
A Visualization Method of Program Dependency Graph
for Identifying Extract Method Opportunity

Tomoko Kanemitsu1 Yoshiki Higo1 Shinji Kusumoto1

1Graduate School of Information Science and Technology, Osaka University
{t-kanemt,higo,kusumoto}@ist.osaka-u.ac.jp

ABSTRACT
Refactoring is important for efficient software maintenance. How-
ever, tools supports are highly required for refactoring because man-
ual operations of refactoring are troublesome and error prone. This
paper proposes a technique that suggests Extract Method candi-
dates automatically. Extract Method refactoring is to create a new
method from a code fragment in an existing method. Previous re-
search efforts showed that the Extract Method refactoring is often
performed prior to other refactorings, so that it is important to sup-
port Extract Method refactoring. Previous studies have proposed
methods that suggest Extract Method candidates based on linage
or complexity. However it is originally desirable to divide meth-
ods based on their functionalities. This paper uses the strength of
data connection between sentences in the source code. We deem
that strongly-connected data expresses a single function. This pa-
per proposes a technique that suggests Extract Method candidates
based on strongly-connected data.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Technique—
Object-oriented design methods; D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement—Enhancement, Re-
structuring, reverse engineering, and reengineering

General Terms
Design, Management

Keywords
Refactoring, Visualization, Program Dependency Graph

1. INTRODUCTION
Refactoring is a set of operations for improving internal struc-

ture of software without changing its external behavior. Refactor-
ing can reduce the cost required for maintaining software in the
future. Even after commencing operations of a software system,
its source code is often changed because of various reasons such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0579-2/11/05 ...$10.00.

as fixing field bugs, adding new functionalities, and adaptive main-
tenance tasks. Eick et al. reported that such repetitive changes
degrade maintainability of the source code, so that more cost is re-
quired for maintenance as time passes [1]. Refactoring is a promis-
ing technique to prevent the source code from being degraded.

However, manual refactoring includes cumbersome operations.
It requires depthful knowledge of maintained software and enriched
experiences of programming languages used in its source code. If
refactoring is performed inappropriately, the maintainability of the
source code is not improved, or it even injects new faults into the
source code. Consequently, tool support is highly required to per-
form appropriate refactorings.

One of the most often-performed refactorings is Extract Method
[7]. Extract Method consists of a set of operations for extracting a
part of an existing method as a new method. Extract Method en-
hances the cohesion of the refactored method and reduces its size.
Therefore, the refactored method requires less maintenance cost in
the future.

There are some software metrics that can be used for support-
ing Extract Method refactoring. For example, lines of code (LOC)
is one of the metrics to identify candidates for Extract Method.
Fowler addresses that small methods are greater than large ones
[2]. Small methods have better readability and reusability than
large ones. Methods including complicated control flow are also
targets of Extract Method. McCabe proposed a cyclomatic com-
plexity, which represents how much control flow is complicated
[4]. However, there is a basic principle that one method should
process only one thing. Not all long or complicated methods are
against the principle.

The present paper proposes a visualization method for identify-
ing candidates of Extract Method refactoring. The visualization
makes it easy to understand which parts of existing methods can
and should be refactored. The contributions of the present paper
are as follows:

• The proposed method defines strength of data dependency
in Program Dependency Graph (in short, PDG). In the vi-
sualization, the strength is reflected as the distance between
nodes. Such a visualization enables to suggest Extract Method
refactoring in keeping with the important principle that one
method should process only one thing.

• The proposed method has been implemented as a software
tool. The tool supports refactorings by interactive communi-
cation with a user. A user can understand why every refactor-
ing candidate is suggested by the tool, and determine whether
she performs the suggested refactorings or not by herself.

• We conducted an empirical evaluation with 14 subjects. In
the evaluation, the proposed tool was compared with an ex-

isting refactoring support tool, JDeodrant. The evaluation
showed that the proposed visualization is intuitively and easy
to understand, whereas it also revealed some flaws of the pro-
posed method.

