
Study on Model Abstraction
for Model Checking of Real-time Systems

January 2011

Takeshi NAGAOKA

Study on Model Abstraction
for Model Checking of Real-time Systems

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2011

Takeshi NAGAOKA

Abstract

Model checking techniques are considered as promising techniques for informa-
tion system verification due to their ability of exhaustive checking. In addition,
diagnostic information of model checking, which is provided as a counter exam-
ple, is thought to be useful for error correction. In recent years, model checking
supports more complicated analysis such as verification of real-time requirements,
performance evaluation for systems with random behavior, and so on. It is difficult,
however, to apply such analysis into large systems because of the well-known state
explosion problem.

Timed automata, which can model real-time behavior of systems, are used
to verify real-time requirements. The timed automata are finite automata with
real-time constraints described by real-valued variables called clocks. Therefore
the timed automata theoretically have infinite state space. Almost all verification
techniques for the timed automata use the fact that the infinite state space can be
approximated to finite one. However, the size of the approximated state space
increases exponentially with the number of clock variables. For verification of
systems with random behavior, probabilistic model checking techniques are devel-
oped, where probabilistic models such as Markov chains, Markov decision pro-
cesses are used. In these days, probabilistic timed automata, which can model
real-time and probabilistic behavior of systems, are proposed.

To reduce the state space of timed automata, we propose an abstraction tech-
nique for timed automata. The proposed technique is based on a well-organized ab-
straction framework, CounterExample-Guided Abstraction Refinement (CEGAR),
in which we use a counter example as a guide to refine an abstracted model. In
this technique, we generate an abstract model by removing all of the clock vari-
ables from given timed automata. Then, we refine the abstract model repeatedly to
generate an appropriate abstract model for checking a given property. Although,
in general, the refinement operation is applied to an abstract model directly, the
proposed technique modifies the original timed automata, and next generates re-
fined abstract models from the modified automata. Experimental results show the
abstraction algorithm can reduce the total memory consumption by at most 80 per-

cent compared to applying model checking without abstraction.
We extend the abstraction technique into abstraction for probabilistic timed

automata. In the technique, we remove clock variables from given probabilistic
timed automata as well as the original one. Then, we apply probabilistic model
checking to the generated abstract model which is just a Markov decision process
(MDP) with no time attributes. In general, probabilistic model checking does not
produce concrete paths as a counter example which are required for abstraction re-
finement. Therefore, we also perform k-shortest paths search to obtain the concrete
paths. Experimental results show that the proposed technique reduces state space
of probabilistic timed automata compared to an existing approach. Also, the con-
tribution of this study includes generation of concrete paths as a counter example
while other related works cannot generate them.

In this study, we propose a QoS analysis technique of real-time distributed sys-
tems based on hybrid analysis of probabilistic model checking and simulation. For
the Internet, system developers often have to estimate the QoS by simulation tech-
niques or mathematical analysis. Probabilistic model checking can evaluate perfor-
mance, dependability and stability of information processing systems with random
behavior. We apply a hybrid analysis approach onto real-time distributed systems.
In the hybrid analysis approach, we perform stepwise analysis using probabilistic
models of target systems in different abstract levels. First, we create a probabilis-
tic model with detailed behavior of the system (called detailed model), and apply
simulation on the detailed model. Next, based on the simulation results, we create
a probabilistic model in an abstract level (called simplified model). Then, we ver-
ify qualitative properties using the probabilistic model checking techniques. This
prevents from state-explosion. We evaluate the validity of our approach by com-
paring to simulation results of NS-2 using a case study of a video data streaming
system. The experiments show that the result of the proposed approach is very
close to that of NS-2 simulation. The result encourages the approach is useful for
the performance analysis on various domain.

Finally, we propose a stepwise method to verify consistency of timeliness QoS
of component-based designed real-time systems. In the proposed method, the sys-
tem components are designed using UML diagrams and are provided with the
timeliness QoS annotated with OCL. The basis of this technique is to formally
ensure that the required timeliness QoS is satisfied under the provided timeliness
QoS, given the network property and the UML diagrams. In order to avoid the
state-explosion problem during model checking, we separate the model checking
problem into two steps. The first step checks the satisfiability using an abstract
model of each of the components derived automatically from the provided QoS.
The second step independently performs model checking for each of the compo-
nents using a more detailed version of the behavioral model of a given component.

Such an approach reduces the number of total states to check. Furthermore, the
approach can be extended into hierarchical design, which leads to good scalability.

List of Publications

Major Publications

[1-1] Takeshi Nagaoka, Eigo Nagai, Kozo Okano, and Shinji Kusumoto: “Step-
wise Approach to Design of Real-Time Systems based UML/OCL with For-
mal Verification,” International Journal of Informatics Society (IJIS), Infor-
matics Society, Vol.1, No.2, pp37-44, Sep.2009.

[1-2] Takeshi Nagaoka, Akihiko Ito, Kozo Okano, and Shinji Kusumoto: “Qos
Evaluation for Real-Time Distributed Systems Using the Probabilistic Model
Checker Prism,” In Proceedings of International Workshop on INformatics,
IWIN 2009, pp.60-66, Sep.2009.

[1-3] Takeshi Nagaoka, Akihiko Ito, Kozo Okano, and Shinji Kusumoto: “Quali-
tative Analysis of Real-time Distributed Systems Considering Network Con-
gestion by Probabilistic Model Checker PRISM,” In Proceedings of Interna-
tional Workshop on Empirical Software Engineering in Practice 2009, IWE-
SEP2009, Oct.2009.

[1-4] Takeshi Nagaoka, Kozo Okano, and Shinji Kusumoto: “An Abstraction Re-
finement Technique for Timed Automata Based on Counterexample-Guided
Abstraction Refinement Loop,” IEICE Transactions on Information and Sys-
tems, IEICE, Vol.E93-D, No.5, pp.994-1005, 2010.

[1-5] Takeshi Nagaoka, Akihiko Ito, Toshiaki Tanaka, Kozo Okano, and Shinji
Kusumoto: “Reachability Analysis of Probabilistic Real-Time Systems Based
on CEGAR for Timed Automata,” In Proceedings of International Workshop
on INformatics, IWIN 2010, pp.18-26, Sep.2010.

[1-6] Takeshi Nagaoka, Akihiko Ito, Toshiaki Tanaka, Kozo Okano, Shinji Kusumoto:
“Reachability Analysis of Probabilistic Timed Automata Based on an Ab-
straction Refinement Technique,” In Proceedings of International Workshop

i

on Empirical Software Engineering in Practice 2010, IWESEP2010, pp.33-
38, Dec.2010.

[1-7] Takeshi Nagaoka, Akihiko Ito, Kozo Okano, and Shinji Kusumoto: “QoS
Analysis of Real-time Distributed Systems Based on Hybrid Analysis of
Probabilistic Model Checking Technique and Simulation,” IEICE Transac-
tions on Information and Systems, accepted.

ii

Acknowledgements

This work could be achieved owing to a great deal of help of many individuals.
First, I would like to thank my supervisor Professor Shinji Kusumoto of Osaka

University, for his continuous support, encouragement and guidance of the work.
I would like to express my gratitude to Professor Toshimitsu Masuzawa, and

Professor Katsuro Inoue for their valuable comments and helpful suggestions and
questions on this thesis.

I would like to express my sincere gratitude to Associate Professor Kozo Okano
of Osaka University for his adequate guidance, valuable suggestions and discus-
sions throughout this work.

I’m grateful to Assistant Professor Yoshiki Higo of Osaka University for his
helpful comments and suggestions.

Many of courses that I have taken during my graduate career have been helpful
in preparing this thesis. I would especially like to acknowledge the guidance of
Professor Ken-ichi Hagihara and Professor Yasushi Yagi.

Finally, I would like to thank the all members of Kusumoto Laboratory of
Osaka University for their helpful advice.

iii

Contents

1 Introduction 1
1.1 Formal Verification of Information Systems 1
1.2 Model Checking . 2

1.2.1 Models . 2
1.2.2 Properties to be Checked 5

1.3 Approaches to Avoid State Explosion 8
1.3.1 Counterexample Guided Abstraction Refinement 8
1.3.2 Predicate Abstraction . 9
1.3.3 Partial Order Reduction 9
1.3.4 Symmetry Reduction . 9

1.4 Research Overview . 9
1.4.1 Abstraction Refinement for Timed Automata based on CE-

GAR . 9
1.4.2 Abstraction Refinement for Probabilistic Timed Automata

based on CEGAR . 10
1.4.3 Qualitative Analysis of Real-time Distributed Systems Us-

ing the Probabilistic Model Checker PRISM 11
1.4.4 Formal Verification with a Stepwise Abstraction Approach

for UML/OCL Based Design of Real-time Systems 12

2 Abstraction Refinement for Timed Automata based on CEGAR 15
2.1 Introduction . 15
2.2 Preliminary . 16

2.2.1 Clock and Zone . 16
2.2.2 Timed Automaton . 16
2.2.3 Region Automaton . 17
2.2.4 Zone Graph . 18
2.2.5 DBM (Difference Bound Matrix) 18
2.2.6 Temporal Logic . 19

v

2.2.7 CounterExample-Guided Abstraction Refinement 21
2.3 Proposed Algorithm . 22

2.3.1 Abstract Model . 23
2.3.2 Initial Abstraction . 24
2.3.3 Simulation . 24
2.3.4 Abstraction Refinement 27
2.3.5 Example . 35

