

Entry class. Visualization of such information is useful for

developers.

2) Static Checking: Let us discuss two graphs generated

by static checking.

a) Warehouse Management Program: Figure 9 shows

that every class has a high passage rate. Let’s look at precisely

the caller–callee relation and the result of static checking. For

example, class ReceptionDesk has a passage rate of 100%. It

seems that the class has perfect quality and no problems. The

class calls the following classes: Storage (87%),

ContainerItem (88%), Request (75%), and Customer (90%).

The value in parentheses shows the passage rate of the
corresponding class. If class Request has some bugs, then it
might affect the quality of ReceptionDesk. We must calculate
the passage rate including the passage rate of calling classes.

b) Personal Telephone Directory: NameComparator,

MailDomainComarator and TelComparator have the same

function. Therefore their behaviours are also the same,

although the implementation of comparator is different.

However, the passage rates are not identical: 33% and 60%.

The reason is that MailDomainComparator has two private

methods which are passed while the others have one.

Therefore, the passage rate of MailDomainComparator

becomes 3/5 = 60%, while others are 1/3 = 30%.

Therefore, we have to take note that such figures do not
correctly indicate the quality. We have to consider the
difference in importance between private methods and public
methods. I.e., it might be a good idea to calculate the passage
rate on public methods only.

3) Comparison between Unit testing and Static checking:

Let us consider the results of unit testing and static checking.

a) Warehouse Management Program: The classes

Customer, Request, Item, and StockState have high passage

rates in both unit testing and static checking. These classes

have codes satisfying their specifications well. Thus the

quality of the class is also high.

On the other hand, the classes ReceptionDesk, Storage, and
ContainerItem have low passage rates of unit testing yet high
passage rates of static checking.

Thus, we can conclude that unit testing is not enough
performed. In fact, the test suites for the classes are only those
of setter/getter methods. Though the quality of unit testing is
low, the classes have high quality because static checking is
passed.

b) Personal Telephone Directory: We discuss the results

in Figures 10 and 11. First, let’s consider the classes

AddressBook and Entry, both of which have high passage

rates in unit testing and static checking. We can conclude that

these classes are of high quality.

Next, we consider classes with a high passage rate in unit
testing and a low passage rate in static checking. Classes
NameComparator and TelComparator are pertinent.

We conclude that the JML specification is too restrictive or
ESC/Java2 cannot satisfactorily prove the correctness of a
given assertion. These classes implement the
java.util.Comparator interface. Though the library used in
ESC/Java2 includes annotations of java.util.Comparator, the
annotations are very general and weak. Moreover, neither

NameComparator nor TelComparator has adequate annotation.
Thus, the quality of the static checking results is low. We also
conclude that the quality of these classes is high due to the
passage rate of unit testing.

Figure 8. Result of unit testing in the warehouse management program

Figure 9. Result of static checking in the warehouse management program

F. Threats to Validity

Here, we simply summarize the threats to validity. As
external threats to validity, we can enumerate the following
items: 1. The size of the target programs is not so large, 2. The
categories of the target programs are the same, and 3. The
correctness of the JML specification itself is not tested enough.
For 1 and 2, to handle large programs in a huge range of
categories, we need more programs with JML annotations.
Today, Java programs with JML are not popular: it is not an
easy task. Several papers provide methods that automatically
produce JML annotations, such as Daikon [17]. Such
techniques might help to resolve the problem. Daikon is a tool
to generate assertions by executing the target program with test
suites. Daikon has a lot of assertion templates and from the
trace of variables to check, it infers suitable assertions. We
have already discussed 3.

ⓒ

Figure 10. Result of unit testing on personal telephone directory

Figure 11. Result of static checking on personal telephone directory

VII. DISCUSSION

 Here, we discuss two remaining metrics in Chapter IV.

