
Is Duplicate Code Good or Bad? An Empirical Study with Multiple Investigation
Methods and Multiple Detection Tools

Yui Sasaki, Keisuke Hotta, Yoshiki Higo, Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University,

1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
Email: {s-yui,k-hotta,higo,kusumoto}@ist.osaka-u.ac.jp

Abstract—There are several research efforts that compare
duplicate code and non-duplicate code for revealing that the
presence of duplicate code actually has a negative impact
on software development and maintenance. However, each
of them compares them with a single method and a single
detection tool. Consequently, their result may not be reliable.
This paper reports an empirical study that duplicate code and
non-duplicate code were compared with multiple investigation
methods and multiple detection tools.

Keywords-Duplicate Code, Replication, Maintenance

I. INTRODUCTION

It is generally said that the presence of duplicate code has
negative impacts on software development and maintenance.
For example, it increases bug occurrences: if an instance of
duplicate code is changed for fixing bugs or adding new fea-
tures, its correspondents have to be changed simultaneously;
if the correspondents are not changed inadvertently, bugs are
newly introduced to them.

Recently, a variety of research efforts related to duplicate
code has been conducted. Some of them have proposed
methods that apply refactorings for removing duplication
[6], meanwhile others said that duplicate code is a good
choice for design of the source code [12].

In order to obtain a sight of truth, several research efforts
have proposed comparison methods for duplicate code and
non-duplicate code. Each of them compares a characteristic
of duplicate code and non-duplicate code instead of directly
investigating their maintenance cost because investigating
actual maintenance cost is quite difficult. However, authors
thought that their comparison results may not be reliable
because every of them compares a single characteristic with
a single detection tool. Herein some of characteristics are
stability [13], age [14], work [15], and frequency [9].

This paper reports an experimental result with three
comparison methods, four detection tools, and five target
systems. A research question that we want to reveal in this
paper is the following: every method compares duplicate
code and non-duplicate code from a single viewpoint, and
concludes the presence of duplicate code is good or bad; the
purpose of the experiment is to reveal whether comparisons
of duplicate code and non-duplicate code with different
methods and different detection tools always introduce the

same result1. If so, all we have to do is using a single
investigation method. If not, it is quite difficult to judge it.

II. DUPLICATE CODE DETECTION TOOLS

There are currently various kinds of duplicate code detec-
tion tools. The detection tools can be categorized based on
their detection techniques. Major categories should be line-
based, token-based, metrics-based, AST2-based, and PDG3-
based. Each technique has merits and demerits, and there
is no technique that is superior to any other techniques in
every way [3], [4]. The remainder of this section describes
4 detection tools that are used in our experiment. We uses
two token-based detection tools, which is for investigating
whether both the token-based detection tools always intro-
duce the same result or not.

A. CCFinder

CCFinder is a token-based detection tool [11]. CCFinder
replaces user-defined identifiers such as variable names or
function names with special tokens before the matching
process. Consequently, CCFinder can identify code frag-
ments that use different variables as duplicate code. Also,
CCFinder detection speed is very fast. Moreover, CCFinder
can detect duplicate code from millions lines of code within
an hour. CCFinder can handle multiple popular programming
languages such as C/C++, Java, and COBOL.

B. CCFinderX

CCFinderX is a major version up from CCFinder [1].
CCFinderX is a token-based detection tool as well as
CCFinder although the detection algorithm was changed to
bucket sort from suffix tree. CCFinderX can handle more
programming languages than CCFinder. Moreover, it can
effectively use resources of multi-core CPUs for faster
duplicate code detection.

1Herein, result is whether duplicate code is good or bad
2Abstract Syntax Tree
3Program Dependency Graph

C. Simian

Simian is a line-based detection tool [2]. As well as
CCFinder family, Simian can handle multiple programming
languages. Its line-based technique realizes duplicate code
detection on small memory usage and short running time.
Also, Simian allows fine-grained settings. For example, we
can configure that duplicate code is not detected from import
statements in the case of Java language.