2.4 Correctness Proof . 37
2.5 Experiment . 42

2.5.1 goals of the Experiments 42
2.5.2 Example . 42
2.5.3 Procedure of the Experiments 42
2.5.4 Results of Experiments 42
2.5.5 Discussion . 43
2.5.6 Complexity . 44

2.6 Summary . 44

3 Abstraction Refinement for Probabilistic Timed Automata based on
CEGAR 45
3.1 Introduction . 45
3.2 Preliminary . 46

3.2.1 Probability Distribution 46
3.2.2 Markov Decision Process 46
3.2.3 Probabilistic Timed Automaton 48
3.2.4 Probabilistic CTL . 51

3.3 Proposed Approach . 52
3.3.1 Initial Abstraction . 53
3.3.2 Model Checking . 53
3.3.3 Simulation . 54
3.3.4 Abstraction Refinement 54
3.3.5 Compatibility Checking 55
3.3.6 Model Transformation 59

3.4 Correctness Proof . 63
3.5 Experiments . 65

3.5.1 Goals of the Experiments 65
3.5.2 Example . 66
3.5.3 Procedure of the Experiments 66
3.5.4 Results of the Experiments 66
3.5.5 Discussion . 67

3.6 Summary . 68

vi

4 Qualitative Analysis of Real-time Distributed Systems Using the Prob-
abilistic Model Checker PRISM 69
4.1 Introduction . 69
4.2 Preliminary . 70

4.2.1 Probabilistic Model Checker PRISM 70
4.2.2 Protocols for Net-streaming 71

4.3 Proposed Approach . 73
4.3.1 Target System . 73
4.3.2 The Detailed Model . 73
4.3.3 The Simplified Model 77

4.4 Experiments . 81
4.4.1 Analysis of the Correctness 81
4.4.2 Verification results for the simplified model 84
4.4.3 Discussion . 85

4.5 Summary . 85

5 Formal Verification with a Stepwise Abstraction Approach for UML/OCL
Based Design of Real-time Systems 87
5.1 Introduction . 87
5.2 Preliminary . 88

5.2.1 Timeliness QoS . 88
5.2.2 UML/OCL Based Design of Real-time Systems 88

5.3 The Verification Method . 90
5.3.1 The First Step . 91
5.3.2 The Second Step . 95

5.4 Experiment . 97
5.4.1 The example . 97
5.4.2 First Step . 97
5.4.3 The Second Step . 100
5.4.4 Discussion . 101

5.5 Summary . 102

6 Conclusion 103
6.1 Summary . 103
6.2 Directions of Future Research 104

vii

List of Figures

1.1 The Light User Model . 3
1.2 The Randomised Self-Stabilizing Algorithms Model 4
1.3 The FireWire Root Contention Protocol Model 5
1.4 Examples of Semantics of LTL 6
1.5 Examples of Semantics of CTL 7
1.6 A General CEGAR Technique 8
1.7 Our CEGAR Technique for Reachability Analysis of a Probabilis-

tic Timed Automaton . 11

2.1 Examples of a Timed Automaton and its Abstract Model 24
2.2 A Simulation Process . 27
2.3 An Example of the Algorithm Reaches to the Initial Location . . . 29
2.4 The Refinement Process for the Path in Fig.2.2 36
2.5 The Timed Automata After the Second ((a) of the Figure) and

Third ((b) of the Figure) Refinement Steps Respectively 37
2.6 An Example of the Case When s1

a⇒ s2 ̸∈⇒′ in the Proof (i) of
Lemma 2.4.1 . 38

2.7 An Overview of the Timed Automaton After the Refinement Step
with the Path π . 41

3.1 An Example of an MDP . 46
3.2 Examples of Adversaries . 47
3.3 An Example of a PTA . 48
3.4 An Initial Abstract Model . 53
3.5 Simulation Results for a Set of Paths 55
3.6 Results of Backward Simulation for a Set of Paths 57
3.7 The Transformed PTA . 63

4.1 A Configuration of Experimental System 74
4.2 An Abstract Outline of the Detailed Model 74

ix

4.3 The Module of Router Described with PRISM Language 76
4.4 An Abstract Outline of the Simplified Model 78
4.5 A Part of Reward Descriptions for Analysis of the Distribution . . 79
4.6 The Abstracted Module for four FTP servers 80
4.7 Comparison of the Throughput 82
4.8 Comparison of Packet Loss Rates 82
4.9 The Discrete Probability Distribution of Throughput of the FTP

Servers . 84

5.1 A Configuration of Components in UML Class Diagram 89
5.2 An Abstract QoS automaton for Anchored Throughput 92
5.3 An Abstract QoS automaton for Non-Anchored Jitter 92
5.4 An Abstract QoS automaton for Latency 93
5.5 A Test Automaton for Throughput 94
5.6 A Test Automaton for Jitter . 95
5.7 A Test Automaton for Latency 96
5.8 Verification on UPPAAL Based on Test Automata 97
5.9 The Class Diagram of Media Server 98
5.10 The Configuration Automaton 99
5.11 The network of test automata for the given required QoS 99
5.12 The UML Statechart Diagram of Component MS-Storage 101
5.13 The UPPAAL Timed Automaton of Component MS-Storage . . . 101

x

List of Tables

2.1 The Experimental Results . 43

3.1 The Experimental Results . 66
3.2 Analysis of Counter Example Paths 67

4.1 Parameters of the Throughput Estimation Formula 72
4.2 Summary of the Analyzed Data (3 FTP servers) 83
4.3 Summary of the Analyzed Data (4 FTP servers) 83
4.4 Summary of the Analyzed Data (5 FTP servers) 83

5.1 The Result (1) of the First Step 100
5.2 The Result (2) of the First Step 100

xi

Chapter 1

Introduction

1.1 Formal Verification of Information Systems

In recent years, though information systems play an important role in social
activities, defects on the systems may cause serious loss to society. As the systems
become larger and more complicated, it is difficult to assure the reliability of the
systems. In order to develop reliable systems, it is important to verify designs of
the systems at an early phase of their development. Such verification avoids us to
regress the development steps.

Formal methods are considered as promising techniques for reliable systems
development. The formal methods can automatically prove the correctness of the
systems using formal descriptions of the system designs and mathematical theories
in order to analyse the systems. Using the formal methods, we can also obtain
reliable proofs based on the mathematical theories.

In general, the formal methods are classified into two kinds of approaches,
model checking[1] and automated theorem proving[2]. In the model checking tech-
nique, information systems are modeled as finite state machines. Model checkers[3,
4, 5, 6] decide whether the model satisfies given requirements or not by searching
state space exhaustively. On the other hand, in the automated theorem proving
technique, systems and requirements are described in logical forms. Theorem
provers[7, 8, 9] prove whether the system satisfies the requirements in mathe-
matical ways. Usually, theorem provers only check if proofs, which are human
constructed manually, are correct or not. Conventional theorem provers are not
full automatic. The proofs are constructed interactively. A simple theory, such
as inequalities on integer arithmetic, can be automatically proved. For exam-
ple, x > y implies x + 2y > 3y, can be proved by most of automated the-
orem provers. However, some of them cannot automatically prove a tautology
x = y and ∀x.f(x) = g(x) imply f(x) = g(y). Thus, each theorem prover

1

only supports its own limited class of theories. Though some of modern theorem
provers also support for engineers to construct their proofs and have facilities to
enhance several non-standard logics, and domain specific axioms and inference
rules, the essential of the theorem provers is not to provide proofs but to check
proofs. In general, theorem proving approaches can deal with a wide range of in-
formation systems according to their basis theories and mathematic abilities of the
users. In contrast, model checking approaches are easy to use but the target domain
is limited. They are suitable to check behaviour of the systems rather than check
correctness of calculation. Some methods are hybrid. For example, B Method[10]
supports both of a theorem prover and a model checker in order to resolve “proof
obligations” which are automatically derived from specifications described in B
Method syntax. Although formal verification has merits with automated and reli-
able verification, there are several problems such as difficulty of formal descrip-
tions, limitation of its scalability. In this study, we propose techniques to improve
the limitation of scalability of model checking using model abstraction techniques.

1.2 Model Checking

A model checker checks if a given system modeled in a finite automaton sat-
isfies given specifications by searching the finite transition system exhaustively. It
sometimes has, however, limitation in scalability. In order to improve the scalabil-
ity, a model abstraction technique is important[11, 12, 13, 14, 15].

For verification of real-time systems such as embedded systems, timed auto-
mata[16, 17, 18] are usually used. On the other hand, probabilistic model checking
can evaluate performance, dependability and stability of information processing
systems with random behaviors[19]. Probabilistic model checking handles several
probabilistic models such as discrete-time Markov chains (DTMC), continuous-
time Markov chains (CTMC), Markov decision processes (MDP), and so on. In re-
cent years, probabilistic models with real-time behaviors, called probabilistic timed
automata[20] are used to evaluate dependability of real-time systems based on the
probabilistic model checking technique.

1.2.1 Models

This research mainly focuses on timed automata and probabilistic models in-
cluding probabilistic timed automata as models for model checking.

2

UserLight
off

dim

bright relax

idle

studyt

y<5

press!

y:=0

press!

y:=0

y>10

press!

press!

press!

press?

x:=0

x>10

press?

x<=10

press?

press?