A. Passage Rate Metrics

1) Metrics for the quality of the JML assertions: We need

metrics to specify the quality of given JML statements. We

have researched past papers, however, we find no suitable

existing coverage or metrics for JML. Thus, we devised a new

metric, called Variable Coverage. In general, assertions are

conditions on program variables. For example, pre-condition

and post-condition assert that the parameters and return values

(and/or some field variables) of the method meet the

conditions, respectively. In a similar way, Class Invariant

asserts invariant conditions for field variables while the object

is alive. Hence, for a given assertion, we can regard the ratio

between the number of its used variables and the number of

all instance variables and parameters as coverage, called

Variable Coverage. Variable Coverage consists of Parameter

Coverage, Return Value Coverage, and Field Variables

Coverage. These coverages are used in combination. For

example, for a typical post-condition, Return Value Coverage

and Field Variable Coverage are used.
Parameter Coverage is the ratio of the number of used

parameters in the pre-condition to that of all parameters.

Return Value Coverage means whether post-condition
holds return value or not. The result must be 0% or 100%.

Field Variable Coverage is the ratio of the number of used
field variables in conditions to that of all field variables. Field
variables are classified into mutable and immutable in the
method. If a variable must change, post-condition would use
the variable. For the other variables, Pure or Invariant should
hold them.

2) Metrics for the quality of the test suites: Unfortunately

JCoverage measures only passed statements when it calculates

the statement coverage. Thus, the result of the statement

coverage by JCoverage contains both aspects of the quality of

test suites and the quality of testing result. In order to measure

purely the quality of the test suites, we can use other coverage

tool such as Open Code Coverage Framework [18].

VIII. CONCLUSION

This paper proposed a visualization method for software
quality in multiple aspects. We developed a prototype tool of
our method as a plug-in of Eclipse, and evaluated it through
some examples. The results show that we can evaluate the
quality of software in more detail by the proposed method.
Additionally, in a preliminary experiment we had, some
examinees said ―This visualization method is more effective
than reading the program only or viewing a simple table in
order to find bugs‖.

Future work includes researching and evaluating what we
described in Chapter VII, the quality of the test suites and JML.
Visualizing based on other kinds of structure such as a class
diagram is also to be considered. Furthermore, we will try to
find bugs automatically using the passage rate and caller–callee
relationships.

ACKNOWLEDGMENT

This work was conducted as a part of Stage Project, the
Development of Next Generation IT Infrastructure, supported
by the Ministry of Education, Culture, Sports, Science and
Technology, as well as a Grant in Aid for Scientific Research C
(21500036).

We also thank Dr. Takashi Ishio of Osaka University for
providing the personal telephone directory program and its test
suites.

REFERENCES

[1] T. Miyake, Y. Higo, S. Kusumoto, and K. Inoue, ―MASU: A metrics
measurement framework for multiple programing languages [in
japanese],‖ The IEICE Transactions on Information and Systems
(Japanese edition). D, vol. 92, no. 9, pp. 1518–1531, 2009.

[2] S. Morisaki and K. Matsumoto, ―Toward optimized collection and
visualization of software metrics for progress sharing in offshore
software development project,‖ In Proc. of the 2nd Workshop on
Accountability and Traceability in Global Software Engineering
(ATGSE2008), pp. 3–4, 2008.

[3] W. Lowe, M. Ericsson, J. Lundberg, and T. Panas, ―Software
comprehension—integrating program analysis and software
visualization,‖ 2002.

[4] M. F. Kleyn and P. C. Gingrich, ―Graphtrace—understanding
objectoriented systems using concurrently animated views,‖ in
OOPSLA ’88: Conference Proceedings on Object-oriented
Programming Systems, Languages and Applications. New York: ACM,
1988, pp. 191–205.

[5] A. Gonzalez, R. Theron, A. Telea, and F. J. Garcia, ―Combined
visualization of structural and metric information for software evolution
analysis,‖ in IWPSE-Evol ’09: Proceedings of the Joint International and
Annual ERCIM Workshops on Principles of Software Evolution

ⓒ

(IWPSE) and Software Evolution (Evol) Workshops. New York: ACM,
2009, pp. 25–30.

[6] ISO, ―Software engineering-product quality-part 1: Quality model,‖
ISO/IEC : 9126-1:2001, 2001.