2. RELATED WORK
Komondoor and Horwitz proposed a technique identifying ex-

tractable regions in functions of C program [3]. The input to the
technique is a control flow graph (in short, CFG) of a function and
a set of nodes. The technique identifies extractable regions includ-
ing all the specified nodes in fully-automatic process. Tsantalis
and Chatzigeorgiou also proposed a technique for identifying ex-
tractable regions [9]. The input is a PDG of a method of Java pro-
gram, and the output is multiple extractable regions. An extractable
region is identified for every variable appeared in the PDG. The
both methods use data dependency and control dependency in the
input graph for identifying practical candidates for Extract Method.
For example, their methods replicate conditional predicates in the
extracted region as necessary. The aim of the both methods is to
identify where can be extracted in existing functions or methods,
and the aim of the proposed visualization is to identify where can
and should be refactored. The proposed visualization has a com-
plementary relationship with their methods.

Refactoring Annotation, which was proposed by Murphy-Hill and
Black, tells users whether a specified region can be extracted as a
new method [5]. They also proposed a visualization method, Box
View, which visualizes the block hierarchy in a given method, so
that it can be used for identifying where should be refactored. How-
ever, Box View cannot identify non-contiguous regions or regions
across multiple blocks as refactoring candidates because it is just
an abstract visualization of the block hierarchy. On the other hand,
the proposed visualization can tell users where should be extracted
even if the region is non-contiguous.

The proposed method is a kind of smell detector. There are may
research efforts related to smell detectors. For example, Murphy-
Hill and Black proposed a method for visualizing Feature Envy [6].
Feature Envy smell is a typical target of Extract Method. Simon
et al. proposed a method identifying method level code smells [8].
They used cohesion metrics for identifying code smells. In this
research, we use a metrics representing the strength of data con-
nection, which is similar to cohesion.

3. PROGRAM DEPENDENCY GRAPH
A PDG is a directed graph representing the dependencies be-

tween program elements (statements and conditional predicates).
A PDG node is a program element, and a PDG edge indicates a de-
pendency between two nodes. There are two types of dependencies
in a PDG, namely, control dependency and data dependency. When
all of the following conditions are satisfied, a control dependency
from statement s1 to s2 exists:

• s1 is a conditional predicate, and

• the result of s1 directly influences whether s2 is executed.

When all the following conditions are satisfied, there is a data
dependency from statement s3 to s4 via variable v:

• s3 defines v, and

• s4 references v, and

• there is at least one execution path from s3 to s4 without re-
defining v.

1: String sample1(){

2: if(this.trueOrFalse()){

3: if(null == this.getPath()){

4: Project proj = this.getProject();

5: this.setPath(proj.getBaseDir());

6: }

7: StringBuilder text = new StringBuilder();

8: text.append("String A");

9: text.append("String B");

10: text.append("String C");

11: text.append("String D");

12: return text.toString();

13: }else{

14: return "";

15: }

16: }

(a) Original Source Code

<14>

<12>

<11>

<10>

<1>

<2>

<7>

<8>

<9>

<3>

<4>

<5>

control

data

(b) Generated PDG

Figure 1: Example of traditional PDG

Figure 1 is a simple example of source code and a PDG gener-
ated from it. Labels attached to the nodes mean the lines where
their elements locate in the source code. The node labeled <1> is
the enter node of the PDG. In this example, there are data depen-
dencies between nodes using variables (“prog” or “text”), and there
are conditional dependencies between the control predicates of the
if-statements and their inner statements.

4. DEFINISIONS OF DISTANCES
BETWEEN NODES IN PDGS

This section proposes a PDG visualization method for support-
ing Extract Method. The proposed method defines the distance be-
tween every pair of nodes having a data dependency. If the pro-
posed method determines that the two nodes should not be sepa-
rated by Extract Method, they are placed close to each other in the
visualization. The remainder of this section describes three special
situations where two node should not be separated. For each special

situation, we describes Situation, Example, and Reason. Situa-
tion is a brief description of code situation, and Example shows an
example code under the situation. Reason describes why the situa-
tion is special. Note that, variables that vi(i = 1,2,3) appear in the
remainder of this section are defined by user input in the interactive
visualization.

