
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

反例に基づく抽象化改良ループによる時間オートマトンの抽象化手法

長岡 武志† 岡野 浩三† 楠本 真二†

†大阪大学大学院情報科学研究科
〒 560–8531大阪府豊中市待兼山 1–3

あらまし 時間オートマトンを対象としたモデル抽象化手法を著者らは提案している．提案手法では，反例を元に

抽象モデルを改良し，適切な抽象モデルを自動的に生成する CEGAR (CounterExample-Guided Abstraction Refinement)

ループに基づく．抽象モデルの改良の際，元になる時間オートマトンの変形で行うなどの特徴を持つ．本稿では，提

案手法の具体的なアルゴリズムを形式的に記述し，アルゴリズムの正当性の証明を与える．

キーワード モデル検査，時間オートマトン，モデル抽象化，CEGAR

Abstraction of Timed Automata Based on Counterexample-Guided Abstraction

Refinement Loop

Takeshi NAGAOKA†, Kozo OKANO†, and Shinji KUSUMOTO†

† Graduate School of Information Science and Technology, Osaka University

Machikane-yama 1–3, Toyonaka City, Osaka, 560–8531 Japan

Abstract We have proposed a method of model abstraction for timed automata. The proposed method is based on CEGAR

(CounterExample-Guided Abstraction Refinement) loop which automatically refines an abstract model using counter exam-

ples. Our algorithm has some features such as refinements are performed indirectly through transformation of the original

timed automaton. This paper gives formal descriptions of the algorithm and the correctness proof of the algorithm.

Key words Model Checking, Timed Automaton, Model Abstraction, CEGAR

1. Introduction

This paper gives correctness proof of our algorithm proposed

in [8]. The algorithm is CEGAR [1] based algorithm of abstract

model refinement used for model checking on timed automata.

A general CEGAR algorithm consists of several steps. First, it

abstracts the original model (the obtained model is called abstract

model) and performs model checking on the abstract model. Next,

if a counter example (CE) is found, it checks the counter example

on the concrete model. If the CE is spurious, it refines the abstract

model. The last step is repeated until the valid output is obtained.

In general, most CEGAR based algorithms [1], [2] obtain refined

abstract models from the previous abstract models by modifying

some transformations. In our algorithm, however, the refined model

is obtained indirectly; we transform the original timed automa-

ton preserving the equivalence and from it we generate an abstract

model by eliminating clock attributes.

This paper proves that the transformation preserves bi-simulation

equivalence and also the refined abstract model is the spurious CE

free.

The rest of the paper is organized as follows. In Sec. 2., some

definitions are described. Sec. 3. gives our CEGAR algorithm. Sec.

4. proves the correctness of the algorithm. Sec. 5. concludes the

paper.

2. Preliminaries

In this Section, we give definitions of a timed automaton, a region

automaton which specifies whole states of a timed automaton with

finite clock regions, and others.

Let c(C) be a set of whole differential inequalities of 2 clocks

over a finite clock setC. A subset ofc(C) is called clock con-

straints.

Definition 2.1 (Timed Automaton). A timed automatonA is a 6-

tuple(L, l0, T, I, C, A), where

C : a finite set of clocks;A : a finite set of actions;L : a finite set of

locations;l0 ∈ L :an initial location; T ⊂ L×A×2c(C)×R×L;

where,2c(C) is a set of clock constraints, called guards;R = 2C

— 1 —

: a set of clocks to reset; andI ⊂ (L → 2c(C)) : a mapping from

locations to clock constraints, called location invariants.

A transitiont = (l1, a, g, r, l2) ∈ T is denoted byl1
a,g,r−→ l2.

A mapν : C → R>=0 is called a clock assignment. We can ex-

tend the domain ofν into a set ofC as follows:ν ∈ RC
>=0. We define

(ν + d)(x) = ν(x) + d for d ∈ R>=0. r(ν) = ν[x 7→ 0], x ∈ r is

also defined forr ∈ 2C . By N , a set of wholeν is denoted.

Definition 2.2 (Semantics of Timed Automaton). For a given timed

automatonA = (L, l0, T, I, C, A), let a set of whole states ofA

beS = L × N .

The initial state ofA shall be given as(l0, 0C) ∈ S.