[7] P. Chalin, ―Early detection of JML specification errors using
ESC/Java2,‖ SAVCBS ’06: Proceedings of the 2006 Conference on
Specification and Verification of Component-based Systems, pp. 25–32,
2006.

[8] C. Yoonsik and P. Ashaveena, ―Specifying and checking method call
sequences of Java programs,‖ Software Quality Journal, vol. 15, no. 1,
pp. 7–25, March 2007.

[9] L. Burdy, M. Huisman, and M. Pavlova, ―Preliminary design of BML: A
behavioral interface specification language for Java bytecode,‖ In
Fundamental Approaches to Software Engineering (FASE 2007), pp.
215–229, 2007.

[10] C. Csallner and Y. Smaragdakis, ―Check ’n’ crash: Combining static
checking and testing,‖ in ICSE ’05: Proceedings of the 27th
International Conference on software Engineering. New York: ACM,
2005, pp. 422–431.

[11] V. Vipindeep and P. Jalote, ―Efficient static analysis with path pruning
using coverage data,‖ in WODA ’05: Proceedings of the Third
International Workshop on Dynamic Analysis. New York: ACM, 2005,
pp. 1–6.

[12] jcoverage ltd., ―Jcoverage,‖ http://www.jcoverage.com/.

[13] B. Meyer, Object-oriented Software Construction (2nd ed.). Upper
Saddle River, NJ, USA: Prentice-Hall, 1997.

[14] C. Flabagan, K. Rustan, M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata, ―Extended static checking for Java,‖ Proc. of the ACM
SIGPLAN 2002, pp. 234–245, 2002.

[15] JO’Madadhain, D. Fisher, S. White, and Y. Boey, ―The JUNG (Java
universal network/graph) framework,‖ UC Irvine Information and
Computer Science, Tech. Rep., 2003.

[16] M. Owashi, K. Okano, and S. Kusumoto, ―Design of warehouse
management program in JML and verification with ESC/Java2 [in
japanese],‖ The IEICE Transactions on Information and Systems
(Japanese edition) D, vol. 91, no. 11, pp. 2719–2720, 2008.

[17] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, ―Dynamically
discovering likely program invariants to support program evolution,‖
IEEE Transactions on Software Engineering, vol. 27, pp. 99–123, 2001.

[18] K. Sakamoto, H. Washizaki, and Y. Fukazawa, ―Open code coverage
framework: A consistent and flexible framework for measuring test
coverage supporting multiple programming languages,‖ in Proceedings
of the 2010 10th International Conference on Quality Software, ser.
QSIC ’10. Washington, DC: IEEE Computer Society, 2010, pp. 262–26.

[19] C. M. Wintersteiger, Y. Hamadi, L. M. de Moura, ―Efficiently solving
quantified bit-vector formulas,‖ In Proc. of FMCAD 2010: pp. 239–246,
2010.

[20] K. R. M. Leino and P. Rümmer, ―A polymorphic intermediate
verification language: Design and logical encoding,‖ In Lecture Notes in
Computer Science, vol. 6015, pp. 312–327, 2010

[21] M. Veanes, C. Cambell, et. al., ―Model-based testing of object-oriented
reactive systems with Spec Explorer,‖ In Formal Methods and Testing,
Lecture Notes In Computer Science, vol. 4949, pp. 39–76, 2008.

[22] M. Veanes, N. Bjorner, Y. Gurevich, and W. Schulte, ―Symbolic
bounded model checking of abstract state machines,‖ in International
Journal Software Informatics, vol. 3, no. 2–3, pp. 149–170, June 2009.

[23] Y. Mutoh, K. Okano, S. Kusumoto, ―A visualization technique for the
passage rate of unit testing and static checking with caller–callee
relationships,‖ Proc. of International Conference on Advanced Software
Engineering 2011, to appear, May 2011.

[24] D. Detlefs, G. Nelson, and J. B. Saxe, ―Simplify: A theorem prover for
program checking,‖ Journal of the ACM, vol. 52, no. 3, pp. 365–473,
2005.

