
A Visualization Technique for the Passage Rates of
Unit Testing and Static Checking with Caller-Callee

Relationships

Yuko Muto, Kozo Okano, and Shinji Kusumoto
Graduate School of Information Science and Technology

Osaka University
Suita, Japan

{y-mutoh, okano, kusumoto}@ist.osaka-u.ac.jp

Abstract—Software visualization has attracted lots of attention.
The techniques fall into two categories: visualization of software
component relationships and visualization of software metrics.
We propose a new hybrid method based on both of the two
categories. The proposed method visualizes coincidence between
specification and implementation from two aspects: static
checking and ordinal testing by test suites. Each of the
verification is performed in a method or function basis (unit
testing). In our method, each ratio of the coincidence is shown by
pie charts which represent classes of the target software. Whole
software is represented in a weighted digraph structure. We have
prototyped a tool implemented our proposed method. We have
evaluated the availability of the proposed method by applying the
tool to two kinds of software: Warehouse Management Program,
and a telephone directory management program. As a result, we
conclude that the proposed method shows informative results.

Keywords-component; unit testing; static checking; ESC/Java2;
software quality; visualization

I. INTRODUCTION
Recently, visualization techniques for software play more

important roles according to increase of the size of software.

The techniques fall into two categories: visualization of
software component relationship and visualization of software
metrics. The former approaches [1] often show program flows
as PDG (Program Dependency Graph). The latter approaches
include visualization of temporal sequence of software metrics
which helps analysis of software development aspects [2].

The granularity of the visualization target varies from code
segments to objects, class files, or libraries [3]. For object
oriented programs, class is one of suitable granularity. Paper
[4] shows several relationships among classes.

Some papers [3] and [5] have proposed visualization
methods for components of software. Paper [3] also
summarizes that visualization is performed in several views:
static views which show abstract structure of programs, and
dynamic views which depict dynamic traces of programs.
Recently, quality of software becomes important. Few papers,
however, provide visualization of the quality of software. Our
approach overcomes such weakness.

ISO defines quality of software [6], consisting of six
properties, functionality, reliability, usability, efficiency,
maintainability and portability.

The functionality is a kind of metrics which defines if given
software satisfies required properties. It requires that the
software must implement the requirements. The functionality
can be measured by ordinary unit testing, static checking and
model checking. Ordinary unit testing tests a given module and
its specification if the module satisfies the specification using
sufficient amount of test suites. Ordinary unit testing is usually
performed as an early step of software tests. A major drawback
of ordinary unit testing is that the quality of results of the test
sometimes depends on the quality of test suites used. If the
coverage of the test suites is low, then some of properties
cannot be tested.

On the other hand, static checking and model checking
approaches do not require executing the source codes. These
approaches check statically via source codes (or abstract model
of the source code, which models behavior of the source
code).One of the famous tools of static checking is ESC/Java2
[7]. Its input is Java program annotated with JML (Java
Modeling Language) [8], [9], in DbC manner. It checks if the
(behavior of the) source code satisfies the property described in
JML. The quality of output also depends on the property itself
as well as that of standard libraries used for ESC/Java. Other
drawback of ESC/Java2 is that it is not easy to understand
relationships among classes because its outputs are text-based.

Therefore, a hybrid approach is considered. For example,
paper [10] provides a method which generates test suites using
counter examples generated by ESC/Java2.

In this paper, we propose a new hybrid method based on
both of the two categories. The proposed method visualizes
coincidence between specification and implementation from
two aspects: ordinary testing (by test suites) and static checking.
Each of the verification is performed in a method or function
basis (unit testing). In our method, the ratios of the coincidence
are shown by pie charts which represent classes of the target
software. Whole software is represented in a weighted digraph
structure.