Figure 1.1: The Light User Model

Timed Automata

Timed automata are finite state automata with real-time constraints described
with real-valued variables called clocks. In timed automata, real-valued clock
constraints are assigned to their control state (called a location) and transitions.
Therefore, they have infinite state space represented in a product of discrete state
space made by locations and continuous state space made by clock variables. In
traditional model checking for timed automata, using the property that we can
treat the state space of clock variables as a finite set of regions, we can perform
model checking on timed automata models. However, the size of such regions
increases exponentially with the number of clock variables, Thus an abstraction
technique is also needed. For verification of timed automata, several tools such as
UPPAAL[5, 21, 22], KRONOS[23, 24] are developed.

Figure 1.1 is an example of timed automata, the Light User model[16]. The
model is composed of two timed automata, a light model (left side of the figure)
and a user model (right side of the model). Each model has one clock variable and
communicates with the other model through the channel press.

Probabilistic Models

Probabilistic models[25] can describe behavior of stochastic systems such as
network protocols which decide next behavior stochastically, randomised distributed
algorithms, and so on. In the probabilistic models, transitions between states are
labeled by the probability to fire the transitions.

In general, the probabilistic models are classified into discrete-time Markov
chains (DTMCs), continuous-time Markov chains (CTMCs), and Markov decision

3

0.5

0.5

1.0 x
1
=x

3

x
1
:=1

x
1
:=0

x
1
!=x

3

x
1
:=x

3

Node
1 0.5

0.5

1.0 x
2
=x

1

x
2
:=1

x
2
:=0

x
2
!=x

1

x
2
:=x

1

Node
2

0.5

0.5

1.0 x
3
=x

2

x
3
:=1

x
3
:=0

x
3
!=x

2

x
3
:=x

2

Node
3

Figure 1.2: The Randomised Self-Stabilizing Algorithms Model

processes (MDPs). In the DTMCs, the label of probability is assigned discretely
for each transition. In the CTMCs, transitions between states occur in a real time
step while transitions of DTMCs occur in a discrete time step. MDPs can be seen
as a generalisation of DTMCs. MDPs can describe both non-deterministic and
probabilistic behavior.

Figure 1.2 shows an example of the DTMCs, the Randomised Self-Stabilizing
Algorithms[26] model. In the model, each node has one integer variable xi. The
stable configurations are those where exactly one node has a token. In this model,
the nodei has a token if xi = xi−1 holds. Each node changes the value of xi
randomly, and this finally makes the configuration stable.

One of probabilistic model checkers PRISM[6, 27] can handle DTMCs, CTMCs,
and MDPs.

Probabilistic Timed Automata

Probabilistic timed automata are kinds of timed automata extended with prob-
abilistic behavior. Therefore, state space of probabilistic timed automata is same
as that of timed automata. Since the probabilistic timed automata accept non-
deterministic transitions, they are also considered as kinds of Markov decision
processes. Using the probabilistic timed automata, several case studies were intro-

4

start_start

0.5
fast_start start_fast start_slow slow_start

fast_fast fast_slow slow_fast slow_slow

elect

0.50.50.5

0.5 0.5

0.50.5

0.5 0.5

0.5 0.5

x<=360

x<=360x<=360x<=360x<=360

x:=0 x:=0

x:=0x:=0 x:=0 x:=0

x:=0 x:=0

x<=850 x<=1670 x<=1670 x<=1670

x>=400
x>=1230 x>=1230

x>=1230

x>=760

x:=0 x:=0
x>=1590

1.0
1.0 1.0

1.0

1.0
1.0

Figure 1.3: The FireWire Root Contention Protocol Model

duced. For example, Papers[28, 29] performed performance analysis of protocols
for wireless networks.

Figure 1.3 shows an example of a probabilistic timed automaton, the FireWire
root contention protocol model[29]. In the figure, transitions which belong to the
same distribution are connected with a small arc at their source points. For exam-
ple, at the location start start, there are two probability distributions. In one of
them, the control moves to the location fast start with the probability 0.5 and to
the location slow start with 0.5 as well. In the other one, the control moves to the
location start fast with the probability 0.5 and to the location start slow with 0.5
as well. These distributions are selected non-deterministically.

1.2.2 Properties to be Checked

If we model behavior of systems, we should formally describe properties to be
checked. In formal verification, the properties are described with temporal logic[1]
such as liner temporal logic (LTL)[30] and computational tree logic (CTL)[31].
The temporal logic can describe properties quantified in terms of time. In formulae

5

φ φ φ φ φ
G φ

ψ ψ ψ φ φ
ψ U φ

Figure 1.4: Examples of Semantics of LTL

described with temporal logic, we can use temporal operators such as F which
means the property will hold in the future, A which means that the property always
holds, and so on.

LTL

LTL can represent properties related to a path on a target model. For example,
properties such as ‘for some state on the path’ or ‘for every two consecutive states’
can be expressed. LTL accepts temporal operators F (in the future), G (globally),
X (next) and U (until) as well as general logical operators such as conjunction (∧),
disjunction (∨), implication (→), and so on. For example, the LTL formula ‘G ϕ’
means that the property ϕ holds at all states along the path, and ‘ψ U ϕ’ means that
there is a state on the path at which ϕ holds, and ψ holds at every state before ϕ.
Figure 1.4 shows examples of semantics of LTL. The dots in the figure show states.
The states where some LTL formulae such as ϕ and ψ are associated show that the
associated formulae hold at the states.

The model checker SPIN[3] supports LTL model checking. In the LTL model
checking, the property described with LTL is translated into a Büchi automaton[32].
SPIN computes the synchronous product of this Büchi automaton and the automa-
ton describing target system’s behavior, and checks whether there exists the lan-
guage accepted by the product automaton.

CTL

CTL can represent properties with tree like structures which have several bran-
ches. CTL accepts quantifiers over paths such as A, which means that the property
holds for all paths starting from the current state, and E, which means that the there
exists at least one path starting from the current state where the property holds, as
well as temporal operators F, G, X and U. In the CTL formula, these quantifiers
and temporal operators are combined. For example, the CTL property ‘AG ϕ’

6

AG φ E[ψ U φ]

φ

ψ

ψ

ψ

φ

φ φ

φφ

φ

φ

Figure 1.5: Examples of Semantics of CTL

means that for all paths starting from the current state the property ϕ holds at all
states along the paths. Figure 1.5 shows examples of semantics of CTL.

The model checker NuSMV[4] supports CTL model checking. In the CTL
model checking, the model checker inductively computes a set of states which
satisfy the given CTL formula. If the set of states obtained by CTL model checking
includes initial states, the model checker concludes that the model satisfies the
given CTL property. If the model is finite, such computation converges within
finite time. Therefore, the CTL model checking terminates.

There are several extensions of CTL to represent real-time properties, proba-
bilistic properties, and so on.

Timed CTL (TCTL)[33, 34] extends CTL with clock variables. Therefore,
TCTL accepts atomic formulae about clock variables, which are restricted by dif-
ferential inequalities between two clock variables in general. TCTL is used to
describe properties on timed automata and probabilistic timed automata.

Probabilistic CTL (PCTL)[35] extends CTL with probability. In the PCTL
properties, the operator P, which indicates probability over an associated compu-
tation tree, is provided. For example, PCTL can describe the property of ‘what is
the probability to reach a given error state.’ PCTL is used to describe properties on
discrete-time Markov chains, Markov decision processes, and probabilistic timed
automata. On the other hand, for continuous-timed Markov chains, continuous
stochastic logic (CSL)[36], which is inspired by the logic CTL, PCTL, and TCTL,
is mainly used.

Probabilistic timed CTL (PTCTL)[20] is proposed to combine the probabilis-
tic operator of the PCTL and timing constraints of the TCTL. PTCTL is used to
describe properties of probabilistic timed automata.

7

Initial Abstraction

Refinement

Model Checkingtrue

property is

satisfied

Simulation false

property is

not satisfied

Counter-example

Concrete

model

property

refined model

+property

Figure 1.6: A General CEGAR Technique

1.3 Approaches to Avoid State Explosion

In model checking, explosion of state space or execution time is a major prob-
lem. In general, such problem is caused by increasing of size of target systems or
complexity of properties to be checked. In recent years, there are several studies
which tackle this problem.

1.3.1 Counterexample Guided Abstraction Refinement

Clarke et al. proposed an abstraction technique called CEGAR (CounterExample-
Guided Abstraction Refinement)[11] shown in Fig.1.6. The technique is used for
abstraction of finite models[11, 12], hybrid systems[13], timed automata[37, 38,
39], and other models. In the CEGAR technique, we use a counter example pro-
duced by a model checker as a guide to refine excessively abstracted models.

A general CEGAR technique consists of several steps. First, we abstract an
original model and generate an initial abstract model. Next we perform model
checking on the abstract model. In this step, if a counter example is detected by
a model checker, we check the counter example on the original model. If we find
that the counter example is spurious, we have to refine the abstract model. The last
step is repeated until the valid output is obtained. In the CEGAR loop, an abstract
model must satisfy the following property; if the abstract model satisfies a given
specification, the concrete model also satisfies it.

