o000 0OO0o0o0O0oooo oooo
THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE.
INFORMATION AND COMMUNICATION ENGINEERS

gobgbobgoboobtuobouobuobuooboboboboon

oo oot oo oot oo oof

t00o00oo00oogooooog
05608530 00000000 1-3

o000 ODO0o0ooobbO0o0ooobobOobo0o0ooobO0oo0oobbOobo0oooobObOboUoooobbOoboooo
000000000000 000000000O00noOn CEGAR (CounterExample-Guided Abstraction Refinement)
goodooooooooobbobobobbbdoooooob bbb obobDbooboooOooo
gooobbobbooooobobbobbodooooobbbbooooooboboooooo

00000 O0000DOO00D0O0O0O0O00O0O0O0O0O00OO000CEGAR

Abstraction of Timed Automata Based on Counterexample-Guided Abstraction

Refinement Loop

Takeshi NAGAOKA, Kozo OKANO', and Shinji KUSUMOTO

1 Graduate School of Information Science and Technology, Osaka University
Machikane-yama 1-3, Toyonaka City, Osaka, 560—-8531 Japan

Abstract We have proposed a method of model abstraction for timed automata. The proposed method is based on CE
(CounterExample-Guided Abstraction Refinement) loop which automatically refines an abstract model using counter e
ples. Our algorithm has some features such as refinements are performed indirectly through transformation of the or
timed automaton. This paper gives formal descriptions of the algorithm and the correctness proof of the algorithm.

Key words Model Checking, Timed Automaton, Model Abstraction, CEGAR

. free.
1. Introduction : :
The rest of the paper is organized as follows. In Sec. 2., some
This paper gives correctness proof of our algorithm proposedlefinitions are described. Sec. 3. gives our CEGAR algorithm. Sec.
in[8]. The algorithm is CEGAR[1] based algorithm of abstract 4. proves the correctness of the algorithm. Sec. 5. concludes the
model refinement used for model checking on timed automata. paper.
A general CEGAR algorithm consists of several steps. First, it .. .
- _ _ Preliminaries
abstracts the original model (the obtained model is called abstract
model) and performs model checking on the abstract model. Next, In this Section, we give definitions of a timed automaton, a region
if a counter example (CE) is found, it checks the counter examplautomaton which specifies whole states of a timed automaton with
on the concrete model. If the CE is spurious, it refines the abstradinite clock regions, and others.
model. The last step is repeated until the valid output is obtained. Let ¢(C) be a set of whole differential inequalities of 2 clocks
In general, most CEGAR based algorithms [1], [2] obtain refinedover a finite clock seC. A subset ofc(C) is called clock con-
abstract models from the previous abstract models by modifyingtraints.
some transformations. In our algorithm, however, the refined model)]]
. Definition 2.1 (Timed Automaton) A timed automator? is a 6-
is obtained indirectly; we transform the original timed automa-
))) tuple(L, b, T,I,C, A), where
ton preserving the equivalence and from it we generate an abstract o] o
o . C': afinite set of clocksA : afinite set of actions[. : a finite set of
model by eliminating clock attributes.] o) o
_ _ o _locations;ly € L :aninitial location; T C L x A x 2°(9) x % x L;
This paper proves that the transformation preserves bi-simulation

. i , . where,2°(%) is a set of clock constraints, called guard®, = 2¢
equivalence and also the refined abstract model is the spurious CE

- a set of clocks to reset; anl C (L — 2°“)) : a mapping from e R

locations to clock constraints, called location invariants. (concrete) abstract
model _ model
. . a,g,r |n|t|a| Model S ificati
A transitiont = ({ l T is denoted b &7 1. . pecification
(17517:9:7"» 2) € . Vi = 2 Checkmg is satisfied
Amapv : C — Ry is called a clock assignment. We can ex- [specification
tend the domain af into a set ofC as follows:v € Rgo. We define W [counterexample]
- . model
= R>o. =
(v+d)(z) = v(z) +dford € Rzo. r(v) = v[z — 0],z € ris (Refinement) <= (Simulation |
also defined for € 2¢. By N, a set of whole- is denoted. Specification

is unsatisfied
Definition 2.2 (Semantics of Timed Automatan)or a given timed

automatoneZ = (L, l,T,I,C, A), let a set of whole states of Figure 1 General CEGAR Algorithm
beS =L x N.