D. Scorpio

Scorpio is a PDG-based detection tool [7]. Scorpio builds
a special PDG for duplicate code detection, not traditional
one, in which there are two types of edge representing data
dependency and control dependency. The special PDG has
one more edge, execution-next link, which allows detecting
more duplicate code than traditional PDG [7]. Also, Scor-
pio adopts some heuristics for filtering out false positives.
Currently, Scorpio can handle only Java language.

III. INVESTIGATION METHODS

In this research, we use three investigation methods,
Krinke’s [13], Lozano’s [15], and Hotta’s methods [9]. The
remainder of this section describes an overview of them.
Due to space limitation, we cannot explain the details of
them. Please see their papers if you are interested in them.

A. Krinke’s Method

Krinke’s method compares ratios of modified duplicate
code and modified non-duplicate code. This method uses
not all the revisions but a revision per week [13].

First of all, a revision is extracted from every week
history. Then, duplicate code is detected from every of the
extracted revisions. Next, every consecutive two revisions
are compared for obtaining where added lines, deleted lines,
and changed lines are. By using the information, the ratios
of added lines, deleted liens, and changed lines on duplicate
and non-duplicate code are calculated and compared.

B. Lozano’s Method

Lozano’s method categorizes Java methods, then com-
pares distributions of maintenance cost based on the cat-
egories [15].

Firstly, Java methods are traced based on their owner-
class’s full qualified name, start/end lines, and signatures.
An identified method trace is called method-chain. Method-
chains are categorized as follows:

• AC-Method: method-chains whose every revision in-
clude duplicate code;

• NC-Method: method-chains whose any revision does
not include duplicate code;

• SC-Method: method-chains whose some revisions in-
clude duplicate code but the others does not.

Lozano’s method defines the followings where m is a
method-chain, P is a period (a set of revisions), and r is
a revision.

• ChangedRevisions(m,P): a set of revisions that method-
chain m is modified in period P,

• Methods(r): a set of methods that exist in revision r,
• ChangedMethods(r): a set of methods that were mod-

ified in revision r,
• CoChangedMethods(m,r): a set of methods that were

modified simultaneously with method m in revision r.
if method m is not modified in revision r, it become /0.
If modified, the following formula is satisfied.

ChangedMethod(r) = m∪CoChangedMethod(m,r)

Then, this method calculates the following formulea with
the above definitions. Especially, work is an indicator of the
maintenance cost.

likelihood(m,P) =
ChangedRevisions(m,P)

∑r∈P |ChangedMethods(r)|
(1)

impact(m,P) =
∑r∈P

|CoChangedMethods(m,r)|
|Methods(r)|

|ChangedRevisions(m,P)|
(2)

work(m,P) = likelihood(m,P)× impact(m,P)(3)

In this research, we compare work between AC-Method
and NC-Method, and compare SC-Method’s work on dupli-
cate period and non-duplicate period.

C. Hotta’s Method

Hotta’s method compares modification frequencies be-
tween duplicate code and non-duplicate code [9].

Hotta’s method identifies modified places, and calculates
modification frequencies on them. A modified place is a
set of consecutive lines. If all the consecutive lines are in
duplicate/non-duplicate code, it is regarded as a modification
on duplicate/non-duplicate code. If a part of consecutive
lines is duplicate code. it is regarded as modification on
both duplicate and non-duplicate code.

Herein we assume that R is a set of revisions, l(r), lc(r),
ln(r) are total-lines-of-code, lines-of-duplicate-code, lines-
of-non-duplicate-code on revision r ∈ R. Also, mc(r) and
mn(r) are the numbers of modified places on duplicate code
and non-duplicate code in r. By using the above terms, MFc
and MFn, which are modification frequencies on duplicate
code and non-duplicate code, are calculated as follows:

MFc =
∑r∈R mc(r)

|R|
× ∑r∈R l(r)

∑r∈R lc(r)
(4)

MFn =
∑r∈R mn(r)

|R|
× ∑r∈R l(r)

∑r∈R ln(r)
(5)

IV. EXPERIMENT

A. Experimental Setup

We compare duplicate code and non-duplicate code with
the three methods described in Section III. Note that there
are many other methods that investigate characteristics of
duplicate code [8]. However, this research focus on compari-
son between duplicate code and non-duplicate code, which is
why Lozano’s, Krinke’s and Hotta’s methods were selected.