For a transitionl1
a,g,r−→ l2 (∈ T), the following two transitions are

semantically defined. The first one is called an action transition,

while the latter one is called a delay transition.

l1
a,g,r−→ l2, g(ν), I(l2)(r(ν))

(l1, ν)
a⇒ (l2, r(ν))

,
∀d′ <= d I(l1)(ν + d′)

(l1, ν)
d⇒ (l1, ν + d)

For a given timed automatonA , we can introduce a correspond-

ing clock regionCR(A) [4], [5]. In general, a clock region di-

vides a |C|-dimensional Euclidean space into finite points, seg-

ments, and faces. By[u], an element (a region) inCR(A) is de-

noted. For[u] ∈ CR(A), g([u]) and I([u]) represent that any

point in [u] satisfies a guardg and invariantI, respectively. Also

by r([u]), applying clock resettingr onto [u] is denoted, where

r([u]) = [u][x 7→ 0], andx ∈ r.

Definition 2.3 (Region Automaton). A region automatonAr =

(Lr, lr 0, Tr, A) of a given timed automatonA = (L, l0, T, I, C, A)

is defined as follows.

Lr ⊂ L × CR(A), lr 0 = (l0, [0
C]), where[0C] satisfiesI(l0),

Tr ⊂ Lr × A × Lr, Tr consists of

• (l , [u])
a⇒ (l ′, [v]) if (l , u)

d⇒ (l , u′) for d ∈ R>=0 ∧
(l , u′)

a⇒ (l ′, v) for a ∈ A.

There is a bi-simulation equivalence between a timed automaton

A and its region automatonAr [3].

In [6], [7], a data structure DBM (Difference Bound Matrix) is in-

troduced to represent a convex space in|C| -dimensional Euclidean

space, where C is a set of clock variables. It is also represented as

a set of some elements in the clock regionCR(A). A state set of

states of a region automatonAr = (Lr, lr 0, Tr, A), can be repre-

sented in(l , D) = {(l , [u]) | [u] ∈ D} using the corresponding

DBM D. Paper [6] gives operation functions on DBM, such asup,

and and other functions, which represent elapsing time, intersec-

tion of time spaces and so on, respectively. There is a minimum set

of differential inequalities which can represents DBMD [6]. Such

a set is denoted byc(D). c(D) can be obtained by reduction oper-

ations on DBM. A set of every region which satisfies an invariant

I(l) of locationl is denoted by(l , DInv).

Figure 1 General CEGAR Algorithm

Figure 2 Our Proposed Algorithm

3. Algorithm

3. 1 General CEGAR Algorithm

Model abstraction sometimes over-approximates an original

model, which causes spurious counter examples which are not actu-

ally counter examples in the original model. Paper [1] gives an algo-

rithm called CEGAR (Counterexample-Guided Abstraction Refine-

ment). In the algorithm, at the first step (called Initial Abstraction),

it approximates the original model, and the next step, if a spurious

counter example is found in the abstract model, it refines the ab-

stract model as it does not admit the spurious counter example. The

next step is repeated until valid output is obtained. Figure 1 shows

the general flow of the CEGAR algorithm.

3. 2 Our Proposed Algorithm

Our proposed algorithm generates an abstract modelM̂ from a

given timed automatonA by applying an abstraction functionh,

and performs model checking on̂M . If a counter examplêT (rep-

resented as a path on the abstract model) is found while model

checking, it concretizeŝT by applying inverse functionh−1.The

concretized one is a set of paths. We denote it byT (which is a set

of paths onA). At Simulation Step, it checks whether each path

in T is feasible onA or not. If every path inT is infeasible, the

next step shall refine the model so that the counter exampleT̂ be-

comes infeasible. Our algorithm does not directly refineM̂ but it

refinesA and then obtains a new abstract mode by applyingh to

the refined timed automaton. Figure 2 shows flow of our CEGAR

algorithm.

— 2 —

The proposed algorithm checks a propertyAG
W

e∈E ¬e, where

E (⊂ L) of a timed automatonA is a set of error locations of the

target system. The property means there is no path to locations inE

from the initial state. Please note that any counter example of such

a property can be represented in a finite length of sequence without

loops. Therefore, hereafter, we assume that counter examples are

finite sequences without loops.

3. 2. 1 Abstract Model

Definition 3.1 defines the abstraction functionh onLr of a region

automatonAr.