Ninth IEEE International Symposium on Parallel and Distributed Processing with Applications Workshops

978-0-7695-4429-8/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPAW.2011.54

337

Ninth IEEE International Symposium on Parallel and Distributed Processing with Applications Workshops

978-0-7695-4429-8/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPAW.2011.54

337

Ninth IEEE International Symposium on Parallel and Distributed Processing with Applications Workshops

978-0-7695-4429-8/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPAW.2011.54

337

Ninth IEEE International Symposium on Parallel and Distributed Processing with Applications Workshops

978-0-7695-4429-8/11 $26.00 © 2011 IEEE

DOI 10.1109/ISPAW.2011.54

336

The prototype tool runs as a plug-in of Eclipse, a famous
framework for integrated develop environment for software.
We have evaluated the availability of the proposed method by
applying the tool to two kinds of software: Warehouse
Management Program and a telephone directory management
program. As a result, we conclude that the proposed method
shows informative results.

The paper organized as follows. Chapter II briefly provides
related work. Chapter III provides some definitions of words as
preliminary. Chapter IV will show our proposed method. We
give an overview of our prototype tool in Chapter V, following
experimental results and discussion in Chapter VI and VII.
Finally Chapter VIII concludes the paper.

II. RELATED WORK

A. Visualization
GraphTrace [4] has proposed a visualization method for

OOP, to understand dynamic behavior of the program. The
target language is OO Lisp. It has structural and behavioral
views, which show tree views of class inheritance and method
call structures using the source code and runtime execution
information.

Paper [4] provides some case-study examples showing that
visualization is useful. One of drawbacks of the method is that
it uses only source code information and execution information,
thus other information such as test coverages, cannot be
obtained. Therefore, the method can provide only what the
program implementor intends. Such a drawback is common
among methods based on analysis of only products.

B. Combining Ordinary Unit Testing and Static Checking
Check ’n’ Crash [10] combines ordinary unit testing and

static checking. It automatically identifies faults as the
following flows. ESC/Java2 produces some counter examples.
Then test suites are automatically produced based on the
counterexample, which are used in unit testing to identify faults.
It is effective in a sense that it produces only suitable test suites
for suspect faults.

It does not care points where the test suites are not
generated. ESC/Java2 is neither sound nor complete, thus such
points might have some serious faults. Therefore, it will miss
some possibility that runtime execution causes errors, such as
memory fault due to small capacity of main memory.

The above work performs ordinary unit testing after static
checking. Paper [11] provides the opposite way. Tests cannot
find corner case bugs. The method in [11] firstly performs
testing to the target and obtains its coverages. Secondly it
performs static checking on the complement part of the
coverages. Thus, the static checking can be applied to a limited
area of the target source code; it gains scalability.
It, however, misses the bugs which are passed by the tests but
are detected by static checking. It might still fail to detect some
corner case bugs. For example, even the branch coverage does
care the combination of branch conditions; while corner case
bugs may detect at some specific values of variables which are
not tested.

Figure 1. Main class and Person class with JML

Figure 2. Visualization of static checking for Main class and Person class

III. PRELIMINARY
This chapter gives some definitions and explanation on unit

testing and static checking.

A. Unit Testing
(Ordinary) unit testing is performed onto each module of

given software. Conventionally the testing is performed by test
suites. Famous metrics on unit testing includes statement
coverage, branch coverage, condition coverage, and so on.
These coverages are used for metrics for quality of testsuites
themselves as well as that of results of unit testing.

JUnit is the de facto standard framework for unit testing.
JCoverage [12] calculates some coverages including statement
coverage. djUnit is a plug-in for Eclipse which exports
coverage reports of JCoverage.

B. Static Checking
1) JML: JML (Java Modeling Language) [8], [9] is a

specification language used for annotation into Java
programming. Based on DbC (Design by Contract) [13], we
can give assertions such as invariants, pre-conditions and post-
conditions for a method.

Figure 1 shows an example of JML annotation. Person class
has a name field and a setter method, setName. The fieldname
must be always non-null, thus, the annotation of third line is
given. Method setName has a pre-condition that nm is neither
Null nor null String, thus, the annotation of fifth line is given.
Also the ensure clause gives the post-condition which means
that name has the same value to nm.