In the experiments of Krinke’s and Lozano’s papers, only
a single detection tool Simian or CCFinder was selected.
However, in this experiment, we selected 4 detection tools
for bringing more valid results. All the selected tools are
open to the public in Internet. Everyone can use these tools.

We already have an implementation of Hotta’s method
because he is a member of our research group. On the other
hand, we developed software tools for Lozano’s and Krinke’s
methods based on their papers.

We chose five software systems that are open to the
public in SourceForge. Table I shows them. All the systems
are written in Java language because Scorpio handles only
Java language. Automatic generated code and testing code
are removed from all the revisions before the investigation
methods are applied.

B. Result of MASU

Due to space limitation, we cannot shows all the com-
parison figures of all the software. Herein, we show only
comparison figures of MASU. MASU is a metrics measure-
ment tool and is open to the public in http://sourceforge.net/
projects/masu. Figure 1 shows the results of Hotta’s method.
Left bars (red) and right bars (blue) are modification fre-
quencies on duplicate and non-duplicate code respectively.
Herein, if the difference was more than 5%, we regarded it as
a significant one. In this case, all the detection tools except
CCFinderX brought the same result that duplicate code is
more frequently modified than non-duplicate code.

Table I
TARGET SOFTWARE SYSTEMS

Software # of revisions LOC of the end revision
QpenYMSG 194 14,111

EclEmma 1,220 31,409
MASU 1,620 79,360

TVBrowser 6,829 264,796
Ant 5,412 198,864

Table II
RATIO OF DUPLICATE CODE

Software name ccf ccfx sim sco
OpenYMSG 12.41% 6.16% 2.66% 5.50%

EclEmma 6.94% 4.77% 2.03% 3.69%
MASU 25.62% 26.49% 11.31% 15.43%

TVBrowser 13.64% 10.86% 5.39% 18.96%
Ant 13.9% 12.12% 6.19% 15.55%

0

5

10

15

20

25

CCFinder CCFinderX Simian Scorpio

duplicate code non-duplicate code

9%

1%

14%

25%

Figure 1. Result of Hotta’s Method on MASU

0

0.2

0.4

0.6

0.8

1

1.2

dup non-dup dup non-dup dup non-dup dup non-dup

CCFinder CCFinderX Simian Scorpio

35%

23%

38%
45%change delete add

Figure 2. Result of Krinke’s Method on MASU

Figure 2 shows the results of Krinke’s method on MASU.
Every bar consists of three parts, which means changed,
deleted, and added. In this experiment, we set 5% as the
threshold of significant difference in Krinke’s method. Note
that the difference was calculated based on changed and
deleted because the amount of add is the lines of code added
in the next revision. This figure shows that comparisons of
all the tools brought the same result that duplicate code is
less stable than non-duplicate code.

Figure 3 shows the results of Lozano’s method on MASU.
Figure 3(a) compares AC-Method and NC-Method. X-axis is
maintenance cost (work) and Y-axis is cumulated frequency
of methods. For readability, we adopt logarithmic axis on
X-axis. The value of p, which locates on the upper right of
the graph, means the result of Mann-Whitney’s U-test. We
set 5% as the level of significance. In this case, AC-Method
requires more maintenance cost than NC-Method. Also,
Figure 3(b) compares duplicate period and non-duplicate
period of SC-Method. The value of p means the result of
Wilcoxon’s singed-rank test. We set 5% as the level of
significance. In this case, the maintenance cost in duplicate
period is greater than non-duplicate period.

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 10 100 1000

AC-Method NC-Method

p=0.0

(a) AC-Method and NC-Method

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

1 10 100 1000

period of dup period of non-dup

p=0.07

(b) SC-Method

Figure 3. Result of Lozano’s Method on MASU with Simian

C. Overall Result

Table III shows the comparison results of all the systems.
In table III, “C” means that duplicate code requires more cost
than non-duplicate code, and “N” means its opposite. “−”
means there is no significant difference between duplicate
and non-duplicate code. This table shows the followings:

• In the case of EclEmma, there is no result that shows
duplicate code is worse than non-duplicate code.