Definition 3.1 (Abstraction Functionh). For a region automaton

Ar = (Lr, lr 0, Tr, A) of a given timed automatonA , an abstrac-

tion functionh : Lr → Ŝ is defined as follows:

• ∀lr i, lr j ∈ Lr. h(lr i) = h(lr j)

⇐⇒ Loc(lr i) = Loc(lr j),

whereLoc : Lr → L is a function which retrieves a location at-

tribute from a state ofAr. The inverse functionh−1 : Ŝ → 2Lr of

h is also defined as in a usual manner.

The abstraction functionh defined in Definition 3.1 maps any

state ofLr which belongs to the same location into the same ab-

stract state. Otherwise they are mapped into the different states.

This means that there is a one-to-one correspondence between the

location set ofA and the abstract state setŜ. Therefore, the ab-

straction functionh can be extended its domain as in Definition 3.2.

Definition 3.2 (Extension of Abstraction Functionh). Abstraction

functionh : L → Ŝ of a timed automatonA = (L, l0, T, I, C, A)

is defined as follows:

• ∀li, lj ∈ L. h(li) = h(lj) ⇐⇒ li = lj .

Similarly, the inverse functionh−1 : Ŝ → L of h is also defined.

Definition 3.3 gives an abstract model̂M of a given timed au-

tomatonA using the abstraction functionh defined in Definition

3.2.

Definition 3.3 (Abstract Model). An abstract modelM̂ =

(Ŝ, ŝ0, →̂) of a given timed automatonA = (L, l0, T, I, C, A) us-

ing the abstraction functionh defined in Definition 3.2 is defined as

follows:

• Ŝ = {h(l) | l ∈ L)},

• ŝ0 = h(l0),

• →̂ = {(l̂1, a, l̂2) | (l1, a, g, r, l2) ∈ T}.

Definition 3.4 (Counter Example). A counter example on̂M is a

sequence of states of̂S. A counter examplêT of lengthn is repre-

sented inT̂ = 〈ŝ0, · · · , ŝn〉.

A set T of a run sequences onA obtained by concertizing a

counter examplêT = 〈ŝ0, · · · , ŝn〉, is defined as follows:

T = {(l0
a1,g1,r1−→ l1

a2,g2,r2−→ · · · an,gn,rn−→ ln)|

(li = h−1(si) for 0 <= i <= n) ∧

((li−1, ai, gi, ri, li) ∈ T for 1 <= i <= n)}.

Abstraction

InputsA , h
{h = abstraction function}
Ŝ := ∅, →̂ := ∅ {M̂ = (Ŝ, ŝ0, →̂)}
foreach l ∈ L do

Ŝ := Ŝ ∪ {h(l)}
end for

ŝ0 := h(l0)

foreach (l1, a, g, r, l2) ∈ T do

→:=→ ∪{(h(l1), h(l2))}
end for

return M̂

Figure 3 Abstraction

Simulation

InputsA , (l0
a1,g1,r1−→ l1

a2,g2,r2−→ · · · an,gn,rn−→ ln(ln = e))

R0 := (l0, D0) {D0 = {0C}}
D := up(D0) {Any elapsing time}
D := and(D, I(l0)) {Add Invariant ofl0}
for i := 1 to n do

Ri :=Reach(A , Ri−1, (li−1, ai, gi, ri, li))

if Ri = ∅ then

return false

end if

end for

return true
Figure 4 Simulation

Reach

InputsA , R = (l , D), (l1, a, g, r, l2)
D := and(D, g) {add guards of transitions}
D := reset(D, r) {reset the clocks}
D := and(D, I(l2)) {add Invariant ofl2}
D := up(D) {Any elapsing time}
D := and(D, I(l2)) {add Invariant ofl2}
return (l2, D)

Figure 5 Reach

3. 2. 2 Initial Abstraction

Initial Abstraction generates an abstract modelM̂ from a timed

automatonA = (L, l0, T, I, C, A) using the abstraction function

h. Figure 3 shows the algorithm of Initial Abstraction.

3. 2. 3 Simulation

For a setT of concretized counter example sequences obtained

from T̂ onM̂ , Simulation performs the algorithm in Fig. 4 on each

sequencet ∈ T . Reachability from the first location oft to the last

location oft is checked in Simulation using a procedure Reach in

Fig. 5. Reach uses some operation functions of DBM. When the

algorithm in Fig. 4 returns false, the counter exampleT̂ is judged

as a spurious counter example.