4.1 Atomic Data Dependency
[Situation]: A statement defines (initializes) a variable, and the

variable is referenced in another statement just one time.
[Example]: Variable tmp in the following code is in this situa-

tion:

final java.lang.Object tmp = objectA;
objectA = objectB;
objectB = tmp;

[Reason]: There is only a single edge of data dependency for such
a variable. Temporary variables or constant definitions are in this
context. Authors think that the defining statement and the refer-
encing statement of such a variable should be in the same method.
In the present paper, the relationship of such data dependency is
called Atomic Data Dependency (in short, ADD). Two nodes hav-
ing ADD are placed close to each other in the visualization. As-
sume that distanceADD represents the distance of two node having
ADD, and it is defined as follows:

distanceADD = v1 (1)

4.2 Spread Data Dependency
[Situation]: A statement defines a variable, and many other state-

ments reference the variable.
[Example]: Variable tax_rate in the following code is in this

situation.

float tax_rate = 0.05;
int taxA = articleA.getPrice() * tax_rate;
int taxB = articleB.getPrice() * tax_rate;
int taxC = articleC.getPrice() * tax_rate;

[Reason]:An often-referenced variable can be a core role for im-
plementing a functionality. Thus, statements using such a variable
should not be separated. The present paper calls the relationship of
such data dependency Spread Data Dependency (in short, SDD).
Nodes having SDD are placed close to one another in the visual-
ization. We assume that distanceSDD is the distance between nodes
having SDD relationship. and it is defined as follows:

distanceSDD =
v2

n
(2)

n is the number of node referencing the variable. Consequently,
the more nodes reference it, the closer they are.

4.3 Gathered Data Dependency
[Situation]: A statement references many variables defined in

other statements.
[Example]: The last statement in the following code is in this

situation.

int a = coefficients.getA();
int b = coefficients.getB();
int c = coefficients.getC();
Answer ans = QuadraticFormula.getAnswer(a,b,c);

[Reason]: A statement referencing many variables is a core role
of a functionality, and the statements defining such variables pre-
pares for execution of the core statement. Thus, they should not

be separated because they are a part of the same functionality. In
the present paper, the relationship of such data dependency is called
Gathered Data Dependency (in short, GDD). Nodes having GDD
are placed close to one another in the visualization. We assume that
distanceGDD is the distance between nodes having GDD relation-
ship, and it is defined as follows:

distanceGDD =
v3

m
(3)

In the above formula, m is the number of nodes defining such
variables. Consequently, the more nodes defining such variables
there are, the closer they are placed.

If two nodes having 2 or more relationships in ADD, SDD, and
GDD, the smallest distance is applied to the nodes.

5. IMPLEMENTATION
We have developed a prototype tool, ReAF (Refactoring Automated

Finding), based on the proposed methods. The tool can handle the
full grammar of Java language. The input to the tool is a set of
source files forming a software system. The tool builds an intra-
procedural PDG for every method in the input and it visualizes the
built PDGs. A graph visualization framework, Jung1, is used in the
tool. Jung has a spring layout functionality, which automatically
places nodes under the condition that given distances between the
nodes are satisfied. At present, the proposed methods and the tool
can handle only Java source code. However, it is not difficult to
expand them to handle other programming languages.

Figure 2 is a snapshot of the tool. Target methods are shown
with the class hierarchy format in the left side. If users select a
method in this panel, then its source code and its PDG appear in
the right side. Also, there are text fields for inputting values for
distanceADD, distanceSDD, and GDD in the upper side. Users can
perform interactive analysis according to personal preference by
changing the values.