Table III
OVERALL RESULT

Software Method Tools
ccf ccfx sim sco

OpenYMSG
Hotta N C C N

Krinke N C C N
Lozano - - N -

EclEmma
Hotta N N - N

Krinke N N N -
Lozano N N - -

MASU
Hotta C - C C

Krinke C C C C
Lozano C C C C

TVBrowser
Hotta N N N N

Krinke C C N C
Lozano C C C C

Ant
Hotta N N N N

Krinke C C C C
Lozano C C C C

• On the other hand, in MASU, almost all the results show
duplicate code has a negative impact.

• For the other systems, there are opposing results. It
is interesting that there are some cases CCFinder and
CCFinderX introduce opposing results.

We would like to know that the presence of duplicate
code has a negative impact on a given system. However,
running all the investigation methods with all the detection
tools consumes much time. Consequently, from Table III,
we recommend to run Hotta’s method and Krinke’s method
with CCFinder and CCFinderX. If all of the 4 results are the
same, the result is probably reliable. If not, it is difficult to
judge whether duplicate code is good or bad on the system.
There is one reason that we recommend a paper of CCFinder
and CCFinderX, not a pair of Simian of Scorpio. CCFinder
family adopts token-based detection algorithm, so that their
detection speed is very high meanwhile the detection speed
of Scorpio is slow because it uses PDG-based algorithm.

D. Discussion

In the case of OpenYMSG, TVBrowser, and Ant, different
detection methods and different tools brought opposing
results. Those showed that investigating duplicate code with
a single method and with a single detection tool has poor
reliability and believing such a result is dangerous.

Figure 4 shows an actual modification in Ant. Two meth-
ods were modified in this modification. The hatching parts
are detected duplicate code and frames in them means pairs
of duplicate code between the two methods. Vertical arrows
shows modified lines between this modification and the next
(77 lines of codes were modified).

This modification is a refactoring, which extracts the
duplicate instructions from the two methods and merges
them as a new method. In Hotta’s method, there are 2
modification places in duplicate code and 4 places in non-
duplicate code, so that MFC and MFN become 51.13 and
18.13, respectively. The difference of them is about 65%.
In Krinke’s method, DC +CC = and DN +CN become
0.089 and 0.005, respectively. The difference between them
is about 93%. This modification removed duplicate code
in the two methods, so that this revision is the border
between periods PC and PN . The values of work becomes
the followings.

work(CodeFragment1,PC) = 5.71×10−5

work(CodeFragment1,PN) = 8.17×10−6

work(CodeFragment2,PC) = 5.93×10−5

work(CodeFragment2,PN) = 1.03×10−5

These values reveal that work of duplicate code is higher
than work of non-duplicate code, which implies that the
refactoring improved the work measure. All the methods
revealed different aspects of development history.

private void doClassicCompile() throws BuildException {

log("Using classic compiler", Project.MSG_VERBOSE);

Path classpath = getCompileClasspath(false);

. . .

argList.addElement("-classpath");

if () { . . .

} else {

. . .

}

if (debug) {}

. . .

log("Compilation args: " + argList.toString(),

Project.MSG_VERBOSE);

String[] args = new String[argList.size() + compileList.size()];

. . .

Enumeration enum = compileList.elements();

while (enum.hasMoreElements()) {}

log(niceSourceList.toString(), Project.MSG_VERBOSE);

ByteArrayOutputStream out = new ByteArrayOutputStream();

. . .

. . .

}

private void doModernCompile() throws BuildException {

. . .

log("Using modern compiler", Project.MSG_VERBOSE);

Path classpath = getCompileClasspath(false);

. . .

argList.addElement("-classpath");

. . .

if (debug) {}

. . .

log("Compilation args: " + argList.toString(),

Project.MSG_VERBOSE);

String[] args = new String[argList.size() + compileList.size()];

. . .