The initial state ofe shall be given agly, 0°) € S. A A el el e 2.model checking
For a transitionl, 22 I, (e T), the following two transitions are Q h —_ true
semantically defined. The first one is called an action transition, A, 4’@ q m

while the latter one is called a delay transition.

I La l27 ()71(12)(7’(1/)) Vd/ §d I(ll)(y+d/) 4ref|nement 3.simulation

() 2 (2 @) (,0) & (v +d) Q " we ¢ [[ce
For a given timed automata#’, we can introduce a correspond- ——or 7|
Ttransform false simulate H1T

ing clock regionC'R(<7)[4],[5]. In general, a clock region di-
_ — _ S o o

vides a|C|-dimensional Euclidean space into finite points, seg-

ments, and faces. By, an element (a region) i€’ R(</) is de-

Figure 2 Our Proposed Algorithm
noted. For[u] € CR(&), g([u]) and I([u]) represent that any

point in [u] satisfies a guarg and invariant/, respectively. Also
by r([u]), applying clock resetting: onto [u] is denoted, where 3. Algorithm

= d .
r(lu]) = [u]lz — 0], andz € 7 3.1 General CEGAR Algorithm

Definition 2.3 (Region Automaton) A region automatond, = Model abstraction sometimes over-approximates an original
(Ly, 10, T, A) of agiventimed automatow’ = (L, by, T, I, C, A) model, which causes spurious counter examples which are not actu
is defined as follows. ally counter examples in the original model. Paper [1] gives an algo-
L. C L x CR(«), I o = (I, [0°]), where[0°] satisfiesI(l,), rithm called CEGAR (Counterexample-Guided Abstraction Refine-
T. C L, x A X Ly, T, consists of ment). In the algorithm, at the first step (called Initial Abstraction),
o (Lu) S (', [])if (I,u) 4 (I,u') ford € Rxo A it approximates the original model, and the next step, if a spurious
(1,u) & (I',v) fora € A. counter example is found in the abstract model, it refines the ab-
stract model as it does not admit the spurious counter example. The
There is a bi-simulation equivalence between a timed automaton
next step is repeated until valid output is obtained. Figure 1 shows
</ and its region automata#;. [3].
In[6], [7], a data structure DBM (Difference Bound Matrix) is in-

troduced to represent a convex spacgih-dimensional Euclidean

the general flow of the CEGAR algorithm.
3.2 Our Proposed Algorithm

Our proposed algorithm generates an abstract mbfidiom a

space, where C is a set of clock variables. It is also represented as 3R/en timed automatons by applying an abstraction functidn

a set of some elements in the clock reg@®(<). A state set of and performs model checking i If a counter examplé” (rep-

states of a region automate#. = (L., !, 0,7r, A), can be repre-
sented in(l, D) = {(I,[u]) | [u] € D} using the corresponding

resented as a path on the abstract model) is found while model

checking, it concretize§’ by applying inverse functioh~'.The

DBM D. Paper[6] gives operation functions on DBM, suchias concretized one is a set of paths. We denote iThvhich is a set

and and other functions, which represent elapsing time, intersec- of paths on7). At Simulation Step, it checks whether each path

tion of time spaces and so on, respectively. There is a minimum set % 7 is feasible one’ or not. If every path irT is infeasible, the

of differential inequalities which can represents DBM6]. Such next step shall refine the model so that the counter exaffifie-

a setis denoted by(D). ¢(D) can be obtained by reduction oper- comes infeasible. Our algorithm does not directly refidebut it

ations on DBM. A set of every region which satisfies an invariant
I(1) of location! is denoted by{!, Dyy.).

refines< and then obtains a new abstract mode by applyirtg
the refined timed automaton. Figure 2 shows flow of our CEGAR
algorithm.