8

1.3.2 Predicate Abstraction

Predicate abstraction[14, 15] abstracts state space using a given finite set of
predicates. For the set of predicates, predicate abstraction defines an equivalence
relation over a set of states with regard to the truth of every predicate. In the pred-
icate abstraction, how to choose such a set of predicates is one of major problems.
Some works use the framework of CEGAR, i.e. if abstraction generates spurious
behavior, they refine an abstract model by adding other predicates into the set.

1.3.3 Partial Order Reduction

Partial order reduction[40, 41] mainly reduces state space search for a model
described as a set of concurrent processes. An execution of such a concurrent
model is represented as a sequence of events where events of concurrent processes
are interleaved. Concrete orders of such events, however, have little effect on the
truth of properties to be checked in general, if the events are independent each
other. Partial order reduction defines partial orders over such interleaves and re-
duces state space search which is seems to be equivalent.

1.3.4 Symmetry Reduction

Symmetry Reduction[42, 43, 44] exploits symmetry of a concurrent process
model. Then it reduce state space of the model into that of its quotient model,
where symmetric states are identified. For model checking of timed automata[43]
and probabilistic models[44], the symmetry reduction is adopted.

1.4 Research Overview

In this study, we propose techniques to avoid state explosion for model check-
ing of real-time systems. First, we propose an abstraction refinement technique for
timed automata using the CEGAR framework. Next, we extend the technique into
abstraction for probabilistic timed automata. On the other hand, for model check-
ing of distributed systems, we propose a hybrid approach of probabilistic model
checking and simulation techniques.

1.4.1 Abstraction Refinement for Timed Automata based on CEGAR

Chapter 2 describes the abstraction refinement technique for timed automata
using the CEGAR framework. The first step of the technique is abstraction, in
which we delete all of time attributes from the given timed automaton. The ob-
tained automaton is just a finite automaton preserving the transition relations of the

9

original timed automaton; therefore the obtained finite automaton is, in general,
an over-approximation of the original one. We restrict the class of the verification
properties into reachability; thus if an abstract model satisfies a given property then
the concrete model also satisfies the property. The reachability analysis is the prim-
itive procedure for safety checking. This means that model checking problems on
several important properties could be reduced into the reachability analysis prob-
lem.

In general, CEGAR techniques[11, 12, 13, 37, 38, 39] directly transforms
an abstract model using counter examples in the refinement step. Our proposed
method, however, doesn’t directly transform the abstract model. It first transforms
the original model using counter examples and then it creates a new abstract model
from it by removing clock attributes; thus our algorithm indirectly refines the ab-
stract model. The algorithm transforms the original timed automaton by adding ex-
tra transitions and removing some transitions but it preserves the behavioral equiv-
alence of the timed automaton and prevents the spurious counter examples. More
concretely, it duplicates locations and transitions so that its abstract model can tell
behavioral difference caused by clock values which affects the counter examples.
Consequently the obtained new abstract model does not accept the spurious counter
example.

Related works [37, 38, 39] have proposed CEGAR based abstraction tech-
niques for timed automata. Although these techniques mainly refine the abstract
models by adding clock variables which have been removed by initial abstraction,
our refinement method modifies the original timed automata and produces the re-
fined abstract model from the modified models, instead of adding clock variables.

1.4.2 Abstraction Refinement for Probabilistic Timed Automata based on
CEGAR

Chapter 3 describes the extension of our CEGAR technique into abstraction for
probabilistic timed automata. In this study, we propose a reachability analysis tech-
nique for probabilistic timed automata. The abstraction technique abstracts time
attributes of probabilistic timed automata by applying our abstraction technique
for timed automata. Then, we apply probabilistic model checking to the gener-
ated abstract model which is just a Markov decision process (MDP) with no time
attributes. The probabilistic model checking algorithm calculates a summation of
occurrence probability of all paths which reach to a target state for reachability
analysis. For probabilistic timed automata, however, we have to consider required
clock constraints for such paths, and choose the paths whose required constraints
are compatible. Since our abstract model does not consider the clock constraints,
we add a new flow where we check whether all paths used for probability calcu-

10

Initial Abstraction

Refinement

Model Checkingtrue

property is

satisfied

Simulation false

property is

not satisfied

Counter-example

Concrete

model

property

refined model

+property

Model Transformation
Compatibility

Checking

refined Concrete model

+property

Figure 1.7: Our CEGAR Technique for Reachability Analysis of a Probabilistic
Timed Automaton

lation are compatible. Also, if they are not compatible, we transform the model
so that we do not accept such incompatible paths simultaneously. The proposed
procedure for the probabilistic timed automata is shown in Fig.1.7.

Several papers including Paper[45] have proposed probabilistic model check-
ing algorithms. These algorithms, however, don’t provide counter examples when
properties are not satisfied. Our proposed method provides a counter example as a
set of paths based on k-shortest paths search. This is a major contribution of our
method. The proposed method also performs model checking considering compat-
ibility problem. Few approaches resolve the compatibility problem. Our approach
also shows the efficiency via performing experiments.

1.4.3 Qualitative Analysis of Real-time Distributed Systems Using the Prob-
abilistic Model Checker PRISM

Chapter 4 describes a qualitative analysis technique for Real-time Distributed
Systems.

Probabilistic model checking can evaluate performance, dependability and sta-
bility of information processing systems with random behaviors[19]. PRISM[6]
is one of the probabilistic model checkers. It handles automata with probabilities
(discrete and continuous time Markov chains) and time elapse. Therefore, it is suit-
able for modeling the network systems. One of the approaches, which overcomes

11

drawbacks of simulation approach and model checking approach, seems to be a
kind of a hybrid approach.

In order to find if the hybrid approach is applicable to real systems, we apply
a hybrid analysis technique onto real-time distributed systems, which uses both of
simulation and model checking techniques. In our approach, we perform a stepwise
analysis using probabilistic models of target systems in different abstract levels.
First, we create a probabilistic model with detailed behavior of the system (called
detailed model), and apply simulation on the detailed model. Next, based on the
simulation results, we create a probabilistic model in an abstract level (called sim-
plified model). Then, we verify qualitative properties using the probabilistic model
checking techniques.

As related works, several case studies are performed using PRISM[45, 28, 20].
For example, Paper[28] deals with a network protocol. Few works, however, con-
cern the QoS analysis of the whole system. Papers[46] and [47] propose abstraction
methods for probabilistic systems based on an abstraction refinement approach.
Papers[48] and [49] propose verification approach based on the simulation tech-
nique. Paper[46] extracts a number of representative sample paths on a probabilis-
tic model and decides if the model satisfies a given property using such paths. In
Paper[49], they model a biomedical sensor network as timed automata, and use the
simulation technique to adjust some parameters.

The contribution of this research includes that we present a technique to guar-
antee the QoS of real-time distributed systems. Our experimental results show the
correctness of our detailed model at least for all of nine scenarios. Also, we can
apply probabilistic model checking on the simplified model within realistic time
without state explosion. It shows that the proposed method is useful to analyze
the network performance. We believe that such analysis is useful for other kind of
network analysis.

1.4.4 Formal Verification with a Stepwise Abstraction Approach for UML/OCL
Based Design of Real-time Systems

Chapter 5 describes a technique to verify consistency of timeliness QoS of
component-based design for real-time systems.

Nowadays, most real-time systems are designed with help of UML diagrams[50].
Especially components and their relation through signal communication can be
represented in a class diagram of UML. In UML based design, such timeliness
QoS can be annotated in OCL[51]. The annotation is associated to each of compo-
nents as a provided QoS and also to a network link as a network property.

This study proposes a new method to verify consistency of timeliness QoS of
component-based real-time systems. We assume that timeliness QoS is not only

12

given to a whole system (Required QoS) but also associated with each component
of a given system (Provided QoS). Timeliness QoS is a time aspect of QoS (Quality
of Service) features[52]. In this study, we treat jitter, latency and throughput as
timeliness QoS.

The proposed method is revised version of paper [53]. The method in [53] uses
Linear Programming (LP) for some of verification. The approach has a disadvan-
tage that connection among components has to be acyclic, and it cannot be applied
to hierarchical design. The proposed method uses abstract QoS automata instead of
using LP; thus it improves the former disadvantage. The heart of the technique is
formally to ensure that the required timeliness QoS is satisfied under the provided
timeliness QoS, given network property and the class diagram.

In order to check the satisfiability, there are several approaches. Model check-
ing is one of such approaches. Notion of Test Automata[54, 55] and its application
is also useful. However, one of disadvantage of the method is the state-explosion
problem. In order to avoid state-explosion while performing model checking, we
separate the problem into two steps. The first step checks the satisfiability using ab-
stract model of each of components derived automatically from the provided QoS.
The second step performs model checking each of components independently us-
ing more detailed version of behavioral model of a component. Such an approach
efficiently reduces the number of total states to check. Moreover the approach can
be extended into hierarchical design; therefore it has good scalability.

13

Chapter 2

Abstraction Refinement for
Timed Automata based on
CEGAR

2.1 Introduction

In verification of real time systems, timed automata have widely been used[16,
17, 18], which can describe behavior of real-time systems. In timed automata,
real-valued clock constraints are assigned to its control state (called a location).
Therefore, it has an infinite state space represented in a product of discrete state
space made by locations and continuous state space made by clock variables. In
traditional model checking for a timed automaton, using the property that we can
treat the state space of clock variables as a finite set of regions; we can perform
model checking on timed automata models. However, the size of such regions in-
creases exponentially with the number of clock variables; thus an abstraction tech-
nique is also needed. One of the approaches to avoid explosion of the state space is
a model abstraction approach. Especially, the CEGAR (CounterExample-Guided
Abstraction Refinement)[11] technique proposed by Clarke et al. is considered as
the promising technique for model abstraction.