A set of close-packed nodes is a candidate of Extract Method.
If a user select a part of PDG by mouse dragging, then the corre-
sponding source code is highlighted. If the selected part satisfying
a following condition, the tool regards the part as an extractable
code fragment and displays “OK”. If not, the tool shows “NG” for
telling the selected parts is difficult to be extracted.

[Condition]: The number of data dependency outgoing from the
selected part is 1 or 0.

[Reason]: An outgoing data dependency means that data created
in the selected part is referenced outside the part. If there is no
outgoing edge from the selected part, the extracted method do not
have to return any value. If the selected part has a single outgoing
edge, it is easy to return the value to the new callee site. All we
have to do is to add a return-statement. However, if there are 2 or
more outgoing edges, further operations are required for extracting.
Consequently, the tool uses this condition.

Figure 2 is an application on method statement in class Customer
in Fowler’s book [2]. In this application, we could identify instruc-
tions related to “rental point” as a target of Extract Method.

6. EVALUATION
We conducted an empirical study for evaluating the proposed

method. In this study, 14 CS students evaluated ReAF. Seven of
the students worked on the source code that they developed in the
past. The other students worked on open source software that the
author had downloaded in advance.

1http://jung.sourceforge.net/

Figure 2: Application to the example in Fowler’s Book. Green means that its node is included in the refactoring candidate, and
yellow means that its node is the exit node of the PDG. Exit node must not be included in refactoring candidate.

6.1 Comparison Target
In this experiment, we also used an existing refactoring support

tool, JDeodrant, which was developed by Tsantalis and Chatzige-
orgiou [9]. JDeodrant identifies candidates for Extract Method by
performing simple block slicing. JDeodrant is a plugin of Eclipse.
If a user selects a target method, then JDeodrant shows a list of
candidates that it identified. And if a user selects a candidate on the
list, then the area of extracting target on the source code is high-
lighted. JDeodrant also has a functionality for comparing source
code between before and after Extract Method. If a user considers
that the candidate is appropriate as a Extract Method refactoring,
she can push a button of automated source code modification.

6.2 Methodology
In this evaluation, every student identifies refactoring candidates

from 3 methods. Students working on their own source code (GroupA)
prepared refatoring targets by themselves and the authors prepared
refactoring targets for students working on open source software

Table 1: The number of methods that ReAF and JDeodrant can
or cannot detect appropriate candidates

ReAF JDeodrant
including appropriate candidates 27 24

only inappropriate candidates 17 8
no candidate 0 12

(GroupB). In GroupA, every student works on different methods
meanwhile all the students work on the same methods in GroupB.

Next, every student identifies Extract Method candidates from
the target methods with the two tools. Halves of Group A and B
firstly used ReAF, then they used JDeodrant2. The other halves
firstly used JDeodrant, then they used ReAF. This is for avoiding
bias of the order of tool applications. The students judged each of
the candidates suggested by the tools as whether it is appropriate
for Extract Method or not.

At last, every student answered a questionnaire about the refac-
torings with ReAF and JDeodrant. The questionnaire includes ques-
tions about the following aspects:

• Is tool’s visualization helpful for identifying candidates?

• Is tool’s operability is easy and intuitively?

• Do you want continuance usage for further refactorings on
your own source code in the future?

6.3 Candidates Identification Result
Table 1 shows a quantitative result of the candidates identifi-

cation. The row of “including appropriate candidates” means the
number of methods where the tools could identify at least 1 ap-
propriate candidate. We can see that ReAF identified appropriate
candidates from more methods than JDeodrant. The row of “only
inappropriate candidates” means the number of methods where the
tools identified only inappropriate candidates. False positive of
JDeodrant is less than ReAF. The row of “no candidate” means
the number of methods where the tool identified no candidates.
2At the beginning of this evaluation, the authors trained students in
how to use them.