The proposed algorithm checks a propenty \/, ., —e, where
E (C L) of atimed automatony is a set of error locations of the

target system. The property means there is no path to locatidns in
from the initial state. Please note that any counter example of such

Abstraction
Inputs.e/, h

{h = abstraction functioh

S:=0, & :=0{M=(S,30,>)}
foreachl € L do

a property can be represented in a finite length of sequence without ¢ ._ ¢, {h(1)}

loops. Therefore, hereafter, we assume that counter examples arend for

finite sequences without loops.

3.2.1 Abstract Model

Definition 3.1 defines the abstraction functioon L, of a region
automatong,..

Definition 3.1 (Abstraction Functiorh). For a region automaton
. = (Ly, 0, Tr, A) of a given timed automatow, an abstrac-
tion functionk : L, — § is defined as follows:
® Vi l; €Ly h(lrs)=h(l;)

<= Loc(ly ;) = Loc(l ;),
where Loc : L, — L is a function which retrieves a location at-
tribute from a state of#,.. The inverse functioh ™' : § — 2 of
h is also defined as in a usual manner.

The abstraction functioth defined in Definition 3.1 maps any

30 := h(l)
foreach (I1,a, g, 7, 12) € T do
—i=— U{(h(h), h(I2))}

end for
return N
Figure 3 Abstraction
Simulation
Inputs.o/, (lo 5" 1y "I IR g (1 = €))

Ro := (o, Do) {Do = {0°}}
D := up(Do) {Any elapsing tim¢
D := and(D, I(lp)) {Add Invariant ofio }
for i := 1ton do
R; :=Reaclie’, Ri_1, (Li—1,ai,9i,7i, 1))
if R; = () then
return false

state of L,. which belongs to the same location into the same ab- end if

stract state. Otherwise they are mapped into the different states.end for

This means that there is a one-to-one correspondence between th&eturn true

location set ofe7 and the abstract state s&t Therefore, the ab-

Figure 4 Simulation

straction functiorh can be extended its domain as in Definition 3.2. Rzach

Definition 3.2 (Extension of Abstraction Functiol). Abstraction
functionh : L — S of a timed automatony = (Lylo, T,1,C, A)
is defined as follows:
e Vi, e L. hlk)=h{) < L=1.
Similarly, the inverse functioh—" : S — L of h is also defined.
Definition 3.3 gives an abstract mod&l of a given timed au-

tomaton using the abstraction functiol defined in Definition
3.2.

Definition 3.3 (Abstract Model) An abstract modelM =
(5’, 30, =) of a given timed automatow’ = (L, lp, T, I,C, A) us-
ing the abstraction functioh defined in Definition 3.2 is defined as

follows:
o S={n()|leL)}
° SA() = h(lo),

o 5= {(lAl,Ch l;) | (lha,gﬂ“, l2) € T}

Definition 3.4 (Counter Example) A counter example of/ is a
sequence of states §f A counter examplé’ of lengthn is repre-
sented inl’ = (3, - , 4,).

A setT of a run sequences o® obtained by concertizing a

counter exampld” = (3o, - - - , 3,), is defined as follows:
a1,91,71 a2,92,72 an,9n,Tn
T={(= h =" "=8" L)

(li=h""(s;)for0<i<n) A

((Li_l,ai,gi,ri,li) €T for1 << n)}

Inputs<«/, R = (I, D), (L, a,g,m,b2)

:= and(D, g) {add guards of transitios
D := reset(D,r) {reset the clocks

D := and(D, I(l2)) {add Invariant ofx }

D := up(D) {Any elapsing timé

D := and(D, I(l2)) {add Invariant of; }
return (l2, D)

)

Figure 5 Reach

3.2.2 |Initial Abstraction

Initial Abstraction generates an abstract mosiglfrom a timed
automatone = (L, l, T, 1,C, A) using the abstraction function
h. Figure 3 shows the algorithm of Initial Abstraction.

3.2.3 Simulation

For a setT" of concretized counter example sequences obtained
from 7" on M, Simulation performs the algorithm in Fig. 4 on each
sequence € T. Reachability from the first location @fto the last
location oft is checked in Simulation using a procedure Reach in
Fig. 5. Reach uses some operation functions of DBM. When the
algorithm in Fig. 4 returns false, the counter exaniplés judged
as a spurious counter example.