3. 2. 4 Refinement of Abstract Model

In this step, we have to generate a refined abstract model which

does not admit the spurious counter example (we call it the spurious

CE free model for a given CE). When a counter example is judged

as a spurious counter example, there is a Bad Statel̂b which has

— 3 —

Figure 6 Counter Example

Figure 7 Refined Model

Refinement

InputsAi, h, B1 = (lb, D1), eb = (lprev , a, g, r, lb)

{eb = a transition tolb}
Ai+1 := Ai

Ai+1 := DuplicateState(Ai+1, B) {Duplication of States}
Ai+1 := DuplicateTransition(Ai+1, B, eb)

{Duplication of Transitions}
Ai+1 := RemoveTransition(Ai+1, B) {Removal of Transitions}
M̂i+1 :=Abstraction(Ai+1, h)

return M̂i+1

Figure 8 Refinement

a corresponding state setB1 = (lb, D1) reachable from the initial

state but unreachable tolnext, and another state setB2 = (lb, D2)

unreachable from the initial state but reachable tolnext, are merged

(mapped into the same state) as in Fig. 6.

In general, refinement algorithm should divide statel̂b into more

than two states as stateB1 and stateB2 are mapped into differential

states. Dividing of a state space of a timed automaton usually needs

Subtraction operation of DBM. However, DBM is not closed under

Subtract operation [7], so applying such an approach is difficult.

We proposes another approach, in which it duplicates stateB1

in the concrete model and also performs other transformation on

the concrete model. Applying the abstraction function to the trans-

formed concrete model produces a new refinement abstract model

where a state mapped fromB2 is unreachable (refer in Fig. 7).

The algorithm of Refinement in Fig. 8 consists of three sub algo-

rithms, called duplication of states, duplication of transitions, and

removal of transitions, shown in Fig.9, 10, and 11, respectively.

DuplicateState

InputA , B1 = (lb, D1)

l ′b := newLoc() {Generate a new locationl ′b}
L := L ∪ {l ′b}
I(l ′b) := c(Db) {A set of inequalities representingDb}

Figure 9 Duplication of States

DuplicateTransition

InputsA , B1 = (lb, D1), eb = (lprev , a, g, r, lb)

{eb = a transition tolb}
T := T ∪ {(lprev , a, g, r, l ′b)}

{Duplicate a transitioneb to aBadState}
foreach (l1, a′, g′, r′, l2) ∈ T such thatl1 = lb do

if Reach(A , (lb, Db), (l1, a′, g′, r′, l2)) 6= ∅ then

T := T ∪ {(l ′b, a
′, g′, r′, l2)}

{duplicate transitions fromlb only enable from ((l ′b, Db).)}
end if

end for
Figure 10 Duplication of Transitions

RemoveTransition

InputsA , B1 = (lb, D1), eb = (lprev , a, g, r, lb)

{eb = a transition tolb}
Prev := (lprev , DInv)

{a set of every region satisfying an invariant oflprev}
R :=Reach(A , P rev, eb) {obtain regions oflb reachable fromPrev}
if relation(R, B1) = 〈true, true〉 then

{whenR = B, relation(R, B1) returns〈 true, true〉.}
T := T \ {(l , a, g, r, lb)}

end if
Figure 11 Removal of Transitions

Here, we gives definitions of states to duplicate, transitions to du-

plicate, and transitions to remove.

Definition 3.5 (States to Duplicate). LetB1 = (lb, D1) and dupli-

cation of a locationlb be l ′b. A set of states to duplicate, of a region

automaton is defined as(l ′b, D1).

Duplication of transition duplicates the following kinds of transi-

tions: “transitions fromlprev to lb,” and “ transitions not only from

lb but also enable from(lb, D1).”

Definition 3.6 (Transitions to Duplicate). For a region automaton

Ar = (Lr, lr 0, Tr, A), B1 = (lb, D1), states to duplicate(l ′b, D1),

and a previous locationlprev of a locationlb in a counter example,

transitions to duplicate of a region automaton is defined as follows:

Tr d = {(lprev, [v])
a⇒ (l ′b, [v

′]) |∀(lprev, [v]) ∈ (lprev, DInv).