Table 3: Result of the questionnaire about visualization capability, operability, and continuing usage of ReAF and JDeodrant

score visualization operability continuing usage
ReAF JDeodrant ReAF JDeodrant ReAF JDeodrant

4 (good) 4 4 1 5 2 4
3 9 10 3 6 7 6
2 1 0 9 3 4 3
1 (bad) 0 0 1 0 1 1
average 3.21 3.29 2.29 3.14 2.71 2.93

Table 4: Elapsed time to source code analysis by the tools and candidate identification by subjects
Time analysis identification total
(sec.) ReAF JDeodrant ReAF JDeodrant ReAF JDeodrant
max. 35.3 223.0 1,163 600.8 1,170 621.2
min. 0.02 0.01 20 12.4 23.7 16.0
ave. 8.2 35.6 305.1 142.8 313.4 178.4

Next, we investigated the methods where either of the tools could
identify appropriate candidates. Table 2 shows the lines of the
methods. For example the row of “ReAF” means the lines of meth-
ods where only ReAF could identify appropriate candidates. In the
case of JDeodrant, the average lines of methods was 63.3, however
a huge method (270LOC) was included in them. By removing it,
the averge lines drops to 47.4. From this table, we can see that
ReAF could identify appropriate candidates from large methods.
One factor of the result is that: ReAF visualizes every statement in
the source code as a node; the larger a method is, more node are
created from it; if many nodes are included in a PDG, the density
of the PDG become clearer; it is easy to select a dense part from the
large PDG. However, in the case that there were so many nodes in a
PDG (more than several hundred lines of code), it became difficult
to identify with the proposed method.

6.4 User’s Feedback
Table 3 shows the result of the questionnaire about the 3 items

on ReAF and JDeodrant. The first item is visualization capabil-
ity, which means how helpful tool’s visualization is for identify-
ing refactoring candidates. The second item is operability, which
means the ease of operations for identifying refactoring candidates
on the tools. The last item is continuing usage, which means the
how much the subjects want to continue to use the tools on their
own projects. From this table, on the evaluation of ReAF, the score
of visualization is relatively high whereas operability is relatively
low. The low operability was caused by usability problems on pe-
ripheral parts of the tool. The problem is not directly related to the
proposed visualization. Consequently, it is not difficult to improve
the operability of ReAF. Section 7 shows how we extended ReAF
based on the result of this evaluation.

Table 2: The lines of methods where either of the tools could
identify appropriate candidates

Tool lines of methods
Average Minimum Maximum

ReAF 68.8 25 178
JDeodrant 63.3 (47.4) 16 270 (103)

On the other hand, JDeodrant marked high scores on both the
visualization and operability. The reason why its operability was
high is that JDeodrant is a plugin of Eclipse, so that subjects could
use the tool on the wonted Eclipse screen. However, in many cases,
JDeodrant identified many similar candidates from a method be-
cause there are often many similar slices in a method. In such
a method, it was very burdensome to find appropriate candidates
from a large list for subjects. While, subject were not suffered from
such a problem on ReAF because ReAF displays a PDG itself.

6.5 Elapsed Time To Identification
Table 4 shows the elapsed time of source code analysis by the

tools and candidates identification by subjects. The analysis time
of ReAF is shorter than JDeodrant because JDeodrant calculates
program slicings for every variable appeared in the methods. On
the other hand, the identification time of ReAF is longer than JDeo-
drant. One of this factor is that the operability of ReAF was not as
good as JDeodrant as shown in Subsection 6.4. However, in the
case of JDeodrant, the identification requires several minutes be-
cause JDeodrant often identified so many candidates from a method.

6.6 Summary
In this evaluation, there are several methods where either of ReAF

and JDeodrant could identify appropriate candidates. Those hap-
pened because they have different definitions of code smells. In
this experiment, we cannot conclude that either of them is superior
to the other as a code smell detector. Consequently, we are going
to expand the proposed method. This evaluation also revealed that
ReAF has several problems on operability. Section 7 describes how
we improved ReAF based on the result of this evaluation.

7. IMPROVEMENT BASED
ON EVALUATION

We improved ReAF based on the result of the empirical study.
The improvement includes the following 3 aspects:

• showing extraction result,

• merging multiple nodes into a single node,

• automatic recommendation.

