
Improvement of a Visualization Technique for the
Passage Rate of Unit Testing and Static Checking

and its Evaluation
Yuko Muto, Kozo Okano, and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University
Suita, Japan

{y-mutoh, okano, kusumoto}@ist.osaka-u.ac.jp

Abstract—Software visualization has attracted lots of attention.
The techniques fall into two categories: visualization of software
component relationships and visualization of software metrics.

We have already proposed a hybrid method based on both of
the two categories. The proposed method visualizes coincidence
between specification and implementation from two aspects:
static checking and ordinal testing by test suites. Each of the
verification is performed in a method or function basis (unit
testing). In the method, each ratio of the coincidence is shown by
pie charts which represent classes of the target software. Whole
software is represented in a weighted digraph structure.

In this paper, we propose Priority Layout to emphasize
important classes , and implemented our method into a tool. We
have evaluated time in finding bug at source code and test cases
between using Priority Layout, ISOM Layout and uncomplicated
tables instead of graphs. As a result, time in finding bug at source
code and test cases by proposed graph are a half of it using table.

Keywords-unit testing; static checking; ESC/Java2; software
quality; visualization

I. INTRODUCTION

Recently, visualization techniques for software play more
important roles according to increase of the size of software.

The techniques fall into two categories: visualization of
software component relationship and visualization of software
metrics. The former approaches[1] often show program flows
as PDG (Program Dependency Graph). The latter approaches
include visualization of temporal sequence of software metrics
which helps analysis of software development aspects[2].

The granularity of the visualization target varies from code
segments to objects, class files, or libraries [3]. For object-
oriented programs, class is one of suitable granularity. Paper
[4] shows several relationships among classes.

ISO defines quality of software [5] including functionality
which means if given software satisfies required properties.
The functionality can be measured by ordinary unit testing,
static checking and model checking. Ordinary unit testing
tests for a given module and its specification if the module
satisfies the specification using sufficient amount of test suites.
Ordinary unit testing is usually performed as an early step of
software tests. A major drawback of ordinary unit testing is
that the quality of results of the test sometimes depends on the
quality of test suites used. If the coverage of the test suites is
low, then some of properties cannot be tested.

On the other hand, static checking and model checking
approaches do not require executing the source code. These
approaches check statically via source code (or abstract model
of the source code, which models behavior of the source code).
One of the famous tools of static checking is ESC/Java2[6].
Its input is Java program annotated with JML (Java Modeling
Language) [7], [8], in DbC manner. It checks if the (behaviour
of the) source code satisfies the property described in JML.
The quality of output also depends on the property itself as
well as that of standard libraries used for ESC/Java2. Other
drawback of ESC/Java2 is that it is not easy to understand its
outputs for especially novices because outputs are text based.
Relationships among classes should be visualized.

Therefore, a hybrid approach is considered. In paper[9], we
have proposed a hybrid method based on both of the two
categories. The method visualizes coincidence between speci-
fication and implementation from two aspects: ordinary testing
(by test suites) and static checking. Each of the verification
is performed in a method or function basis (unit testing). In
the method, the ratios of the coincidence are shown by pie
charts which represent classes of the target software. Whole
software is represented in a weighted digraph structure. The
prototype tool runs as a plug-in of Eclipse. We have evaluated
the availability of the proposed method by applying the tool to
two kinds of software: Warehouse Management Program and
a telephone directory management program. As a result, we
conclude that the proposed method shows informative results.

GraphTrace[4] has proposed a visualization method for
OOP, to understand dynamic behavior of the program. The
target language is OO LispD. It has structural and behavioral
views, which show tree views of class inheritance and method
call structures using the source code and runtime execution
information. Paper[4] provides some case-study examples
showing that visualization is useful.

Some papers [3] and [10] have proposed visualization meth-
ods for components of software. Paper [3] also summarizes
that visualization is performed in several views: static views
which show abstract structure of programs, and dynamic
views which depict dynamic traces of programs. Recently,
quality of software becomes important. Few papers, however,
provide visualization of the quality of software. Our approach
overcomes such a weakness.



Check’n’Crash[11] combines ordinary unit testing and static
checking. It automatically identifies faults as the following
flows. ESC/Java2 produces some counter examples. Then
test suites are automatically produced based on the counter
example, which are used in unit testing to identify faults. It
is effective in a sense that it produces only suitable test suites
for suspect faults.