This chapter describes a CEGAR technique for timed automata. This tech-
nique removes all of the clock variables from the timed automata, which means
that the obtained abstract model is just a finite automaton with no clock constraints.
Therefore, applying model checking into the abstract model may generate spurious
counter examples which do not occur on the original timed automata. If such spuri-
ous counter example is detected, we transform the transition relation on the original
timed automata so that the model behaves correctly even if we don’t consider the

15

clock constraints. Such transformation obviously represents the difference of be-
havior caused by the clock attributes. Therefore, the finite number of application of
the refinement algorithm enables us to check the given property without the clock
attributes.

In this chapter, we show concrete algorithm of abstraction refinement for timed
automata, and prove its correctness. Also, experimental results indicate our ab-
straction can reduce state space of timed automata.

2.2 Preliminary

2.2.1 Clock and Zone

Let C be a finite set of clock variables which take non-negative real values
(R≥0). A map ν : C → R≥0 is called a clock assignment. The set of all clock
assignments is denoted by RC

≥0. For any ν ∈ RC
≥0 and d ∈ R≥0 we use (ν + d)

to denote the clock assignment defined as (ν + d)(x) = ν(x) + d for all x ∈ C.
Also, we use r(ν) to denote the clock assignment obtained from ν by resetting all
of the clocks in r ⊆ C to zero.

Definition 2.2.1 (Differential Inequalities on C). Syntax and semantics of a differ-
ential inequality E on a finite set C of clocks is given as follows:
E ::= x− y ∼ a | x ∼ a,
where x, y ∈ C, a is a literal of a real number constant, and ∼∈ {≤,≥, <,>}.
Semantics of a differential inequality is the same as the ordinal inequality.

Definition 2.2.2 (Clock Constraints on C). A set of clock constraints c(C) on a
finite set C of clocks is defined as follows:
A differential inequality in1 on C is an element of c(C).
Let in1 and in2 be elements of c(C), in1 ∧ in2 is also an element of c(C).

A zone D ∈ c(C) is described as a product of finite differential inequalities
on clock set C, which represents a set of clock assignments that satisfy all the
inequalities.

2.2.2 Timed Automaton

Definition 2.2.3 (Timed Automaton). A timed automaton A is a 6-tuple (A,L, l0,
C, I, T), where
A: a finite set of actions;
L: a finite set of locations;
l0 ∈ L: an initial location;

16

C: a finite set of clocks;
I ⊂ (L→ c(C)): a mapping from locations to clock constraints, called a location
invariant; and
T ⊂ L×A× c(C)× R × L, where c(C) is a clock constraint, called guards;
R = 2C: a set of clocks to reset.

A transition t = (l1, a, g, r, l2) ∈ T is denoted by l1
a,g,r−→ l2. A map ν : C →

R≥0 is called a clock assignment. We define (ν + d)(x) = ν(x) + d for d ∈ R≥0.
r(ν) = ν[x 7→ 0], x ∈ r, where ν[x 7→ 0] means the valuation that maps x into
zero, is also defined for r ∈ 2C .

Definition 2.2.4 (Semantics of a Timed Automaton). Given a timed automaton
A = (A,L, l0, C, I, T), let S ⊆ L×RC

≥0 be a set of whole states of A . The initial
state of A shall be given as (l0, 0C) ∈ S.
For a transition l1

a,g,r−→ l2 (∈ T), the following two transitions are semantically
defined. The former one is called an action transition, while the latter one is called
a delay transition.

l1
a,g,r−→ l2, g(ν), I(l2)(r(ν))

(l1, ν)
a⇒ (l2, r(ν))

,
∀d′ ≤ d I(l1)(ν + d′)

(l1, ν)
d⇒ (l1, ν + d)

Definition 2.2.5 (A Semantic Model of a Timed Automaton). For timed automaton
A = (A,L, l0, C, I, T), an infinite transition system is defined according to the
semantics of A , where the model begins with the initial state.

2.2.3 Region Automaton

For a given timed automaton A , we can introduce a corresponding clock region
CR(A)[56, 33]. In general, a clock region divides a |C|-dimensional Euclidean
space into finite points, segments, and faces. By [u], an element (a region) in
CR(A) is denoted. For [u] ∈ CR(A), g([u]) and I([u]) represent that any point
in [u] satisfies a guard g and invariant I , respectively. Also by r([u]), applying
clock resetting r onto [u] is denoted, where r([u]) = [u][x 7→ 0], and x ∈ r.

Definition 2.2.6 (Region Automaton). A region automaton Ar = (A,Lr, lr 0, Tr)
of a given timed automaton A = (A,L, l0, C, I, T) is defined as follows.
Lr ⊂ L× CR(A),
lr 0 = (l0, [0

C]), where [0C] satisfies I(l0),
Tr ⊂ Lr ×A× Lr,
Tr consists of the transitions which satisfy the following property.

(l, [u])
a⇒ (l′, [v]) ⇐⇒ ∃d ∈ R≥0. (l, u)

d⇒ (l, u′) ∈ T (A)

∧(l, u′) a⇒ (l′, v) ∈ T (A) ∧ u ∈ [u] ∧ v ∈ [v].

17

There is bi-simulation equivalence between a timed automaton A and its re-
gion automaton Ar [1].

2.2.4 Zone Graph

In [16], a state space of timed automata, which has infinite semantic states, is
represented as a finite state transition system called a zone graph. In this study,
we treat a zone D as a set of clock assignments ν ∈ RC

≥0 (For a zone D, ν ∈ D
means the assignment ν satisfies all the inequalities in D). In addition to this,
using a location l and a zone D, we describe a set of semantic states as (l,D) =
{(l, ν) |ν ∈ D}. Also, for an initial location l0, a set of initial states is denoted by

(l0, D0) = {(l0, 0C + d)|(l0, 0C)
d⇒ (l0, 0

C + d) ∈⇒}.
Paper[16] also gives operation functions on zones, such as up, and and so on,

which represent elapsing time, intersection of time spaces and so on, respectively.
For a given zone D, there is a minimal set of differential inequalities which is
enough to represent D [16]. We use Ineqset(D) to denote such a minimal set
for D. Ineqset(D) can be obtained by reduction operations on zones. A set of
every state which satisfies an invariant I(l) of location l is denoted by (l , DI(l))
(= {(l, ν)|I(l)(ν)}).

When we create a zone graph from a timed automaton, we perform zone nor-
malization called k-normalization[16], where k : C → N is a clock ceiling, to
prevent zones from increasing infinitely. The clock ceiling k is given by the maxi-
mal clock constants appearing in the automaton. In k-normalization, we represent
zones that may contain arbitrarily large constants as a single representative zone.
The details are given as follows; we remove the constraints of the form x < m,
x ≤ m, x − y < m, x − y ≤ m from the given zone, and also we replace the
constraints of the form x > m, x ≥ m, x − y > m, x − y ≥ m with x > k(x),
x ≥ k(x), x − y > k(x), x − y ≥ k(x), where x, y ∈ C and m > k(x), respec-
tively.

2.2.5 DBM (Difference Bound Matrix)

In [16, 57], a data structure DBM is introduced to represent a convex space
in |C| -dimensional Euclidean space, where C is a set of clock variables. DBM
is a set of differential inequalities on two clock variables, and represents a state
space which satisfies all inequalities over it (the state space is called a zone). DBM
represents these set of inequalities as a |C0| × |C0| matrix, where C0 = C ∪ { 0 },
and 0 is a special variable which means a constant value 0. The (i, j)-th entry
(Di j) of the matrix means a differential inequality of xi − xj for xi, xj ∈ C0.
Suppose there is an inequality xi − xj ≼ n for ≼∈ { < . ≤ }, the (i, j)-th entry

18

Di j is represented by (n,≼). Also, when xi − xj is unbounded, the entry Di j is
represented by ∞. In addition, the upper bound and lower bound of xi itself are
indicated by D0,i and Di,0 respectively.

As an example of DBM, let’s consider a zone which satisfies following con-
straint.

x− 0 < 20 ∧ y − 0 ≤ 20 ∧ x− y ≤ −10 ∧ y − x ≤ 10 ∧ 0− z < 5.

When we represent this zone as DBM, variables 0，x，y，z are numbered with
0，1，2，3 respectively in the matrix. DBM which represents the zone of the
constraint is given by (2.1).

D =


(0,≤) (0,≤) (0,≤) (5, <)
(20, <) (0,≤) (−10,≤) ∞
(20,≤) (10,≤) (0,≤) ∞

∞ ∞ ∞ (0,≤)

 . (2.1)

DBM is also represented as a set of some elements in the clock regionCR(A).
Therefore a state set of states of a region automaton Ar = (Lr, lr 0, Tr, A), can be
represented in (l , D) = {(l , [u]) | [u] ∈ D} using the corresponding DBM D.
Paper[16] gives operation functions on DBM, such as up, and and other functions,
which represent elapsing time, intersection of time spaces and so on, respectively.
There is a minimum set of differential inequalities which can represents DBM D
[16]. Such a set is denoted by c(D). c(D) can be obtained by reduction operations
on DBM. A set of every region which satisfies an invariant I(l) of location l is
denoted by (l , DInv).