The remainder of this section describes each of them in detail.

Figure 3: A snapshot of ReAF in applying to a method eval in Ant 1.8.1

7.1 Showing Extraction Result
A big advantage of JDeoderant on the experimental study was

that it had a functionality to show how the source code will be
changed by the refactoring. Several subjects answered that such
a functionality was very helpful to decide whether each refactoring
should be performed or not. Therefore, we added such a functional-
ity to ReAF. The improved ReAF has a button labeled as “Result”.
If a user presses the button, then ReAF shows the source code of
the extracted code fragment.

7.2 Merging Multiple Nodes
In the case that there are so many nodes in a PDG, some subjects

found it difficult to operate the PDG because screen size and per-
formance. In order to reduce such a difficulty, we added a function-
ality to merge multiple nodes into a single node. If users identify a
set of nodes that are not separated to different methods, then ReAF
merges the set of nodes into a single node. The size of merged node
is proportional to the number of the original nodes. This function-
ality reduces the number of nodes in PDGs, which is helpful to
identify refactoring candidates more efficiently.

7.3 Automatic Recommendation
In the PDG visualization described in Section 4, users can freely

select an any part of PDGs and then they perform refactoring. How-
ever, such selection sometimes needs a certain level of time, which
is shown in Table 4. In order to more quickly identify refactoring
candidates, automatic recommendation is indispensable. Therefore
we added a functionality to recommend refactoring candidates.

The automatic recommendation on ReAF works in the follow-
ing algorithm. The input of the algorithm is the threshold of edge
length, k, and a PDG, P. The output is a merged node, which is a
refactoring candidate.

Figure 4: A snapshot of PDG with recommendation

1. get the shortest edge ,e, in P, and to go step.2,

2. if the length of e is shorter than k, then marge the two nodes at
the ends of e, and go to step.3, otherwise exit the algorithm,

3. collect edges incoming to or outgoing from the merged node,
and select the shortest edge as e, and go to step.2,

The output of the algorithm is the last merged node, which in-
cludes a set of nodes included in a code fragment that should be
extracted as a new method. All a user has to do is just pushing
“recommend ” button. As described in Subsection 7.2, the size of
the merged node is proposed to the number of original nodes. It is
very easy to identify which is the merged node in the PDG.

107: public boolean eval() throws BuildException {

108: if (string == null) {

109: throw new BuildException(

110: "Parameter string is required in matches.");

111: }

112: if (regularExpression == null) {

113: throw new BuildException(

"Missing pattern in matches.");

114: }

++115: int options = RegexpMatcher.MATCH_DEFAULT;

++116: if (!caseSensitive) {

++117: options = options |

RegexpMatcher.MATCH_CASE_INSENSITIVE;

++118: }

++119: if (multiLine) {

++120: options = options |

RegexpMatcher.MATCH_MULTILINE;

++121: }

++122: if (singleLine) {

++123: options = options |

RegexpMatcher.MATCH_SINGLELINE;

++124: }

125: Regexp regexp =

regularExpression.getRegexp(getProject());

126: return regexp.matches(string, options);

127: }

(a) before refactoring (version 1.8.1)

107: public boolean eval() throws BuildException {

108: if (string == null) {

109: throw new BuildException(

110: "Parameter string is required in matches.");

111: }

112: if (regularExpression == null) {

113: throw new BuildException(

"Missing pattern in matches.");

114: }

115: in options = RegexUtil.asOptions(

caseSensitive, multiLine, singleLine);

116: Regexp regexp =

regularExpression.getRegexp(getProject());

117: return regexp.matches(string, options);

118: }

(b) after refactoring (version 1.8.2)

95: public static in asOptions(boolean caseSensitive,

boolean multiLine,

96: boolean singleLine){

97: int options = RegexpMatcher.MATCH_DEFAULT;

98: if (!caseSensitive) {

99: options = options |

RegexpMatcher.MATCH_CASE_INSENSITIVE;