3.2.4 Refinement of Abstract Model

In this step, we have to generate a refined abstract model which
does not admit the spurious counter example (we call it the spurious
CE free model for a given CE). When a counter example is judged
as a spurious counter example, there is a Bad Siathich has

—3_

Path of the ~ Bad Z\ i‘
Abstract oy Otate next
Model s -4’6‘> O nan
Corresponding l lb /
path of the Timed preve o next
Automaton “mn ») b () ;Q -
Transition Relation —
in Region @ @ B
Automaton LR L :[. 1
be | ° °
® (] > Q@
s, le 1
Figure 6 Counter Example
Path of the [lml
Abstract ’
Model

Corresponding
path of the Timed

next

Automaton
1
Transition Relation
in Region
Automaton ®
> @
[}
Figure 7 Refined Model
Refinement

Inputs.«;, h, By = (Ip, D1), e = (lprev,a, 9,7, 1)
{e, = atransition tal }
oy =
o711 := DuplicateState«; 1 1, B) {Duplication of Statep
of;+1 := DuplicateTransitiof\%; . 1, B, ep)
{Duplication of Transition}
;41 = RemoveTransitiof7 1, B) {Removal of Transitions
M1 :=Abstractior{«7 ; 1, h)
return N

Figure 8 Refinement
a corresponding state sBy = (I, D1) reachable from the initial
state but unreachable tg..:, and another state s& = (i, D2)
unreachable from the initial state but reachablé,tg;, are merged
(mapped into the same state) as in Fig. 6.

In general, refinement algorithm should divide stbt'mto more
than two states as staf® and stateB, are mapped into differential

DuplicateState

Inpute/, B1 = (4, D1)
Iy := newLoc() {Generate a new locatidf}
L:=LU{l/}
I(1)) := c(Dy) {A set of inequalities representirgy }

Figure 9 Duplication of States

Duplicate Transition
Inputs%, Bl = (lb, Dl), ey = (lprev,a, g,7, lb)
{ep, = atransition tal, }
T :=TU{(lprev,a,g,7, 1)}
{Duplicate a transitior;, to a BadState}
foreach (I1,a’,g’,r’", l2) € T such that; = I, do
if Reaclf <, (ly, Dy), (l,a’,¢’,7",1a)) # 0 then
T:=TU{(l,d,q 7)}
{duplicate transitions fron, only enable from((;, D;).)}

end if
end for
Figure 10 Duplication of Transitions
Remove Transition

Inputs«/, B1 = (lb7 D1)7 €p = (lpT‘€U7avg7 T, lb)
{e, = atransition tal, }

Prev := (lprev, Dinv)
{a set of every region satisfying an invariantgfe., }
R :=Reacli«/, Prev, e},) {obtain regions of;, reachable fronPrev}
if relation(R, B1) = (true, true) then
{whenR = B, relation(R, B1) returns(true, true).}
T:=T\{(l,a,g,7,)}
end if

Figure 11 Removal of Transitions

Here, we gives definitions of states to duplicate, transitions to du-
plicate, and transitions to remove.

Definition 3.5 (States to Duplicate)Let B1 = (%, D1) and dupli-
cation of a location, bel;. A set of states to duplicate, of a region
automaton is defined 4%, D1).

Duplication of transition duplicates the following kinds of transi-
tions: “transitions fronv,,..., to ,,” and “ transitions not only from
l» but also enable fron(iy, D1).”

Definition 3.6 (Transitions to Duplicate) For a region automaton
oy = (L, ly 0, Ty, A), B1 = (I, D1), states to duplicatél}, D1),

states. Dividing of a state space of a timed automaton usually needgd a previous locatiof,...., of a location/, in a counter example,
Subtraction operation of DBM. However, DBM is not closed undertransitions to duplicate of a region automaton is defined as follows:
Subtract operation[7], so applying such an approach is difficult. 7. ; = {(Iprew, [v]) = (&, [v']) IV(lprews [v]) € (lprews Dinw)-