01: class Main {
02: public static void main(String[] args) {
03: Person p = new Person(); // call Person
04: p.setFullName("John Smith"); // call Person
05: System.out.println(p.getFamilyName()); // call Person
06: }
07: }
08: class Person {
09: private String fullName = "";
10: public Person() {}
11: /*@ public behavior
12: requires nm != null && !nm.equals("");
13: ensures fullName.equals(nm); @*/
14: public void setFullName(String nm) {
15: fullName = nm;
16: }
17: public String getFamilyName() {
18: return fullName.split(" ")[1];
19: }
20: }

338338338337

2) ESC/Java2: ESC/Java2 [14] is a static checking tool
which verifies whether the source code satisfies the annotation
described in JML for each method. In theory, neither
soundness nor completeness is guaranteed, however it
efficiently finds bugs in normal usage. It is one of the useful
tools in the sense of a light-weight formal approach. It
supports Java version1.4. Some of major libraries have been
annotated in JML or built-in.

It requires a Java source code and outputs a result as text
messages which describes passed or failed for each property
and each method. If it reports failed, its counter-example also
generated.

IV. OUR PROPOSED METHOD
This chapter describes our method.

A. Overview
Figure 2 visualizes the result of static checking for Figure 1.

Caller-callee relation of the given target program is shown in a
digraph, where each node and each edge represent a class and
the caller-callee relation, respectively. Each node also
represents a pie-chart which gives a passage rate of the
corresponding class. The passage rate is evaluated based on
unit testing and static checking. The weight of an edge
corresponds to the number of method calls relating to the
classes. We use caller-callee relation instead of class hierarchy
relation used typically in class diagram, because in this paper,
we focus on modular verification/testing, where properties of
classes or methods and their relations are important. Of course,
such a structure can be visualized using a similar way of ours.

B. Definition of Passage Rate Metrics
Here, we have to think the following four kinds of metrics:

(1) metrics for the quality of the test suites, (2) metrics of the
quality of assertions, (3) metrics for the results of ordinary unit
testing, and (4) that for the results of static checking. In the
paper, we focus on the metrics for (3) and (4) only. We discuss
the metrics for (1) and (2) in the later.

1) Passage Rate for Results of Unit Testing: We adopt
statement coverage as a passage rate of unit testing. The
reason why is the following: statement coverage is simple and
easy to calculate; the value of branch coverage generated by
djUnit is different to the original value; and condition
coverage is not supported by JCoverage.

2) Passage Rate for Results of Static Checking: Let
Mpassed(A) and M(A) be the number of passed methods in a
class A, and the total number of methods in a class A,
respectively. The passage rate of static checking for the class
A is defined as:

Cs(A) = Mpassed(A) / M(A)

We give an example for the metrics using Figure 1. From
the output by ESC/Java2, we can infer that constructor and
method setFullName are valid, however method

getFamilyName is not valid. Therefore Mpassed(Person)=2 and
M(Person)=3, respectively. Cs(Person) is calculated as 66%.

C. Definition of Caller-Callee Relation
If some method m1 is appeared in a method m2 as a

method call statement, we say m2 calls m1. If a method in class
A calls some method in class B, we say class A calls class B.
Let nAB be the number of every call, such that class A calls
class B. We say class A calls class B nAB times. The following
explains the caller-callee relation and the number. In Figure 1,
Main class calls constructor of Person class in line 3,
setFullName method in line 4 and getFamilyName method in
line5. Thus, Main class calls Person class three times.

V. IMPLEMENTATION
Here, we give simple descriptions on our prototyped tool.

The tool is implemented as a plug-in of Eclipse. The size of the
program is about 2000 LOC without comments, with 14
packages and 33 classes. The program is mainly written in Java
1.6, developed on Eclipse Galileo. We use PDE (Eclipse Plug-
in Development Environment) in order to implement as a plug-
in. We use some libraries MASU and JUNG as part of the tools.
MASU provides general metrics measurement and program
analysis library [1]. We use MASU in order to analyze caller-
callee relation of the given program. JUNG, Java Universal
Network/Graph Framework, is a graph visualization library
[15]. We use it to draw the output digraph.

A. Input
The inputs of the tool are the directory of the target source

codes, XML generating scripts, and location of XML files. The
tool requires that the target source codes are written in Java
version 1.4. The version restriction is due to the restriction of
ESC/Java2. XML generating scripts are replaceable according
to the metrics.