∀(lb, [v
′]) ∈ (lb, D1).(lprev, [v])

a⇒ (lb, [v
′]) ∈ Tr} ∪ {(l ′b, [v])

a⇒
(l , [v′]) | ∀(lb, [v]) ∈ (lb, D1). ∀(l , [v′]) ∈ Lr. (lb, [v])

a⇒
(l , [v′]) ∈ Tr}.

Definition 3.7 (Transitions to Remove). For a region automaton

Ar = (Lr, lr 0, Tr, A), B1 = (lb, Dd), states to duplicate(l ′b, D1),

and a previous locationlprev of a location in a counter example,

transitions to remove of a region automaton is defined as follows:

Tr r = {(lprev, [v])
a⇒ (lb, [v

′]) |∀(lprev, [v]) ∈ (lprev, DInv).

— 4 —

Figure 12 Relations among models

(lprev, [v])
a⇒ (lb, [v

′]) ∈ Tr}.

The algorithm of Removal of Transitions removes transitions

only when a set of states reachable fromlprev is the same as a

set (lb, D1) of Bad States. Therefore, for every(lprev, [v])
a⇒

(lb, [v
′]) ∈ Tr r, (lb, [v

′]) ∈ (lb, D1) holds. It means that every

transition inTr r has its duplication inTr d.

4. Correctness Proof

As mentioned in Section3., the proposed algorithm checks a prop-

ertyAG
W

e∈E ¬e, whereE (⊂ L) of a timed automatonA is a set

of error locations of the target system.

Paper [2] gives a theorem on a conservative class of abstractions

which attempts to preserve semantics of automata against state re-

ductions under the condition that it checks only a propertyAG p for

a propositionp.

From the theorem, we can derive the following theorem.

Theorem 4.1. For a timed automatonA and a setE of error loca-

tions. Let the abstract model and a set of error states of the abstract

model beM̂andÊ = {h(e) | e ∈ E}, respectively. The following

statement always holds.

M̂ |= AG
_

ê∈Ê

¬ê ⇒ A |= AG
_

e∈E

¬e (1)

Proof. Let a concrete model and its abstract model abstracted by

h beM andM̂ , respectively. For a propositionp, if an abstraction

functionh satisfies the following for everys ∈ S:

h(s) |= p ⇒ s |= p (2)

thenM̂ |= AG p ⇒ M |= AG p holds from Theorem 1 in Paper [2].

Here we assume thatp =
W

ê∈Ê ¬ê for M̂ , andp =
W

e∈E ¬e

for A . In addition, an abstraction function defined in Definition 3.2

maps each location inA to a stateM̂ and the mapping is one-to-

one mapping. Thus,h(l) = ê ⇐⇒ l = e holds. As a result,

the abstraction functionh satisfies the statement 2; Theorem 4.1 is

proved.

Lemma 4.1 (Bi-simulation equivalence among timed automata).

Let denote byAi andAi+1 a timed automaton before applyingi+1-

th application of Refinement and one after applyingi + 1-th appli-

cation of Refinement, respectively.Ai is bi-simulation equivalent to

Ai+1.

Proof. Let denote byAr i andAr i+1 their region automaton for

Ai andAi+1, respectively. In a similar way,A 1
i , A 1

r i，A 2
i , A 2

r i，

A 3
i (= Ai+1), A 3

r i(= Ar i+1) are defined, where the superfix

means a sub algorithm of the Refinement. Therefore the superfixes

1, 2, and3 stand for after applying Duplication of States, Duplica-

tion of Transitions, and Removal of Transition, respectively.

We will prove thatAi is bi-simulation equivalent toAi+1 by

proving bi-simulation equivalence over the corresponding region

automata. Forlb, let l′b be a duplicated state. For a setD1 of regions

which associates to a location to duplicate, a set of states inAr will

be(lb, D1)，and(l ′b, D1). Let Tr d andTr r be a set of transitions

be added inAr and that to be removed inAr, respectively.

i) Ar i andA 1
r i

Let’s consider Ar i = (Lr i, lr i 0, Tr i, Ai) and A 1
r i =

(L1
r i, l

1
r i 0, T

1
r i, A

1
i). From the assumption,lr i 0 = l1r i 0，Tr i =

T 1
r i，Ai = A1

i andL1
r i = Lr i ∪ (l ′b, D1) hold.