We proposes another approach, in which it duplicates date V(ly, [v']) € (I, D1).(bprew, [v]) = (b, [v']) € T} U {(¥, [v]) =
in the concrete model and also performs other transformation o, [v']) | V(I,[v]) € (&, D1). Y(I,[V']) € L. (b,[v]) =
the concrete model. Applying the abstraction function to the trans;, [v]) € Ty}

formed concrete model produces a new refinement abstract model . _
. - Definition 3.7 (Transitions to Remove)For a region automaton
where a state mapped froBY, is unreachable (refer in Fig. 7). P I T A B ' D dupli v D
) . - . = Ly, b0, T, A), By = (Iy, , States to duplicatél/, ,
The algorithm of Refinement in Fig. 8 consists of three sub algo- (lr 0)_ 1= (b, Da) o plicatg), D1)
dand a previous locatior,,, of a location in a counter example,

transitions to remove of a region automaton is defined as follows:
T’“ = {(lp?“mn [’U]) :¢1> (lb7 [U/D ‘V(lprev: [UD S (lprev7DInv)~

rithms, called duplication of states, duplication of transitions, an
removal of transitions, shown in Fig.9, 10, and 11, respectively.

—4—

duplicate duplicate remove Lemma 4.1 (Bi-simulation equivalence among timed automata)

State Transition Transition Let denote by, and.«7 1 a timed automaton before applyiig 1-
Timed L . , .
Automaton @ — th application of Refinement and one after applying 1-th appli-
T i i cation of Refinement, respectively; is bi-simulation equivalent to
1.
A ~~ ~ ~
Region
Automaton @ ‘ - <) - @ Proof. Let denote by, ; and.«. ;11 their region automaton for
h h of; and.e; 1, respectively. In a similar wayyz', «7},0 o772, <72,0
Abstract refine A A3 (= i), H2;(= o i41) are defined, where the superfix
Model > M... means a sub algorithm of the Refinement. Therefore the superfixes

i . 1, 2, and3 stand for after applying Duplication of States, Duplica-
Figure 12 Relations among models
tion of Transitions, and Removal of Transition, respectively.
We will prove that.s; is bi-simulation equivalent ta#; 1 by

a /
(borev, [v]) = (b, [v']) € Tr }- proving bi-simulation equivalence over the corresponding region
, . .
The algorithm of Removal of Transitions removes transitions@utomata. Fok, letl, be a duplicated state. For a 9 of regions
which associates to a location to duplicate, a set of states wwill
be (I, D1)0 and (i, D1). Let T, 4 andT. , be a set of transitions

be added in#. and that to be removed i, respectively.

only when a set of states reachable frégn., is the same as a
set (I,, D1) of Bad States. Therefore, for evet¥prco, [v]) =
(b, [v']) € Trr, (b, [v']) € (b, D1) holds. It means that every
transition inT'. ,- has its duplication ifT;. 4. i) o ; and};
Lets consider.; = (L.i,b-i0,Tri,A;) and o}, =
(LY, 1*; 0, T, A}). From the assumptiot, ; o = I} ; o0 Ty ; =
As mentioned in Section3., the proposed algorithm checks a propt, ;0 A; = Aj andL} ; = L, ; U (I}, D1) hold.
ertyAG \/,_ —e, whereE (C L) of atimed automator? is a set The initial staté. ; o = I} ; oJandT,; = T,';. So, there is no
of error locations of the target system. transition to the duplicated state €&, D1) in <7*;. Thus, there is
Paper [2] gives a theorem on a conservative class of abstractiotg-simulation equivalence betwee#. ; and.7,' ;.

which attempts to preserve semantics of automata against state fi§- 7!, and.«/?,

4. Correctness Proof

ductions under the condition that it checks only a propgéty for Forer?, = (L%,,12,0,T2,;, A7), obviouslyL?, = L}, and
a propositiorp. 2,0=1',0A% = Al hold. T2, = T, U T’ 4 also holds.
From the theorem, we can derive the following theorem. We show that for everyu] € D;, a state(ly, [v]) and a state

(I;, [v]) have a bi-simulation equivalence relation. When there ex-

. . . a . " . finiti 6.th
tions. Let the abstract model and a set of error states of the abstrac'f'ts atransitior(h, [v]) = (1, [v]) , as defined in definition 3.6, the
corresponding transitiofl, [v]) = (I, [v]) is generated. Also,