The above work performs ordinary unit testing after static
checking. Paper [12] provides the opposite way. Tests cannot
find corner case bugs. The method in [12] firstly performs
testing to the target and obtains its coverages. Secondly
it performs static checking on the complement part of the
coverages. Thus, the static checking can be applied to a limited
area of the target source code; it gains scalability. It, however,
misses the bugs which are passed by the tests but could be
detected by static checking alone.

In Paper [13], authors provide and evaluate quality of con-
tracts by means of mutation testing. From their observation, it
is important to support developers by tool such as providing
quality of assertion because there are some differences among
individuals. They develop a tool which generate mutants from
test target program for Java and C. They defined mutation cov-
erage depending on lower and upper bound of completeness of
JML assertions to evaluate contracts quality. The upper bound
is the number of detected mutants divided by the number of
non-equivalent mutants, and the lower bound is the number
of detected mutants divided by the number of all mutants.
They evaluate quality of contracts in the following process:
generating random test cases, executing the test cases into
target program, generating meta-mutants by their tool and
executing the test cases into them, computing upper and lower
bound from difference in results between the target program
and mutants.

Comparing with using mutations, our approach has an
advantage in execution time. Our approach needs just an
execution of unit testing and static checking without advanced
preparing such as generating mutants.

In this paper, we propose Priority Layout to emphasize
important classes, and implemented our method into a tool.
We have evaluated time in finding bug at source code and
test cases between using Priority Layout, ISOM Layout and
uncomplicated tables instead of graphs. As a result, time in
finding bug at source code and test cases by proposed graphs
are a half of using table.

The paper is organized as follows. Section II provides the
definitions of some words as preliminary. Section III will show
our proposed method. We give an overview of our prototype
tool in Section IV, followed by experiments and discussion in
Section V and VI. Finally Section VII concludes the paper.

II. PRELIMINARY

This section gives some definitions and explanation on unit
testing and static checking.

A. Unit Testing
(Ordinary) unit testing is performed onto each module of

a given software. Conventionally the testing is performed by

Fig. 1. Main class and Person class with JML

test suites.
Well-known metrics on unit testing includes statement

coverage, branch coverage, condition coverage, and so on.
These coverages are used for metrics for quality of test suites
themselves as well as that of results of unit testing.

JUnit, JCoverage, djUnit and others are tools for unit testing.
JUnit is the de facto standard framework for unit testing for
Java. Its test case codes are described in TestCase class; it
executes the class in order to perform unit testing. The tool
indicates whether a test method passes or fails, i.e., whether the
test target method called by the test method makes expected
behavior or not. JCoverage[14] enumerates coverages. It does
not depend on specific tools such as JUnit. It creates coverage
reports on specified metrics and granularity. djUnit is an
assistant tool to integrate JUnit and JCoverage as eclipse
plugin. It requires test cases like JUnit, and exports coverage
reports according to JCoverage 1.

B. Static Checking

JML (Java Modeling Language)[7], [8] is a specification
language used for annotation into Java programming. Based
on DbC (Design by Contract)[15], we can give assertions such
as invariants, pre-conditions and post-conditions for a method.

Figure 1 shows an example of JML annotation. Person class
has a fullName field and a setter method, setFullName.
Method setFullName has a pre-condition that nm is neither
Null nor null String, thus, the annotation of line 12 is given.
Also the ensure clause at line 13 gives the post-condition
which means that fullName has the same value to nm.

ESC/Java2[16] is a static checking tool which verifies
whether the source code satisfies the annotation described
in JML for each method. In theory neither soundness nor
completeness is guaranteed, however it efficiently finds bugs
in normal usage. It is one of the useful tools in the sense of
a light-weight formal approach. It supports Java version 1.4.

1However, it uses modified version of JCoverage; the value of the report
sometimes differs from the original one.



Fig. 2. Visualization of static checking for Main class and Person class

Some of major libraries have been annotated in JML or built-
in. It requires a Java source code and outputs a result as text
messages which describes passed or failed for each property
and each method. If it reports failed, its counter-example is
also generated.