The initial statelr i 0 = l1r i 0，andTr i = T 1
r i. So, there is no

transition to the duplicated state set(l ′b, D1) in A 1
r i. Thus, there is

bi-simulation equivalence betweenAr i andA 1
r i.

ii) A 1
r i andA 2

r i

For A 2
r i = (L2

r i, l
2
r i 0, T

2
r i, A

2
i), obviouslyL2

r i = L1
r i and

l2r i 0 = l1r i 0，A2
i = A1

i hold. T 2
r i = T 1

r i ∪ Tr d also holds.

We show that for every[v] ∈ D1, a state(lb, [v]) and a state

(l ′b, [v]) have a bi-simulation equivalence relation. When there ex-

ists a transition(lb, [v])
a⇒ (l , [v′]) , as defined in definition 3.6, the

corresponding transition(lb′ , [v]) ⇒ (l , [v′]) is generated. Also,

when there exists a transition(l ′b, [v])
a⇒ (l , [v′]), there must be an

original transition(lb, [v])
a⇒ (l , [v′]). Thus, we proved the first

goal.

Thus, the concrete bi-simulation equivalence relation∼ between

l1r i ∈ L1
r i andl2r i ∈ L2

r i is defined as follows:

l1r i ∼ l2r i ⇐⇒ l1r i = l2r i or

l2r i is duplication of l1r i (3)

For the initial states,l1r i 0 ∼ l2r i 0 holds. A transition setT 1
r i sat-

isfiesT 1
r i ⊂ T 2

r i. For each transition inT 1
r i, thus, there is a corre-

sponding transition inT 2
r i. Suppose thatl1r i ∼ l2r i andl1r i

a⇒ l1′r i.

Then there exists a transitionl2r i
a⇒ l2′r i andl1′r i ∼ l2′r i. Let consider

converse. For each transition inT 2
r i, there is the corresponding tran-

sition in T 1
r i. Please note that for a transition inTr d, there exists

the original transition. Suppose thatl1r i ∼ l2r i andl2r i
a⇒ l2′. Then

there exists a transitionl1r i
a⇒ l1′r i andl1′r i ∼ l2′r i.

Therefore,A 1
r i andA 2

r i are bi-simulation equivalent.

iii) A 2
r i andA 3

r i

— 5 —

Let’s considerA 3
r i = (L3

r i, l
3
r i 0, T

3
r i, A

3
i). ObviouslyL3

r i =

L2
r i, l3r i 0 = l2r i 0 andA3

i = A2
i hold. T 3

r i = T 1
r i \ Tr r also

holds.

The case when the algorithm in Fig. 11 does not perform any re-

moval of transitions is trivial.A 2
r i is equivalent toA 3

r i, thus also

holds the relation∼.

Otherwise, in other words, in the case of removal of a transi-

tion, from Definition 3.7, each element inTr r has its duplication in

Tr d. Thus, even if the transition is removed,∼ is also preserved

between(lprev, [v]) ∈ (lprev, DInv) of A 2
r i and (lprev, [v]) ∈

(lprev, DInv) of A 3
r i. Thus each state ofL2

r i and that ofL3
r i sat-

isfy the relation defined in (3). In a similar way of case ii),A 2
r i and

A 3
r i are bi-simulation equivalent.

From the facts i), ii) and iii), we can conclude thatAr i andAr i

are bi-simulation equivalent.

Lemma 4.2. At mostn times repetition of Refinement yields the

spurious CE free model, wheren is the length of the spurious

counter example.

Proof. Let A , Ar andM̂ be a timed automaton, its region au-

tomaton and its abstract model, respectively. For a counter example

T̂ = 〈ŝ0, ŝ1, · · · , ŝn〉, whereŝn is an abstract state obtained by

reducing the error location, let consider one of the corresponding

sequencest = (l0
a1,g1,r1−→ l1

a2,g2,r2−→ · · · an,gn,rn−→ ln) to T̂ on

A , whereln is error location. LetRi be a set of reachablei-th

states along with the sequencet, andURi be that of unreachable

(= (li, DInv) \ Ri).