2.2.6 Temporal Logic

Here, we give formal descriptions for temporal logic LTL and CTL.

LTL

LTL represents properties related to a path on a target model. The syntax of
LTL is given as follows.

Definition 2.2.7 (Liner Temporal Logic). Syntax of LTL formulae is given as fol-
lows,

ϕ := true | false | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ |
Xϕ | Fϕ | Gϕ | ϕUϕ | ϕRϕ,

where p is an arbitrary atomic proposition.

19

Also, we can interpret the semantics of LTL as follows.

Definition 2.2.8 (Semantics of LTL). For a transition system TS = (S,R,L)
where S is a set of states, R : S × S is transition relation on S, and L : S → 2AP

is function labeling states with atomic propositions, and for a path π on TS, the
semantics of LTL is given as follows.

π |= p ⇐⇒ p ∈ L(π(0))

π |= ¬ϕ ⇐⇒ not π |= ϕ

π |= ϕ1 ∧ ϕ2 ⇐⇒ π |= ϕ1 and π |= ϕ2

π |= ϕ1 ∨ ϕ2 ⇐⇒ π |= ϕ1 or π |= ϕ2

π |= ϕ1 → ϕ2 ⇐⇒ π |= ϕ1 implies π |= ϕ2

π |= F [ϕ] ⇐⇒ ∃i.πi |= ϕ

π |= G[ϕ] ⇐⇒ ∀i.πi |= ϕ

π |= Xϕ ⇐⇒ π1 |= ϕ

π |= [ϕ1Uϕ2] ⇐⇒ ∃i.(πi |= ϕ2 ∧ ∀j.(0 ≤ j < i→ πj |= ϕ1))

π |= [ϕ1Rϕ2] ⇐⇒ ∀i.(πi |= ϕ2 ∨ ∃j.(0 ≤ j < i→ πj |= ϕ1)),

where p is an arbitrary atomic proposition, ϕ, ϕ1 and ϕ2 are arbitrary LTL formu-
lae, π(i) is i-th state in the path π, and πi is the suffix of π after the i-th state.

CTL

CTL represents properties with tree like structures which have several branches.
The syntax of CTL is given as follows.

Definition 2.2.9 (Computational Tree Logic). Syntax of CTL formulae is given as
follows,

ϕ := true | false | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ |
AXϕ | EXϕ | AFϕ | EFϕ | AGϕ | EGϕ | A[ϕUϕ] | E[ϕUϕ],

where p is an arbitrary atomic proposition.

Definition 2.2.10 (Semantics of CTL). For a transition system TS = (S,R,L)
where S is a set of states, R : S × S is transition relation on S, and L : S → 2AP

is function labeling states with atomic propositions, and for a state s ∈ S, the

20

semantics of CTL is given as follows.

s |= p ⇐⇒ p ∈ L(s)

s |= ¬ϕ ⇐⇒ not s |= ϕ

s |= ϕ1 ∧ ϕ2 ⇐⇒ s |= ϕ1 and s |= ϕ2

s |= ϕ1 ∨ ϕ2 ⇐⇒ s |= ϕ1 or s |= ϕ2

s |= ϕ1 → ϕ2 ⇐⇒ s |= ϕ1 implies s |= ϕ2

s |= AF [ϕ] ⇐⇒ for all paths (s0, s1, . . .),

∃i.(i ≥ 0 ∧ si |= ϕ)

s |= EF [ϕ] ⇐⇒ for some paths (s0, s1, . . .),

∃i.(i ≥ 0 ∧ si |= ϕ)

s |= AG[ϕ] ⇐⇒ for all paths (s0, s1, . . .),

∀i.(i ≥ 0 ∧ si |= ϕ)

s |= EG[ϕ] ⇐⇒ for some paths (s0, s1, . . .),

∀i.(i ≥ 0 ∧ si |= ϕ)

s |= AXϕ ⇐⇒ for all states t such that(s, t) ∈ R, t |= ϕ

s |= EXϕ ⇐⇒ for some states t such that(s, t) ∈ R, t |= ϕ

s |= A[ϕ1Uϕ2] ⇐⇒ for all paths (s0, s1, . . .),

∃i.(i ≥ 0 ∧ si |= ϕ2 ∧ ∀j.(0 ≤ j < i→ sj |= ϕ1))

s |= E[ϕ1Uϕ2] ⇐⇒ for some paths (s0, s1, . . .),

∃i.(i ≥ 0 ∧ si |= ϕ2 ∧ ∀j.(0 ≤ j < i→ sj |= ϕ1))

where p is an arbitrary atomic proposition, ϕ, ϕ1 and ϕ2 are arbitrary CTL formu-
lae.

The CTL formulaeAFϕ andEFϕ can be replaced byA[true Uϕ] andE[true
Uϕ], respectively. Also AGϕ and EGϕ can be replaced by ¬EF¬ϕ and ¬AF¬ϕ,
respectively.

2.2.7 CounterExample-Guided Abstraction Refinement

Since model abstraction sometimes over-approximates an original model, we
may obtain spurious CEs which are infeasible on the original model. Paper [11]
gives an abstraction refinement framework called CEGAR (CounterExample-Guided
Abstraction Refinement) (Fig.1.6).

21

In the algorithm, at the first step (called Initial Abstraction), it generates an
initial abstract model. Next, it performs model checking on the abstract model. In
this step, if the model checker reports that the model satisfies a given specification,
we can conclude that the original model also satisfies the specification, because
the abstract model is an over-approximation of the original model. If the model
checker reports that the model does not satisfy the specification, however, we have
to check whether the CE detected is spurious or not in the next step (called Sim-
ulation). In the Simulation step, if we find that the CE is valid, we stop the loop.
Otherwise, we have to refine the abstract model to eliminate the spurious CE, and
repeat these steps until valid output is obtained.

2.3 Proposed Algorithm

Our proposed algorithm generates an abstract model M̂ from a given timed
automaton A , and performs model checking on M̂ . M̂ is in fact a finite automaton.
If a counter example ρ̂ (represented as a sequence of states and labels on M̂) is
detected by model checking, we check whether ρ̂ is feasible on the concrete model
T (A) or not at the simulation step (In this study, for an abstract model M̂ obtained
from a timed automaton A , we call the semantic model T (A) a concrete model of
M̂). In this step, we obtain a set Π of sequences of transitions on A corresponding
to ρ̂, and check whether each path in Π is feasible on T (A) or not. If every path
in Π is infeasible, the next step shall refine the model so that the counter example
ρ̂ becomes infeasible. Our algorithm does not directly refine M̂ but it modifies A
and then obtains a new abstract model from the modified timed automaton A .

The proposed algorithm checks a property AG
∧

e∈E¬e, where E (⊂ L) of a
timed automaton A is a set of error locations of the target system. The property
means there is no path to locations in E from the initial state. Please note that any
counter example of such a property can be represented in a finite length of sequence
without infinite loops. Therefore, hereafter, we assume that counter examples are
finite sequences.

In model checking techniques, several properties presented in CTL[31], LTL[30],
and others would be checked in general. The typical properties, however, are safety
and progress. The reachability analysis is the primitive procedure for safety check-
ing, thus model checking problems on several important properties represented in
CTL could be reduced into the reachability analysis problem. Therefore, the reach-
ability analysis is an important problem.

22

2.3.1 Abstract Model

The proposed method abstracts a given timed automata A = (A,L, l0, C, I, T)
by removing clock variables from A . Therefore, the obtained abstracted model M̂
will be (Ŝ, ŝ0, ⇒̂), where Ŝ = L, ŝ0 = l0.

Here, we define the abstraction function h : S → Ŝ which is a mapping from
S to Ŝ.

Definition 2.3.1 (Abstraction Function h). For a timed automaton A and its se-
mantic model T (A) = (S, s0,⇒), an abstraction function h : S → Ŝ is defined
as follows:

h((l, ν)) = l.

The inverse function h−1 : Ŝ → 2S of h is also defined as h−1(ŝ) = (l,DI(l))
where ŝ = l.

The abstraction function should be defined for each iteration of the refinement,
because both the concrete model and abstract models are deformed. Let Ai and
M̂i be a timed automaton and an abstract model of i-th iteration, respectively. The
abstraction function hi for the i-th loop is defined in the similar way as Definition
2.3.1.

Symbols decorated with ‘ˆ’ represent those of an abstract model (i.e. Ŝ repre-
sents a state set of an abstract model). Definition 2.3.2 gives an abstract model M̂
of a given timed automaton A using the abstraction function h defined in Defini-
tion 2.3.1.

Definition 2.3.2 (Abstract Model). An abstract model M̂ = (Ŝ, ŝ0, ⇒̂) of a given
timed automaton A = (A,L, l0, C, I, T) and its semantic model T (A) = (S, s0,
⇒) is defined as follows:

• Ŝ = L,

• ŝ0 = h(s0), and

• ⇒̂ = {(h(s1), a, h(s2)) | s1
a⇒ s2)}.

The i-th iteration of the refinement loop generates the i-th abstract model
M̂i = (Ŝi, ŝi,0, ⇒̂i) from the i-th timed automaton Ai = (Ai, Li, li,0, Ci, Ii, Ti)
by Definition 2.3.2.