III. OUR PROPOSED METHOD

Figure 2 visualizes the result of static checking for Figure
1. Caller-callee relation of the given target program is shown
in a digraph, where each node and each edge represents a
class and the caller-callee relation, respectively. Each node
also represents a pie-chart which gives a passage rate of
the corresponding class. The passage rate is evaluated based
on unit testing and static checking. The weight of an edge
corresponds to the number of method calls relating to the
classes. We use caller-callee relation instead of class hierarchy
relation used typically in class diagram, because in this paper,
we focus on modular verification/testing, where properties of
classes or methods and their relations are important. Of course,
such a structure can be visualized using a similar way of ours.
Additionally, we defined Priority Layout to help find important
classes.

A. Definition of Passage Metrics

Here, we have to think the following four kinds of metrics:
(1) metrics for the quality of the test suites, (2) metrics of the
quality of contracts, (3) metrics for the results of ordinary unit
testing, and (4) that for the results of static checking. In the
paper, we focus on the metrics for (1),(3) and (4). We discuss
the metrics for (2) later.

1) Passage Rate for Results of Unit Testing: We adopt
statement coverage as a coverage of unit testing. The reason
why is the following: statement coverage is simple and easy
to calculate; the value of branch coverage generated by djUnit
is different from the original value; and condition coverage is
not supported by JCoverage.

Our approach utilizes djUnit because it covers both of (1)
and (3). The coverage report by djUnit contains only code
coverage data without acceptance of test methods, however,
developers can recognize the acceptance of test method be-
cause JUnit view attached by djUnit provides that information.

2) Passage Rate for Results of Static Checking: Let
Mpassed(A) and M(A) be the number of passed methods in
a class A, and the total number of methods in a class A,
respectively. The coverage of static checking for the class A
is defined as:

Cs(A) = Mpassed(A)/M(A). (1)

We give an example for the metrics using Figure 2.
From the output by ESC/Java2, we can infer that con-
structor and the method setFullName are valid, how-
ever method getFamilyName is not valid. Therefore
Mpassed(Person) = 2 and M(Person) = 3, respectively.
Cs(Person) is calculated as 0.66.

B. Definition of Caller-Callee Relation

If some method m1 appears statically in a method m2 as a
method call statement , we say m2 calls m1. If a method in
class A calls some method in class B, we say class A calls
class B. Let nAB be the number of every call, such that class
A calls class B. We say class A calls class B nAB times.

In Figure 1, Main class calls constructor of Person class in
line 3, setFullName method in line 4 and getFamilyName
method in line 5. Thus, Main class calls Person class three
times.

C. Priority Layout

We propose Priority Layout to emphasize important classes.
Figure 3 demonstrates Priority Layout. Some graph layouts
are proposed to avoid overlapping nodes and edges, such
as Circle Layout and ISOM Layout[17]. ISOM Layout is
effective for dense graphs because it is based on a competitive
learning strategy. Our approach requires a layout based on
characteristics of classes or caller-callee relationships because
the more important classes should be attracted more.

1) Importance: Let G = (V,E) be a graph, where V and E
denote sets of nodes and edges, respectively. Edge eij denotes
an edge from node vi to vj . Let w be weight of an edge.
w(eij) = 1 if caller-callee relationship of from node vi to vj
exists. Otherwise, we let w(eij) be 0. IN(vi) is defined as
a group of directed edges end with vi. Weight of node vi is
defined as the sum of a weight of a directed edge eki end with
vi. Importance is the weight of node. Also, importance of vi
equals the number of callees which are called by vi.

Definition 3.1 (Importance):

w(vi) =
∑

eki∈IN(vi)

w(eki) (2)

2) Layout: Classes with higher importance are allocated in
the more superior region of the graph. When classes have the
same importance, they are in a row at regular intervals.

IV. IMPLEMENTATION

Here, we give simple descriptions on our prototyped tool.
Please refer [9] for details. The tool is implemented as a plug-
in of Eclipse. The size of the program is about 2000 LOC
without comments, with 14 packages and 33 classes.

Figure 4 shows the screen shot of the tool. The tool has
Main View and Method View. Main View displays the digraph.
Here, a node corresponds to a class. The coverage is displayed
as a pie chart. If some class calls some other class many times,
the corresponding edge is drawn in thick style. Method View
displays detail method information on the selected class at
Main View.