B. Views
Figure 3 is screenshot of the Tool. It has Main View for

showing the digraph and Method View for showing detail
method information.

Figure 3. Screenshot

339339339338

VI. EXPERIMENTS
In order to evaluate our proposed method, we apply the tool

to two programs.

A. The Evaluation Approach
We apply our tool to the following two programs.

1) Targets: We use two programs, one is Warehouse
Management Program, and the other one is Personal
Telephone Directory.

Warehouse Management Program is implemented in
Java1.4. The program has seven classes of about 400 LOC
except JML annotations and test suites have seven classes of
200 LOC. The program and its JML annotations were written
by an undergraduate student in order to verify the usefulness of
JML annotations and ESC/Java2 in [16]. We have written its
test suites to use them in this paper.

Personal Telephone Directory is also written in Java1.4. It
has five classes of about 260 LOC except JML annotations and
test suites have ten classes of 800 LOC. Its original program is
an assignment for an undergraduate exercise. A member of
teaching staff in our university wrote it and its test suites to
reference. We reused the core of the program and test suites. In
this paper, we added JML annotations to it.

Figure 4. Class constitution of Warehouse Management Program

2) Condition: We reserve an assumption.
Assumption 1: We assume that Warehouse Management
Program has valid JML annotations with poor test suites,
whereas Personal Telephone Directory has poor JML
annotations with enough test suites.

In fact, the former assumption is guaranteed by Paper [16],
and the latter has 800 LOC of test suites to 260 LOC of source
codes.

B. Warehouse Management Program
Warehouse Management Program consists of seven classes:

ContainerItem, Customer, Item, ReceptionDesk, Request,
Storage and StockState. Figure 4 shows the UML diagram of
the program.

Because the program already has JML annotation with
checked, we just add test suites for the unit testing. The test

suites only check constructors and setter/getter methods. Thus,
the quality of the test suites is low. Though the Storage class
has fields named containerlist and allitemlist and their getter
methods, we didn’t describe their test suites, because setter
methods for the fields are not implemented in the class.

C. Personal Telephone Directory
Personal Telephone Directory has the following five

classes: AddressBook, Entry, NameComparator,
TelComparator and MailDomainComparator.

Personal Telephone Directory has enough test suites, thus,
we regard that the program is valid from the view of unit
testing. On the other hand, JML annotation is not given enough.

D. Results
Figures 5 and 6 show the digraphs represented unit testing

and static checking, respectively for Warehouse Management
Program. Figures 7 and 8 show the digraphs represented unit
testing and static checking, respectively for Personal Telephone
Directory.

E. Discussion
1) Unit Testing: Warehouse Management Program: In

Figure 5, thick arcs show that the source class calls many
methods in the sink class. By observing the arcs, we can
estimate the number of stabs needed to unit testing.

In general, every terminal node (class) has high values of
passage rate. It shows that such a class tends to be a typical
Java bean, thus they have only simple setter/getter methods.

2) Static Checking: Warehouse Management Program:
Figure 6 shows that every class has high passage rate. Let’s
look at precisely the caller-callee relation and the result of
static checking. For example class ReceptionDesk has passage
rate of 100%. It seems that the class has perfect high quality
and no problem. The class calls the following classes: Storage
(87%), ContainerItem (88%), Request (75%), Customer (90%).

The value in parentheses shows the passage rate of the
corresponding class. If class Request has some bugs, then it
might affect the quality of ReceptionDesk. We must calculate
the passage rate which includes the passage rate of caller
classes.

3) Comparison between Unit testing and Static checking:
Warehouse Management Program: Classes Customer,
Request, Item and StockState have high passage rate in both of
unit testing and static checking. These classes have codes
satisfying their specification well. Thus the quality of the class
is also high.

On the other hand, classes ReceptionDesk, Storage and
ContainerItem are with low passage rate of unit testing while
that high passage rate of static checking.

Thus, we can conclude that the unit testing is not enough
performed. In fact, test suites for the classes are only those of
setter/getter methods. Though the quality of unit testing is low,
the classes have high quality because static checking is passed.

340340340339

4) Comparison between Unit testing and Static checking:
Personal Telephone Directory: We discuss the results in
Figures 7 and 8.