Theorem 4.1. For a timed automator7and a setE of error loca-

model beMand E = {h(e) | e € E}, respectively. The following

when there exists a transiti = (1, [v']), there must be an
statement always holds. @i, [v]) = (I, [v'])

original transition(l, [v]) = (I, [v']). Thus, we proved the first

MpEac \/ ~¢ = a6 \/ —e @ goal.
ek cel Thus, the concrete bi-simulation equivalence relatiobetween
Proof. Let a concrete model and its abstract model abstracted by i € Lr ; andi?; € L? ; is defined as follows:
h be M and M, respectively. For a propositign if an abstraction Boni?, — IM=1,0r
function h satisfies the following for every € S: 5 . o S
[/ ; is duplication of I 3)
hs)Ep=skp @ For the initial statesl,! ; , ~ 12, , holds. A transition sef’! ; sat-

R . 1 2 S . i
thenM k= AG p = M k= AG p holds from Theorem 1 in Paper[2]. isfiesT, ; C T7;. For each transition iff’. ;, thus, there is a corre

N H it A2 1-~2. 1 & g17
Here we assume that=\/,_, —é for A7, andp = \/_,. —e sponding transition il ;. Suppose that. ; ~ 17, andi.; = I.';.

H ' aQ 2/ 1s 27 H
for <. In addition, an abstraction function defined in Definition 3.2 Then there exists a transitid; = 1", andL.'; ~ L';. Let consider

maps each location i/ to a statell and the mapping is one-to- converse. For each transitiondit ;, there is the corresponding tran-

. . .
one mapping. Thusi(l) — & I = ¢ holds. As a result, sition inT. ;. Please note that for a transitionTi 4, there exists

i i 2 2 & g2
the abstraction functioh satisfies the statement 2; Theorem 4.1 isthe original transition. Suppose that, ~ I;'; andZ;; = I*'. Then

H 'Y aQ 1r 17 2/
proved. 0 there exists a transitioll ; = 1Y, andl!; ~ 1%;.

Therefore, !, and.«7?; are bi-simulation equivalent.

i) 72, andeZ?,

Let's considers®, = (L2 ,,13,,T2,;, A?). ObviouslyL?, = cannot be removed because®;, is reachable fronflx_1, Diny).
L2, 13,0 =1%0andA? = A? hold. T2, = T}, \ T~ also In such a case, from the inductive assumption, we can obtain the
holds. refined abstract model, in which an abstract state corresponding tc
The case when the algorithm in Fig. 11 does not perform any reRy_1 is reachable but/ R,_1 is not. Letl;_; andl, be dupli-
moval of transitions is trivial.«7?; is equivalent tae2;, thus also cated locations of?,—; in k — 1-th time-Refinement and;, in
holds the relation-. k-th time-Refinement, respectively. Adding transition fr¢m, to
Otherwise, in other words, in the case of removal of a transi-;, improves the model so that it is reachable to only a state corre-
tion, from Definition 3.7, each element . - has its duplication in ~ sponding toRy..
T, 4. Thus, even if the transition is removes, is also preserved From (i) and (ii), statement (*) is proved.

between (e, [V]) € (lrev, Diny) Of #2; and (lpreo, [v]) € If the counter example is spurious, it is unreachable fi@m ;
(prew, Diny) Of 73,. Thus each state df? ; and that ofZ? ; sat- to error state(l,, Drn.) in M. Similarly, in M, it is unreachable
isfy the relation defined in (3). In a similar way of caseii}?, and from §'n_1 t0%,. Thus the lemma is proved. O

73 ; are bi-simulation equivalent. _ _
o Theorem 4.2 (Correctness) If a counter example is spurious, at
From the facts i), ii) and iii), we can conclude that ; and.«7, ;) -) o _ .
o) . mostn times repetition of Refinement in Fig. 8 yields a spurious CE
are bi-simulation equivalent.
free model.