Fig. 3. Example for Priority Layout

Fig. 4. Screen shot

V. EXPERIMENTS

In order to evaluate our proposed method, we asked ten
examinees to use our tool.

A. GQM approach

We adopt GQM approach[18] to evaluate our tool. Figure 5
shows the result of applying GQM. From the result we choose
two metrics:

• Response time to find bugs at source code
• Response time to find defects of test cases
In addition, questionnaire includes:
Q1 How much do you think comparing two graphs helps

you find bug?
Q2 Comparing between Priority Layout and oth-

ers(ISOM Layout or table), which do you like?
Examinees must answer the questions in one to five point. For
instance, for Q1, answering score 1 means that our approach
never help finding a bug, answering score 5 means it can help
finding a bug. For Q2, answering score 1 means that Priority
Layout is worse than ISOM Layout or simple tables, answering
score 5 means that Priority Layout is better than others.

B. Methodology

We experimented in the following process. First, we ex-
plained how to use our tool to examinees and they practice
exercise by our tool. After that, they try to find bugs in source

TABLE I
GROUP

Group Method used in Problem 1 Method used in Problem 2
A ISOM Layout Priority Layout
B Priority Layout ISOM Layout
C Table Priority Layout
D Priority Layout Table

code and its test cases for two problems and answer the time
to solve them and some questionnaires.

The below enumeration details the way to find bugs using
our tool.

1) Display unit testing result into view.
2) Display static checking result into view.
3) Find buggy method comparing unit testing and static

checking
4) Reason why the method is failed in static checking by

reading specification
5) Find shortage line of test cases

There are ten examinees, who are members of our labora-
tory studying software engineering. They consist of a Ph.D
candidate, six master students and three undergraduates. They
understand Java grammar, unit testing and static checking. All
of them utilize Eclipse usually.

We gave some items to examinees: Java source code with
sufficient JML, test cases and specification written in Japanese.

We implemented Multiple Table View to compare our graph
propose and simple method. Multiple Table View contains
class names, passage rates of unit testing and static checking.
It does not have caller-callee relationship data.

Table I shows assigning examinees to groups. Group A and
B compare between ISOM Layout and Priority Layout, and
Group C and D compare between Priority Layout and table
instead of graphs.

C. Problems

Target programs to solve are based on Warehouse Manage-
ment Program[19]. We altered its source code and test cases
to be buggy. Warehouse Management Program consists of
seven classes: ContainerItem, Customer, Item, ReceptionDesk,
Request, Storage and StockState. Its test suites sizes 800 LOC.

addItem method of AppMain has a bug. addItem method
calls constructor of Item class without checking parameters.
On the other hand, in Figure 6, the constructor of Item class
has a pre-condition that parameter name must not be null
and amount must be greater than zero. Thus, addItem method
violates the pre-condition of constructor of Item class. addItem
method can behave unanticipatedly and cause troubles when
it is executed.

D. Result and Observation

Table II shows the result of time to detect buggy method,
excluding wrong answer and who cannot find the bug within
deadline. Time required to find the bug using Priority Layout
is the shortest, followed by using ISOM Layout and using
simple tables in this order. Using Priority Layout reduces the



Fig. 5. Result of applying GQM Model

TABLE II
RESPONSE TIME TO DETECT BUGGY METHOD

Method Avg. of Time (min)
ISOM Layout 12.9

Priority Layout 10.79
Table 21.48

TABLE III
RESPONSE TIME TO DETECT INSUFFICIENT TEST CASE

Method Avg. of Time (min)
ISOM Layout 13.66

Priority Layout 14.9
Table 26.39

Fig. 6. Item

time by 16 % of ISOM Layout, and using both of graphs result
half the time of using table. Thus, for this example program,
usefulness of our proposed method was observed about finding
the bug in source code.

Table III summarizes the time required to find the bug in
test cases. On the other hand, time to find the bug in test
cases, there is little difference between using Priority Layout
and ISOM Layout. The reason should be that our proposed
technique visualizes classes instead of methods. Let Tt be time
to find the bug in test cases, Tc be time to find buggy test class,
and Tm be time in find buggy test method. These variables
have the following relation:

Tt = Tc + Tm.