First, let’s consider two classes AddressBook and Entry,
both of which have high passage rates in unit testing and static
checking. We conclude that these classes are in high quality.

Next, we consider classes with high passage rate in unit
testing and low passage rate in static checking. Classes
NameComparator and TelComparator are pertinent.

We conclude that the JML specification is too restrictive or
ESC/Java2 cannot enough prove the correctness of given
assertion. These classes implement java.util.Comparator
interface. Though the library used in ESC/Java2 includes
annotation of java.util.Comparator, the annotations are very
general and weak. Moreover, neither NameComparator nor
TelComparator does have adequate annotation. Thus, the
quality of static checking results is low. We also conclude that
the quality of these classes is high due to the passage rate of
unit testing.

Figure 5. Result of unit testing in Warehouse Management Program

Figure 6. Result of static checking in Warehouse Management Program

F. Threats to Validity
Here, we simply summarize threats to validity. As external

threats to validity, we can enumerate the following items: 1.

The size of the target programs is not so large, 2. The
categories of the target programs are the same, and 3. The
correctness of JML specification itself is not tested enough. For
1 and 2, to handle large size programs in huge range of
categories, we need more programs with JML annotations.
Today, Java programs with JML are not popular; it is not easy
task. Several researches provide methods automatically
produce JML annotations [17]. Such techniques might help to
resolve the problem. For 3, we have already discussed it.

Figure 7. Result of unit testing in Personal Telephone Directory

Figure 8. Result of static checking in Personal Telephone Directory

VII. DISCUSSION
 Here, we discuss two reminder metrics in chapter IV.

A. Passage Rate Metrics
1) Metrics for the quality of the JML assertions: We need

metrics to specify the quality of given JML statements. We
have researched past papers, however, we find no suitable
existing coverage or metrics for JML. Thus, we devise a new
metric, called Variable Coverage. In general, assertions are
conditions on program variables. For example, pre-condition
and post-condition assert that parameters and return value
(and/or some field variables) of the method meet the
conditions, respectively. In a similar way, Class Invariant
asserts invariant conditions for field variables during the

341341341340

object is alive. Hence, we can regard the ratio of variables
with its condition as coverage. We consider Variable
Coverage for a method as a metric on its parameters, return
value and related field variables. Variable Coverage consists
of Parameter Coverage, Return Value Coverage and Field
Variables Coverage. These coverages are used in combination.
For example, for a typical post-condition, Return Value
Coverage and Field Variable Coverage are used.

Parameter Coverage is the ratio by the number of used
parameters in the pre-condition to that of all parameters.

Return Value Coverage means whether post-condition
holds return value or not. The result must be 0% or 100%.

Field Variable Coverage is the ratio by the number of used
field variables in conditions to that of all field variables. Field
variables are classified into mutable and immutable in the
method. If a variable must change, post-condition would use
the variable. For the other variables, Pure or Invariant should
hold them.

2) Metrics for the quality of the test suites: Unfortunately
JCoverage measures only passed statements when it calculates
the statement coverage. Thus, the result of the statement
coverage by JCoverage contains both aspects of the quality of
test cases and the quality of testing result. In order to measure
purely the quality of the test suites, we can use other coverage
tool such as Open Code Coverage Framework[18].

VIII. CONCLUSION
This paper proposed a visualization method for software

quality from multiple aspects. We developed a prototype tool
of our method as a plug-in of Eclipse, and performed
evaluation through some examples. The results show that we
can evaluate the quality of software in more details by the
proposed method. Additionally, in a preliminary experiment we
had, some examinees said “This visualization method is more
effective than reading program only or viewing simple table in
order to find bugs”.

Future work includes researching and evaluating what we
described in chapter VII, quality of the test suites and JML.
Visualizing based on other kind of structure such as a class
diagram is also considered. Furthermore, we will try to find
bugs automatically using the passage rate and caller-callee
relationships.

ACKNOWLEDGMENT
This work is being conducted as a part of Stage Project, the

Development of Next Generation IT Infrastructure, supported
by Ministry of Education, Culture, Sports, Science and
Technology, as well as Grant-in-Aid for Scientific Research C
(21500036).