Definition 2.3.3 (Abstract Counter Example). A counter example on M̂ = (Ŝ, ŝ0,

⇒̂) is a sequence of states of Ŝ and labels. An abstract counter example ρ̂ of length
n is represented in ρ̂ = ⟨ŝ0

a1→ ŝ1
a2→ ŝ2

a3→ · · · an−1→ ŝn−1
an→ ŝn⟩. A set P of run

23

Algorithm 2.1 Abstraction(A)
1: /* M̂ = (Ŝ, ŝ0, ⇒̂) */
2: Ŝ := L
3: ŝ0 := l0
4: ⇒̂ := ∅
5: foreach (l1, a, g, r, l2) ∈ T do
6: ⇒̂ := ⇒̂ ∪ {l1, a, l2)}
7: end for
8: return M̂

A C EB

A C E

x <=3

x < 3, y >= 10

B

x:=0

x >= 3, y < 10

x := 0
y := 0

Original Timed Automaton

Abstract Model

^ ^ ^ ^

The location E is an error location.

Figure 2.1: Examples of a Timed Automaton and its Abstract Model

sequences on T (A) obtained by concretizing a counter example ρ̂ is also defined
as follows using the inverse function h−1:

P = {⟨s0
d0→ s′0

a1→ s1
d1→ s′1

a2→ s2
d2→ · · · an→ sn⟩ |

n−1∧
i=0

(si ∈ h−1(ŝi) ∧ di ∈R≥0 ∧ si
di⇒s′i ∧ s′i

ai⇒si+1)}.

If P has at least one element, we find that the counter example ρ̂ is feasible on
the original timed automaton. Otherwise we find that ρ̂ is spurious.

2.3.2 Initial Abstraction

Initial Abstraction generates an abstract model M̂0 shown in Sec.2.3.1 from a
timed automaton A0. Figure 2.1 represents an example of a timed automaton and
its abstract model obtained by applying Initial Abstraction to the timed automaton.

Algorithm 2.1 shows the algorithm of Initial Abstraction.

2.3.3 Simulation

For an abstract counter example ρ̂ = ⟨ŝ0
a1→ ŝ1

a2→ ŝ2
a3→ · · · an→ ŝn⟩, Simulation

checks if a set P of the corresponding run sequences on the concrete model is

24

empty or not.
It is difficult to obtain P directly on the semantic model, because P may have

infinite of sequences. Therefore, in the algorithm, first we obtain a set Π of se-
quences of transitions on A corresponding to ρ̂. Then, we check if each element
in Π is feasible on the T (A) or not. If there is an element π ∈ Π that is fea-
sible on T (A), we can conclude that ρ̂ is a feasible counter example. On the
other hand, if all the elements in Π are infeasible on T (A), we can conclude
that ρ̂ is spurious. The set Π of sequences of transitions on A corresponding to
ρ̂ = ⟨ŝ0

a1→ ŝ1
a2→ ŝ2

a3→ · · · an→ ŝn⟩ is given as follows;

Π = {⟨l0
a1,g1,r1−→ l1

a2,g2,r2−→ l2
a3,g3,r3−→ · · · an,gn,rn−→ ln⟩ |

n∧
i=0

ŝi = li ∧
n∧

i=1

(li−1, ai, gi, ri, li) ∈ T}.

Π may have a finite number of sequences corresponding to ρ̂ because there
might be several transitions in A corresponding to the transition ŝi−1

ai⇒ ŝi even
if ŝi always corresponds to the single location li.

Whether π ∈ Π is feasible on the A is determined by calculating a reachable
state set on A along with π. In this process, when the reachable state set becomes
empty, we can conclude that π is infeasible.

In the Definition 2.3.4, we define the successor state set to be reachable by one
action transition followed by arbitrary delay transitions.

Definition 2.3.4 (Successor State Set). Given a state set (l1, D1) on T (A) for
a timed automaton A and a transition e = (l1, a, g, r, l2), a successor state set
succ((l1, D1), e) from (l1, D1) through the transition e is defined as follows;

succ((l1, D1), e) = {(l2, r(ν)+d) | ν ∈ D1∧d ∈ R≥0∧ (l1, ν)
a⇒ (l2, r(ν))

∧ (l2, r(ν))
d⇒ (l2, r(ν) + d) }.

Lemma 2.3.1. Given a state set (l1, D1) on T (A) of a timed automaton A and a
transition e = (l1, a, g, r, l2), a reachable state set succ((l1, D1), e) (= (l2, D2))
satisfies the following property;

∀ν ∈ D2, ∀d ∈ R≥0. (l2, ν)
d⇒ (l2, ν + d) implies ν + d ∈ D2 .

Lemma 2.3.1 is proved by Definition 2.3.4 obviously.
From Definition 2.3.4, a k-th reachable state set from the initial state set (l0, D0)

is obtained by applying succ function k times like succ(succ(succ(. . . succ((l0,

25

Algorithm 2.2 Simulation(A , π)

1: /* π = (l0
a1,g1,r1−→ l1

a2,g2,r2−→ · · · an,gn,rn−→ ln(ln = e)) */
2: D0 := {0C}
3: D0 := up(D0) /* Any elapsing time */
4: D0 := and(D, I(l0)) /* Add Invariant of l0 */
5: succ list0 := (l0, D0)
6: for i := 1 to n do
7: succ listi := Succ(A , succ listi−1, (li−1, ai, gi, ri, li))
8: if succ listi = ∅ then
9: return succ list

10: end if
11: end for
12: return NULL /* The counterexample can be reproduced */

Algorithm 2.3 Succ(A , R, e)
1: /* To obtain a reachable zone by the given action transition */
2: /* R = (l1, D), e = (l1, a, g, r, l2)) */
3: D := and(D, g) /* add guards of transitions */
4: D := reset(D, r) /* reset the clocks */
5: D := and(D, I(l2)) /* add Invariant of l2 */
6: /* To obtain a reachable zone by delay transitions */
7: D := up(D) /* Any elapsing time */
8: D := and(D, I(l2)) /* add Invariant of l2 */
9: return (l2, D)

D0), e0) . . .), ek−2), ek−1). In the rest of this thesis, by succk(π) the k-th reach-
able state set for π is denoted.

For the sequence π of the length n, π is feasible if succn(π) ̸= ∅, and π is
infeasible if there exists 1 ≤ k ≤ n such that succk(π) equals ∅.

Algorithm 2.2 represents our Simulation algorithm whose inputs are a timed
automaton A and an element π in Π. It checks whether π is feasible on T (A)
or not. The algorithm outputs NULL if π is feasible, and otherwise the list of
reachable state set succ list along with π, which is used in the Refinement step.
Algorithm 2.3 shows the algorithm to obtain the successor state set from a given
state set and an action transition.

The functions and : c(C) × c(C) → c(C), up : c(C) → c(C), and reset :
c(C) × 2C → c(C) used in the algorithm are defined as follows. and(D, g) =

{ν|ν ∈ D ∧ g(ν)}, up(D) = {ν ′|ν ∈ D ∧ d ∈ R≥0 ∧ ν
d⇒ ν ′}, reset(D, r) =

{r(ν)|ν ∈ D}.
Figure 2.2 represents a Simulation process in which an abstract counter exam-

26

A C EB^ ^ ^ ^A counter example

on the abstract model

A C EB
A corresponding path

on the timed automaton

A reachable state set

along with the path
A

x == y
B

x == y
C

x == y &
x <= 3

×

x <=3

x < 3, y >= 10

x := 0

y := 0

Figure 2.2: A Simulation Process

ple on the abstract model of Fig.2.1 is checked. As shown in the figure, a reachable
state set is represented as a product of a location and a zone. Since any reachable
states on the location C don’t satisfy the guard condition x ≤ 3 ∧ y ≥ 10 for the
transition from C to E, they cannot reach to the error location E. Therefore, we
can conclude the counter example is spurious.

2.3.4 Abstraction Refinement

In the example of Fig.2.2, from any state on the location C that is reachable
from the initial state, the control cannot move to E due to the guard condition. On
its abstract model, however, Ê is reachable because we do not consider the clock
constraints on it. This is the cause of the spurious counter example. Generally
in such a case, we have to refine the abstract model by dividing the abstract state
Ĉ so that the state set which is reachable from the initial state and the state set
which is able to move to D become disjoint. Dividing a state space of a timed
automaton usually needs a subtraction operation on zones. However, zones are not
closed under the subtraction operation[57]; therefore, applying such an approach
is difficult. In our approach, we transform the transition relation on the timed
automaton preserving its equivalence so that the model behaves correctly even if
we don’t consider the clock constraints.

Algorithm 2.4 represents our abstraction refinement algorithm. In the algo-
rithm, we first apply equivalent transformation to the original model (l3-l15). Next,
we generate the refined abstract model by removing clock variables from the trans-
formed model (l16). The transformation algorithm on the original model is com-
posed of three steps; Duplication of Locations, Duplication of Transitions, and
Removal of Transitions. Since we have to preserve model equivalence, we impose
the restriction for applying removal of transitions.