Finding bugs in test cases occurs after finding bugs in source
code because we had an instruction to do so. A class and
its test class have a one-to-one correspondence in the target
program, Hence,

Tc = 0

and
Tt = Tm

hold. Tm must be similar between using Priority Layout and
ISOM Layout because none of layout provide to help find
method.

The average of answers are 3.5 and 4.3 for Q1 and Q2,
respectively. The result of Q1 shows that it is useful to

compare between graphs of unit testing and graphs of static
checking. Table II and the result of Q2 conclude that Priority
Layout improves visibility of the graphs for developers.

Since Priority Layout reduces response time in finding bugs
at source code, the examinees realize that Priority Layout is
better than another layout.

The followings are some comments from the examinees:

• The graph makes it easy to understand dependency of
classes

• It enables the users to easily realize classes to focus
• It takes much time to understand the program structure
• Visualizing dependency of methods is required
• It must provide reason why methods were failed by static

checking.

To quicken finding bugs, last two comments demonstrate the
need more information on methods.

E. Threats to Validity

1) Internal Validity: There is little difference in ability
among the groups. The examinees learned software develop-
ment because they are members of software design laboratory.
They are divided into four groups evenly mixed their grades.

Among the examinees, there are few habituation for the
target program and our tool because they read the target
program for the first time and they have never utilized the
tool.

2) External Validity: The universality of the program is low
because we use small size program in the experiment. How-
ever, the program is a typical to manage inventories, it includes
the essence of similar kind of real systems. Consequently, our
tool is useful in these types of programs.

Answers of the questionnaire have low generality because
they are subjective data. Also, the reliability of the results for
Q1 and Q2 is low. This is caused by the reason: although
the scores in the questionnaires are ordinary scale, the data is
averaged.



Hence, we need to perform more experiment. The example
includes comparing the response time for large size program
between using our tool and using eclipse without our tool.

VI. DISCUSSION

We need metrics to specify the quality of given JML
statements. We have researched past papers, however, we find
few suitable existing coverage or metrics for JML. Thus, we
devise a new metric, called Variable Coverage. In general,
assertions are conditions on program variables. For example,
pre-condition and post-condition assert that parameters and
return value (and/or some field variables) of the method meet
the conditions, respectively. In a similar way, Class Invariant
asserts invariant conditions for field variables while the object
is alive. Hence, we can regard the ratio of variables with its
condition as coverage. We consider Variable Coverage for a
method as a metric on its parameters, return value and related
field variables. Variable Coverage consists of Parameter Cov-
erage, Return Value Coverage and Field Variables Coverage.
These coverages are used in combination. For example, for
a typical post-condition, Return Value Coverage and Field
Variable Coverage are used.

Parameter Coverage is the ratio by the number of used
parameters in the pre-condition to that of all parameters.

Return Value Coverage means whether post-condition holds
return value or not. The result must be 0% or 100%.

Field Variable Coverage is the ratio by the number of used
field variables in conditions to that of all field variables. Field
variables are classified into mutable and immutable in the
method. If a variable must change, post-condition would use
the variable. For the other variables, Pure or Invariant should
hold them.

VII. CONCLUSION

In this paper, we improved and evaluated the visualization
method for software quality using unit testing and static
checking. We proposed Priority Layout, and performed eval-
uation using examinees. The results show that our approach
contributes to reduce the time in finding bugs at source code
and test cases.

Future work includes improving information on methods to
find easily actual bug location. Furthermore, we will research
and evaluate what we said in section VI, quality of the test
suites and annotations in JML.

ACKNOWLEDGMENT

This work is being conducted as a part of Stage Project,
the Development of Next Generation IT Infrastructure, sup-
ported by Ministry of Education, Culture, Sports, Science and
Technology, as well as Grant-in-Aid for Scientific Research
C(21500036).

REFERENCES

[1] T. Miyake, Y. Higo, S. Kusumoto, and K. Inoue”, “”masu: A
metrics measurement framework for multiple programing languages
[in japanese]”,” The IEICE transactions on information and systems
(Japanese edition). D, vol. 92, no. 9, pp. 1518–1531, 2009. [Online].
Available: ”http://ci.nii.ac.jp/naid/110007361123/”

[2] S. Morisaki and K. Matsumoto, “Toward optimized collection and visu-
alization of software metrics for progress sharing in offshore software
development project,” In Proc. of the 2nd Workshop on Accountability
and Traceability in Global Software Engineering (ATGSE2008), pp. 3–4,
2008.