Enumeration enum = compileList.elements();

while (enum.hasMoreElements()) {}

log(niceSourceList.toString(), Project.MSG_VERBOSE);

. . .

. . .

}

7 lines
7 lines

17 lines

17 lines

32 lines

38 lines

Clone pair relationship

Modified lines between this revision and the next

code fragment 1 code fragment 2

Figure 4. An example of modification

On the other hand, in the case of EclEmma and MASU,
different methods and different tools brought almost the
same result. For these systems, the comparison results should
be a reliable marker. Consequently, if you investigate the
impact of duplicate code in automatic way, you should do
in multiple methods with multiple detection tools.

In the case of TVBrowser and Ant, Hotta’s method brought
the opposite result to Lozano’s and Krinke’s method. It
is quite interesting because Hotta’s method was proposed
for overcoming the weaknesses of Lozano’s and Krinke’s
methods. Unfortunately, at present, we cannot investigate
which result is correct for these systems.

In this experiment, we used only five systems, so that
different results may be brought out on other systems. More
and more experiments are required for obtaining more reli-
able results. It may be a reasonable choice that observing the
entire process of a small project and manually investigating
the impact of duplicate code. Such a result can be an oracle
for evaluating automatic investigation methods.

V. RELATED WORK

Krinke compared ages of duplicate code and non-
duplicate code [14]. Every source line of the latest version
was checked for identifying in which revision it was lastly
changed. Then, duplicate code was detected by using Simian.
Average ages of duplicate lines and non-duplicate lines were
calculated ant compared. In his experiment, 4 large-scale
Java software systems were analyzed and the average age
of duplicate code is older than the one of non-duplicate
code. That implies duplicate code is more stable than non-
duplicate code. However, the following issues seem to
remain in his experiment,

• it did not consider non-contiguous code clones, which
are not detected by line-based detection tools,

• it did not remove test code and generated code, which
may affect the comparison result.

Rahman et al. investigated relationship between duplicate
code and bugs [16]. They analyzed 4 software systems
written in C language, and used bug information stored in
Bugzilla. Declard, which is a AST-based detection tool, was
used for detecting duplicate code. Their result showed that,

• only a small part of the bugs located on duplicate code,
• the presence of duplicate code did not dominate bug

appearances.
However, there are some issues in their experiment,

• Declard is a AST-based detection tool, its ability to
detect non-contiguous code clones is limited,

• they regarded all the code changed in the bug-fix
revisions as buggy code instead of actual buggy code,

• they use only a single revision per month instead of
using all the revisions.

Göde et al. replicated Krinke’s experiment [5]. Krinke’s
original experiment detected line-based duplicate code
meanwhile Göde experiment detected token-based duplicate
code. The experimental result was the same as Krinke’s one.
Duplicate code is more stable than non-duplicate code in
the viewpoint of add and changed. On the other hand, from
the delete viewpoint, non-duplicate code is more stable than
duplicate code. The same kinds of issues remains in the
Göde’s experiment.

• only a single revision per a week was analyzed instead
of all the revisions,

• non-contiguous code clones were not counted,
• they did not normalize source code, so that trivial

modifications (e.g., format change, comment change)
may have impacts on the comparison result.

Juergens et al. investigated inconsistencies in duplicate
code and relationships between inconsistencies and bugs
[10]. Their targets were 2 industrial and 1 open source
systems. They applied token-based detection to the systems.
Their token-based detection has ability to detect duplicate
code including small gaps, which is a part of non-contiguous
code clones. Their experiment revealed the followings:

• about a half of duplicate code includes inconsistences,
• 1/4 of the inconsistences were unintended ones,
• 3 ∼ 23% of inconsistences contains bugs. However, the

3% was a COBOL software system, if we do not care
it, the average was increased to 18%.

In this paper, we focused on comparison between dupli-
cate code and non-duplicate code. However, as described
above, various research efforts have been performed on an
open question, which is whether the presence of duplicate
code actually has negative impact on software development
and maintenance. Unfortunately, all the above research used
only a single detection technique, and non-contiguous code
clones are not considered or slightly considered. As shown
in our experiment, difference detection tools may introduce
different comparison results. Consequently, all the research
described in this section should be replicated with multiple
detection tools.