Lemma 4.2. At mostn times repetition of Refinement yields the . L .
. . . Proof. From Lemma 4.1, Refinement preserves bi-simulation
spurious CE free model, where is the length of the spurious] . -
equivalence. From Lemma 4.2, at mastimes repetition of Re-
counter example.) . .)
finement yields a refined spurious CE free model. O

Proof. Let <7, /. and M be a timed automaton, its region au-
tomaton and its abstract model, respectively. For a counter example 5. Conclusion

T = (80,81, ,8n), Wheres,, is an abstract state obtained by)) o
)) . ~ This paper gives a formal description and correctness proof of our
reducing the error location, let consider one of the corresponding

@i g P o - . roposed CEGAR algorithm in [8].
sequences = (fp “IRT g TR Iy g 10 T on prop 9 [.] _ .

))] The future work will be extension of our algorithm to handle in-
<f, wherel, is error location. LetR; be a set of reachableth

) teger variables used in UPPAAL timed automata.
states along with the sequenteandU R; be that of unreachable

(= (k, Drno) \ Ra).
We prove that “for sub-sequence starting frénmo (1 < k£ <

Acknowledgment
This work is being conducted as a part of Stage Project, the De-

) . .) . velopment of Next Generation IT Infrastructure, supported by Min-
n) of ¢, by applying at mosk times repetition of Refinement yields))
o) istry of Education, Culture, Sports, Science and Technology.
that it is reachable to an abstract state corresponditg,tbut un-

) References
reachable to an abstract state correspondifigRa. *)
) . , [1] E M. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. Helmut:

Let duplicated location fronf; be ;. Let the abstract state &f “Counterexample-guided Abstraction Refinement,” In Proc. of the
begg(= h(l{)) 12th Int. Conf. on Computer Aided Verification, vol.1855, pp.154-
. 169, July, 2000.
) k=1 [2] E M. Clarke, A, Gupta, J. Kukula, and O. Strichman: “SAT based

Ro = (lo, D1nv) holds. A set of reachable states fr¢fm, Dr.,.) Abstraction-Refinement using ILP and Machine Learning Tech-

niques,” In Proc. of the 14th Int. Conf. on Computer Aided Verifi-

cation, vol.2404, pp.695-709, July, 2002.

tion of R;. Therefore, Refinement duplicaté&s, which is a loca- [8] E M. Clarke, O. Grumberg, D A. Peled: “Model Checking,” MIT

tion { and Refinement also removes a transition figno ;. In the Press, 2000.

[4] R. Alur: “Technigues for Automatic Verification of Real-Time Sys-

tems,” PhD thesis, Stanford University, 1991.
R, and it is unreachable to a stdtél;) corresponding t&/ R . [5] R. Alur, C. Courcoubetis, and D. L. Dill: “Model-checking for real-
i) k=2 time systems,” In Proc. of the 5th Annual Symposium on Logic in
= Computer Science, pp.414-425, IEEE Computer Society Press, 1990.

As inductive assumption, we assume that at mhestl times rep- [6] J.Bengtsson, and W .Yi: “Timed Automata: Semantics, Algorithms

etition of Refinement yields that it is reachable to an abstract state ~ @nd Tools,” In Lectures on Concurrency and Petri Nets, vol.3098,

pp.87-124, 2004,
A. David, J. Hakansson, K G. Larsen, and P. pettersson: “Model

through a transitiorily, a1, g1, 71, i) is in fact R, from the defini-

obtained abstract model, it is reachable to oﬂlycorresponding to

corresponding td?;—1 but unreachable to an abstract state corre- 7]

sponding tdJ Ry_1. Checking Timed Automata with Priorities using DBM Subtraction,”

Let R}, (DRy) be a set of reachable states fréin_1, Drn). If Iq Proc. of the 4th Int. Conf. on Formal Modelling and Analysis of
T) o) Timed Systems, pp.128-142, 2002

Rr = Ry, then in a similar way a& = 1, applying one more [g] T. Nagaoka, K. Okano, and S. Kusumoto: “Abstraction of Extended

Refinement leads to the goal. Timed Automata for UPPAAL Based on Counterexample-Guided

Abstraction Refinement Loop (in Japanese),” IEICE Technical Re-

. , -
Let consider wherR,, C Rj, holds. A transition froml,_; to i port, Vol 107) No. 1767 pp.77-82) 2007.