[3] W. Lowe, M. Ericsson, J. Lundberg, and T. Panas, “Software
comprehension - integrating program analysis and software
visualization,” 2002. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.100.3818

[4] M. F. Kleyn and P. C. Gingrich, “Graphtrace—understanding object-
oriented systems using concurrently animated views,” in OOPSLA
’88: Conference proceedings on Object-oriented programming systems,
languages and applications. New York, NY, USA: ACM, 1988, pp.
191–205.

[5] ISO, “Software engineering-product quality-part 1 : Quality model,”
ISO/IEC : 9126-1:2001, 2001. [Online]. Available: http://ci.nii.ac.jp/
naid/10024638597/

[6] P. Chalin, “Early detection of jml specification errors using esc/java2,”
in SAVCBS ’06: Proceedings of the 2006 conference on Specification
and verification of component-based systems. New York, NY, USA:
ACM, 2006, pp. 25–32.

[7] C. Yoonsik and P. Ashaveena, “Specifying and checking method call
sequences of java programs,” Software Quality Journal, vol. 15, no. 1,
pp. 7–25, March 2007. [Online]. Available: http://dx.doi.org/10.1007/
s11219-006-9001-4

[8] L. Burdy, M. Huisman, and M. Pavlova, “Preliminary design
of bml: a behavioral interface specification language for java
bytecode,” in Proceedings of the 10th international conference on
Fundamental approaches to software engineering, ser. FASE’07.
Berlin, Heidelberg: Springer-Verlag, 2007, pp. 215–229. [Online].
Available: http://portal.acm.org/citation.cfm?id=1759394.1759418

[9] Y. Muto, K. Okano, and S. Kusumoto, “A visualization technique for
software quality using unit testing and static checking with caller-callee
relationship,” in Proceedings of International Conference on Advanced
Software Engineering, 2011.

[10] A. Gonzalez, R. Theron, A. Telea, and F. J. Garcia, “Combined vi-
sualization of structural and metric information for software evolution
analysis,” in IWPSE-Evol ’09: Proceedings of the joint international and
annual ERCIM workshops on Principles of software evolution (IWPSE)
and software evolution (Evol) workshops. New York, NY, USA: ACM,
2009, pp. 25–30.

[11] C. Csallner and Y. Smaragdakis, “Check ’n’ crash: combining static
checking and testing,” in ICSE ’05: Proceedings of the 27th international
conference on Software engineering. New York, NY, USA: ACM, 2005,
pp. 422–431.

[12] V. Vipindeep and P. Jalote, “Efficient static analysis with path pruning
using coverage data,” in WODA ’05: Proceedings of the third interna-
tional workshop on Dynamic analysis. New York, NY, USA: ACM,
2005, pp. 1–6.

[13] T. Knauth, C. Fetzer, and P. Felber, “Assertion-driven development:
Assessing the quality of contracts using meta-mutations,” in Proceedings
of the IEEE International Conference on Software Testing, Verification,
and Validation Workshops. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 182–191. [Online]. Available: http://portal.acm.org/
citation.cfm?id=1547559.1548252

[14] jcoverage ltd., “Jcoverage,” http://www.jcoverage.com/.
[15] B. Meyer, Object-oriented software construction (2nd ed.). Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 1997.
[16] C. Flabagan, K. Rustan, M. Leino, M. Lillibridge, G. Nelson, J. B.

Saxe, and R. Stata, “Extended static checking for java,” Proc. of the
ACM SIGPLAN 2002, pp. 234–245, 2002.

[17] K. T, “The self-organizing map,” Proceedings of the IEEE, pp. 1464–
1480, 2002.

[18] V. Basili, “Using measurement to build core competencies in software,”
Seminar sponsered by Data and Analysis Center for Software, 2005.

[19] M. Owashi, K. Okano, and S. Kusumoto, “Design of warehouse
management program in jml and verification with esc/java2 [in
japanese],” The IEICE transactions on information and systems
(Japanese edition) D, vol. 91, no. 11, pp. 2719–2720, 2008. [Online].
Available: http://ci.nii.ac.jp/naid/110007380947/