VI. CONCLUSION

This paper compared three duplicate code investigation
methods. The result shows that different investigation meth-
ods with different detection tools bring different results. That
implies existing investigation results with a single method
and a single detection tool may not be reliable. However,
we found that, if Krinke’s method and Hotta’s method with
CCFinder and CCFinderX introduce the same result, the
result are probably reliable. this finding is a shortcut for
obtaining a reliable result.

ACKNOWLEDGMENT

The present research is being conducted as a part of
the Stage Project, the Development of Next Generation
IT Infrastructure, supported by the Ministry of Education,
Culture, Sports, Science, and Technology of Japan. This
study has been supported in part by Grants-in-Aid for
Scientific Research (A) (21240002) and Grant-in-Aid for
Exploratory Research (23650014) from the Japan Society
for the Promotion of Science, and Grand-in-Aid for Young
Scientists (B) (22700031) from Ministry of Education, Sci-
ence, Sports and Culture.

REFERENCES

[1] CCFinderX. http://www.ccfinder.net/.

[2] Simian. http://www.harukizaemon.com/simian/.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.
Comparison and Evaluation of Clone Detection Tools. IEEE
Transactions on Software Engineering, 31(10):804–818, Oct.
2007.

[4] E. Burd and J. Bailey. Evaluating Clone Detection Tools for
Use during Preventative Maintenance. In Proc. of the 2nd
IEEE International Workshop on Source Code Analysis and
Manipulation, pages 36–43, Oct. 2002.

[5] N. Göde and J. Harder. Clone stability. In Proc. of the
Software Maintenance and Reengineering, pages 65–74, Mar.
2011.

[6] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES:
Refactoring Support Environment Based on Code Clone
Analysis. In Proc. of 8th IASTED International Conference
on Software Engineering and Applications, pages 222–229,
Nov. 2004.

[7] Y. Higo and S. Kusumoto. Code Clone Detection on Special-
ized PDGs with Heuristics. In Proc. of the 15th European
Conference on Software Maintenance and Reengineering,
pages 75–84, Mar. 2011.

[8] W. Hordijk, M. L. Ponisio, and R. Wieringa. Harmfulness
of Code Duplication - A Strctured Review of the Evidence.
In Proc. of the 13th International Conference on Evaluation
and Assessment in Software Engineering, Apr. 2009.

[9] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is Du-
plicate Code More Frequently Modified than Non-duplicate
Code in Software Evolution?: An Emprical Study on Open
Source Software. In Proc. of the 4th International Joint
ERCIM/IWPSE Symposium on Software Evolution, pages 73–
82, Sep. 2010.

[10] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner.
Do code clones matter? In Proc. of the 30th International
Conference on Software Engineering, May 2009.

[11] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
Multilinguistic Token-Based Code Clone Detection System
for Large Scale Source Code. IEEE Transactions on Software
Engineering, 28(7):654–670, July 2002.

[12] C. Kapser and M. W. Godfrey. “Cloning Considered Harmful”
Considered Harmful. In Proc. of the 13th Working Conference
on Reverse Engineering, pages 19–28, Oct. 2006.

[13] J. Krinke. Is Cloned Code more stable than Non-Cloned
Code? In Proc. of the 8th IEEE International Working
Conference on Source Code Analysis and Manupulation,
pages 57–66, Oct. 2008.

[14] J. Krinke. Is cloned code older than non-cloned code? In
Proc. of the 5th International Workshop on Software Clones,
pages 28–33, May 2011.

[15] A. Lozano and M. Wermelinger. Assessing the effect of
clones on changeability. In Proc. of the 24th International
Conference on Software Maintenance, pages 227–236, Sep.
2008.

[16] F. Rahman, C. Bird, and P. Devanbu. Clones: What is that
smell? In Proc. of the 7th IEEE Working Conference on
Mining Software Repositories, pages 72–81, May 2010.