We prove that “for sub-sequence starting froml0 to lk(1 <= k <=

n) of t, by applying at mostk times repetition of Refinement yields

that it is reachable to an abstract state corresponding toRk but un-

reachable to an abstract state corresponding toURk.” (*)

Let duplicated location fromRi be l ′i . Let the abstract state ofl ′i

be ŝ′i(= h(l ′i)).

i) k = 1

R0 = (l0, DInv) holds. A set of reachable states from(l0, DInv)

through a transition(l0, a1, g1, r1, l1) is in factR1 from the defini-

tion of Ri. Therefore, Refinement duplicatesR1, which is a loca-

tion l ′1 and Refinement also removes a transition froml0 to l1. In the

obtained abstract model, it is reachable to onlyŝ′1 corresponding to

R1, and it is unreachable to a stateh(l1) corresponding toUR1.

ii) k >= 2

As inductive assumption, we assume that at mostk−1 times rep-

etition of Refinement yields that it is reachable to an abstract state

corresponding toRk−1 but unreachable to an abstract state corre-

sponding toURk−1.

Let R′
k(⊃=Rk) be a set of reachable states from(lk−1, DInv). If

Rk = R′
k, then in a similar way ask = 1, applying one more

Refinement leads to the goal.

Let consider whenRk ⊂ R′
k holds. A transition fromlk−1 to lk

cannot be removed becauseURk is reachable from(lk−1, DInv).

In such a case, from the inductive assumption, we can obtain the

refined abstract model, in which an abstract state corresponding to

Rk−1 is reachable butURk−1 is not. Let l ′k−1 and l ′k be dupli-

cated locations ofRk−1 in k − 1-th time-Refinement andRk in

k-th time-Refinement, respectively. Adding transition froml ′k−1 to

l ′k improves the model so that it is reachable to only a state corre-

sponding toRk.

From (i) and (ii), statement (*) is proved.

If the counter example is spurious, it is unreachable fromRn−1

to error state(ln, DInv) in M . Similarly, in M̂ , it is unreachable

from ŝ′n−1 toŝn. Thus the lemma is proved.

Theorem 4.2 (Correctness). If a counter example is spurious, at

mostn times repetition of Refinement in Fig. 8 yields a spurious CE

free model.

Proof. From Lemma 4.1, Refinement preserves bi-simulation

equivalence. From Lemma 4.2, at mostn times repetition of Re-

finement yields a refined spurious CE free model.

5. Conclusion

This paper gives a formal description and correctness proof of our

proposed CEGAR algorithm in [8].

The future work will be extension of our algorithm to handle in-

teger variables used in UPPAAL timed automata.

Acknowledgment

This work is being conducted as a part of Stage Project, the De-

velopment of Next Generation IT Infrastructure, supported by Min-

istry of Education, Culture, Sports, Science and Technology.

References
[1] E M. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. Helmut:

“Counterexample-guided Abstraction Refinement,” In Proc. of the
12th Int. Conf. on Computer Aided Verification, vol.1855, pp.154-
169, July, 2000.

[2] E M. Clarke, A, Gupta, J. Kukula, and O. Strichman: “SAT based
Abstraction-Refinement using ILP and Machine Learning Tech-
niques,” In Proc. of the 14th Int. Conf. on Computer Aided Verifi-
cation, vol.2404, pp.695-709, July, 2002.

[3] E M. Clarke, O. Grumberg, D A. Peled: “Model Checking,” MIT
Press, 2000.

[4] R. Alur: “Techniques for Automatic Verification of Real-Time Sys-
tems,” PhD thesis, Stanford University, 1991.

[5] R. Alur, C. Courcoubetis, and D. L. Dill: “Model-checking for real-
time systems,” In Proc. of the 5th Annual Symposium on Logic in
Computer Science, pp.414-425, IEEE Computer Society Press, 1990.

[6] J. Bengtsson, and W .Yi: “Timed Automata: Semantics, Algorithms
and Tools,” In Lectures on Concurrency and Petri Nets, vol.3098,
pp.87-124, 2004.

[7] A. David, J. Hakansson, K G. Larsen, and P. pettersson: “Model
Checking Timed Automata with Priorities using DBM Subtraction,”
In Proc. of the 4th Int. Conf. on Formal Modelling and Analysis of
Timed Systems, pp.128-142, 2002

[8] T. Nagaoka, K. Okano, and S. Kusumoto: “Abstraction of Extended
Timed Automata for UPPAAL Based on Counterexample-Guided
Abstraction Refinement Loop (in Japanese),” IEICE Technical Re-
port, Vol.107，No.176，pp.77-82，2007.

— 6 —