100: }

101: if (multiLine) {

102: options = options | RegexpMatcher.MATCH_MULTILINE;

103: }

104: if (singleLine) {

105: options = options | RegexpMatcher.MATCH_SINGLELINE;

106: }

107: return options;

108: }

(c) extracted method (version 1.8.2)

Figure 5: An actual refactoring example in Ant

7.4 Application On OSS
We applied the improved ReAF to an open source software, Ant.

Figure 3 shows a snapshot of ReAF applying to a method eval on
class ant.taskdefs.condition.Matches in version 1.8.1. There are 22
nodes in this PDG. By using the functionality of automatic rec-
ommendation, the PDG visualization was changed to Figure 4. In
Figure 4, a big green node was suggested as a new method. Figure
5 shows the source code of before and after the refactoring. The
line beginning with ++ in Figure 5(a) forms a code fragment of the
refactoring candidate. We can see that the automatic recommen-

dation could identify a code fragment including instructions using
variable option. We confirmed that this refactoring was actually
performed between version 1.8.1 and 1.8.2. Figure 5(b) shows the
source code after the refactoring, and Figure 5(c) shows the source
code of the newly extracted method. Also, JDeadrant, which was a
compared tool in Section 6 could not find this refactoring instance.

8. CONCLUSION
This paper presented a PDG visualization method for identify-

ing opportunities of Extract Method refactoring and introduces an
implementation of the proposed method, ReAF. We revealed the
advantages and disadvantages of the proposed method by compar-
ing it with an existing method on an empirical study. ReAF has
been improved based the result of the empirical study. In the fu-
ture, we are going to apply it to several open source software and
evaluate its effectiveness and usefulness.

ACKNOWLEDGEMENT
The present research is being conducted as a part of the Stage
Project, the Development of Next Generation IT Infrastructure, sup-
ported by the Ministry of Education, Culture, Sports, Science, and
Technology of Japan. This study has been supported in part by
Grants-in-Aid for Scientific Research (A) (21240002) and (C)
(20500033) from the Japan Society for the Promotion of Science,
and Grand-in-Aid for Young Scientists (B) (22700031) from Min-
istry of Education, Science, Sports and Culture.

9. REFERENCES
[1] S. G. Eick, T. L. Graves, A. F. Karr, and J. S. M. adn

Audris Mockus. Does code decay? assessing the evidence
from change management data. Transactions on Software
Engineering, 27(1), Jan. 2001.

[2] M. Fowler. Refactoring: improving the design of existing
code. Addison Wesley, 1999.

[3] R. Komondoor and S. Horwitz. Effective, Automatic
Procedure Extraction. In Proc. of the 11th International
Workshop on Program Comprehension, pages 33–42, May
2003.

[4] T. McCabe. A Complexity Measure. IEEE Transactions on
Software Engineering, 2(4):308–320, Dec. 1976.

[5] E. Murphy-Hill and A. P. Black. Breaking the Barriers to
Successful Refactoring: Observations and Tools for Extract
Method. In Proc. of the 30th International Conference on
Softwaer Engineering, pages 421–430, May 2008.

[6] E. Murphy-Hill and A. P. Black. An Interactive Ambient
Visualization for Code Smells. In Proc. of the 5th
International Symposium on Software Visualization, pages
5–14, May 2010.

[7] E. Murphy-Hill, C. Parnin, and A. P. Black. How We Refactor,
and How We Know It. In Proc. of the 31st International
Conference on Software Engineering, pages 287–297, Oct.
2009.

[8] F. Simon, F. Steinbrückner, and C. Lewerentz. Metrics based
refactoring. In Proc. of the 5th European Conference on
Software Maintenance and Reengineering, pages 30–38, Mar.
2001.

[9] N. Tsantalis and A. Chatzigeorgiou. Identification of Extract
Method Refactoring Opportunities. In Proc. of the 13th
European Conference on Software Maintenance and
Reengineering, pages 119–128, Mar. 2009.