We also thank to Dr. Ishio for providing Personal
Telephone Directory program and its test suites.

REFERENCES

[1] T. Miyake, Y. Higo, S. Kusumoto, and K. Inoue, “Masu: A metrics

measurement framework for multiple programing languages [in
japanese],” The IEICE transactions on information and systems
(Japanese edetion). D, vol. 92, no. 9, pp. 1518–1531, 2009.

[2] S. Morisaki and K. Matsumoto, “Toward optimized collection and
visualization of software metrics for progress sharing in offshore
software development project,” In Proc. of the 2nd Workshop on
Accountability and Traceability in Global Software Engineering
(ATGSE2008), pp. 3–4, 2008.

[3] W. Lowe, M. Ericsson, J. Lundberg, and T. Panas, “Software
comprehension - integrating program analysis and software
visualization,” 2002.

[4] M. F. Kleyn and P. C. Gingrich, “Graphtrace–understanding
objectoriented systems using concurrently animated views,” in
OOPSLA ’88: Conference proceedings on Object-oriented programming
systems, languages and applications. New York, NY, USA: ACM, 1988,
pp. 191–205.

[5] A. Gonzalez, R. Theron, A. Telea, and F. J. Garcia, “Combined
visualization of structural and metric information for software evolution
analysis,” in IWPSE-Evol ’09: Proceedings of the joint international and
annual ERCIM workshops on Principles of software evolution (IWPSE)
and software evolution (Evol) workshops. New York, NY, USA: ACM,
2009, pp. 25–30.

[6] ISO, “Software engineering-product quality-part 1 : Quality model,”
ISO/IEC : 9126-1:2001, 2001.

[7] P. Chalin, “Early detection of jml specification errors using esc/java2,”
SAVCBS ’06: Proceedings of the 2006 conference on Specification and
verification of component-based systems, pp. 25 32, 2006.

[8] C. Yoonsik and P. Ashaveena, “Specifying and checking method call
sequences of java programs,” Software Quality Journal, vol. 15, no. 1,
pp. 7–25, March 2007.

[9] L. Burdy, M. Huisman, and M. Pavlova, “Preliminary design of bml: A
behavioral interface specification language for java bytecode,” In
Fundamental Approaches to Software Engineering (FASE 2007), pp.
215–229, 2007.

[10] C. Csallner and Y. Smaragdakis, “Check ’n’ crash: combining static
checking and testing,” in ICSE ’05: Proceedings of the 27th international
conference on Software engineering. New York, NY, USA: ACM, 2005,
pp. 422–431.

[11] V. Vipindeep and P. Jalote, “Efficient static analysis with path pruning
using coverage data,” in WODA ’05: Proceedings of the third
international workshop on Dynamic analysis. New York, NY, USA:
ACM, 2005, pp. 1–6.

[12] jcoverage ltd., “Jcoverage,” http://www.jcoverage.com/.
[13] B. Meyer, Object-oriented software construction (2nd ed.). Upper Saddle

River, NJ, USA: Prentice-Hall, Inc., 1997.
[14] C. Flabagan, K. Rustan, M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,

and R. Stata, “Extended static checking for java,” Proc. of the ACM
SIGPLAN 2002, pp. 234–245, 2002.

[15] JO’Madadhain, D. Fisher, S. White, and Y. Boey, “The jung (java
universal network/graph) framework,” UC Irvine Information and
Computer Science, Tech. Rep., 2003.

[16] M. Owashi, K. Okano, and S. Kusumoto, “Design of warehouse
management program in jml and verification with esc/java2 [in
japanese],” The IEICE transactions on information and systems
(Japanese edetion) D, vol. 91, no. 11, pp. 2719–2720, 2008.

[17] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
IEEE Transactions on Software Engineering, vol. 27, pp. 99–123, 2001.

[18] K. Sakamoto, H. Washizaki, and Y. Fukazawa, “Open code coverage
framework: A consistent and flexible framework for measuring test
coverage supporting multiple programming languages,” in Proceedings
of the 2010 10th International Conference on Quality Software, ser.
QSIC ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp.
262–26.

342342342341