These transformation steps add or remove some locations and transitions. There-
fore, at each step, we have to construct a timed automaton for the step with new

27

Algorithm 2.4 Refinement(Ai, π, succ list)

1: /* π = ⟨l0
a1,g1,r1−→ l1

a2,g2,r2−→ · · · an,gn,rn−→ ln(ln = e)⟩ */
2: /* succ list = ⟨(l0, D0), (l1, D1), · · · , (lk, Dk)⟩,

where (lj , Dj) represents the j-th reachable state set along with π, and lk is the last
location reachable from the initial state. */

3: Ai+1 := Ai

4: for j := succ list.length downto 1 do
5: ej := (lj−1, aj−1, gj−1, rj−1, lj)
6: Ai+1 := Duplication(Ai+1, succ listj, ej)
7: /* Duplication of the Location and Transitions */
8: if IsRemovable(Ai+1, succ listj , ej) then
9: Ai+1 := RemoveTransition(Ai+1, ej) /* Removal of Transitions */

10: break
11: else if j = 1 then
12: Ai+1 := DuplicateInitialLocation(Ai+1, (l0, D0))
13: /* Duplicate the initial location and transitions from the initial location */
14: end if
15: end for
16: M̂i+1 := Abstraction(Ai+1, h)
17: return M̂i+1

Algorithm 2.5 DuplicateInitialLocation(A , R0)
1: /* R0 = (l0, D0) */
2: l′0 := newLoc() /* Generate a new location */
3: I(l′0) := Ineqset(D0) /* A set of inequalities representing D0 */
4: L := L ∪ {l′0}
5: foreach (l0, a, g, r, l) ∈ T do
6: (l,D) := Succ(A , (l0, D0), (l0, a, g, r, l))
7: if (l,D) ̸= ∅ then
8: /* Duplicate transitions only feasible from (l0, D0) */
9: l′ := DuplicateOf (A , (l,D))

10: if l′ = ⊥ then
11: T := T ∪ {(l′0, a, g, r, l)} /* Case (2.3) of Def.2.3.9 */
12: else
13: T := T ∪ {(l′0, a, g, r, l′)} /* Case (2.4) of Def.2.3.9 */
14: end if
15: end if
16: end for
17: l0 := l′0
18: return A

28

A CB

x <=1

y == 2

A CB

x <=1

y == 2

Original Timed Automaton

Timed Automaton After Refinement

(A1 becomes the initial location)

x == y

A1 B1

x == y&x <=1

C is the error location

Figure 2.3: An Example of the Algorithm Reaches to the Initial Location

locations and transitions as well as invariants. We can discuss equivalence on each
of the new timed automaton and the original timed automaton.

The algorithm starts with the reachable last location along with π, and if it
cannot apply Removal of Transitions, it traces back π applying the refinement al-
gorithm until being able to apply the removal operation. Finally, if the algorithm
reaches to the initial location, it duplicates (l0, D0) as l̂′0. Figure 2.3 shows an ex-
ample where the algorithm reaches the initial location. Here, at the location A, the
algorithm cannot remove a transition from A to B. For such a case, it duplicates
the initial location A. We let the new duplicated location A1 be the initial location.

Duplication of Locations

In Definitions 2.3.5, 2.3.6 and 2.3.7, we give some definitions related to the
duplicated locations.

Definition 2.3.5 (A Parent of a Location). Let l′ be a duplication of the location l,
and we call l the parent of l′. The function parent : L→ L is defined as follows;

parent(l) =

{
l’s parent, if l has the parent
⊥, if l has no parent.

Definition 2.3.6 (A Root of a Location). A root of a location is the eldest ancestor
parent of the location. The function root : L→ L is defined as follows;

root(l) =

{
l, if parent(l) = ⊥
root(parent(l)), if parent(l) ̸= ⊥.

29

Algorithm 2.6 DuplicateOf(A , R)
1: /* R = (l,D) */
2: l′ := ⊥
3: Dnorm := normk(D) /* k-normalize the zone D */
4: foreach l1 ∈ L such that root(l1) = root(l) do
5: if DI(l1) = Dnorm then
6: l′ := l1
7: break
8: end if
9: end for

10: return l′

In this study, we use the function root to decide whether given locations are
duplicated from the same original location. For example, for locations l1 and l2
with root(l1) = root(l2), we regard l1 and l2 are derived from the same original
location.

Definition 2.3.7. Let T (A) = (S, s0,⇒) be a semantic model of a timed au-
tomaton A = (A,L, l0, C, I, T). For a location l ∈ L and a zone D ∈ c(C), the
function duplicateof : 2S × (L→ c(C)) → L is defined as follows;

duplicateof((l,D), I) =


l′, if there exists a location l′∈L

such that root(l′) = root(l)

∧ DI(l′) = D

⊥, otherwise.

For a given state set (l,D), duplicateof returns the duplicated location l′ of l
such that the invariant I(l′) corresponds to D. In the definition, DI(l′) = D means
the equivalence of a zone corresponding to I(l′) and D (i.e. ν ∈ DI(l′) ⇐⇒ ν ∈
D).

The Algorithm 2.6 implements the function duplicateof defined in Definition
2.3.7. The function normk is the k-normalization function defined in [16]. At the
line 4 of the algorithm, it checks whether the given zone D is equivalent to I(l′)
though D is normalized to Dnorm. If this condition is satisfied for l′, we can find
that the duplicated location based on the state set (l,D) is already generated, and
is l′.

Definition 2.3.8 (Duplication of Locations). Given a timed automaton A = (A,L,
l0, C, I, T) and a path π corresponding to the spurious counter example, suppose
that we apply refinement to the k-th location lk and transition ek of π. And let
succk(π) equal (lk, Dk). In this case, we generate a new location l′k as a duplicate

30

of lk only if duplicateof((lk, Dk), I) = ⊥. Also, we impose a location invariant
on l′k as I(l′k) = Ineqset(Dk).

Invariant I(l′) for the duplicated location l′ is stronger than that (I(l)) of the
original location l. Therefore, for zone representation of them, DI(l′) ⊂ DI(l)

holds.
For semantic states s = (l, ν) and s′ = (l′, ν ′), we consider s′ is the duplicate

of s if l = parent(l′) and ν ′ = ν hold.

Duplication of Transitions

Suppose that we apply refinement to the k-th location lk and transition ek of a
path π corresponding to the spurious counter example. In Duplication of Transi-
tion, we duplicate the transition ek and also transitions which are feasible on the
reachable states on lk. In Def.2.3.9, we define the transitions to duplicate.

Definition 2.3.9 (Duplication of Transitions). For a timed automaton A = (A,L,
l0, C, I, T) and a path π corresponding to the spurious counter example, suppose
that we apply refinement to the k-th location lk and transition ek = (lk−1, ak, gk,
rk, lk) of π. And also let l′k be the duplicate of the k-th reachable state set succk(π)
(= (lk, Dk)). Then l′k equals duplicateof((lk, Dk), I) (̸= ⊥). In Duplicate of
Transitions, we duplicate the following transitions;

• a duplicate of ek
(lk−1, ak, gk, rk, l

′
k) (2.2)

• duplicates of action transitions e = (lk, a, g, r, l) ∈ T which are feasible
from (lk, Dk)

– In the case when a duplicate location corresponding to succ((lk, Dk), e)
has not been generated;

{ (l′k, a, g, r, l) |
e = (lk, a, g, r, l) ∈ T ∧ (l,D) = succ((lk, Dk), e) ̸= ∅

∧ duplicateof((l,D), I) = ⊥ } (2.3)

– In the case when a duplicate location corresponding to succ((lk, Dk), e)
has been generated;

{ (l′k, a, g, r, l′) |
e = (lk, a, g, r, l) ∈ T ∧ (l,D) = succ((lk, Dk), e) ̸= ∅

∧ l′ = duplicateof((l,D), I) ̸= ⊥} (2.4)

31

Algorithm 2.7 Duplication(A , Rk, ek)

1: /* Rk = (lk, Dk), ek = (lk−1, ak, gk, rk, lk) */
2: l′k := DuplicateOf (A , (lk, Dk))
3: if l′k = ⊥ then
4: /* Duplicate a Location */
5: l′k := newLoc() /* Generate a new location */
6: L := L ∪ {l′k}
7: Dnorm := normk(Dk) /* k-normalize the zone Dk */
8: I(l′k) := Ineqset(Dnorm) /* A set of inequalities representing Dk */
9: end if

10:
11: /* Duplicate transitions */
12: T := T ∪ {(lk−1, ak, gk, rk, l

′
k)} /* Case (2.2) of Def.2.3.9 */

13: foreach (lk, a, g, r, l) ∈ T do
14: (l,D) := Succ(A , (lk, Dk), (lk, a, g, r, l))
15: if (l,D) ̸= ∅ then
16: /* Duplicate transitions only feasible from (lk, Dk) */
17: l′ := DuplicateOf (A , (l,D))
18: if l′ = ⊥ then
19: T := T ∪ {(l′k, a, g, r, l)} /* Case (2.3) of Def.2.3.9 */
20: else
21: T := T ∪ {(l′k, a, g, r, l′)} /* Case (2.4) of Def.2.3.9 */
22: end if
23: end if
24: end for
25: return A

Expression (2.2) duplicates a transition ek (a transition from lk−1 to lk). The
duplicated one is a transition from lk−1 to l′k.

Expressions (2.3) and (2.4) duplicate a transition e such that its starting loca-
tion is lk and can fire from succk(π). The duplicated one is a transition from l′k.
Expression (2.4) is for the case that there exists a duplicated location l′ such that
l′ is derived from (l,D) and (l,D) is reachable from succk(π) via e. For such a
case, it duplicates a transition to l′ instead of l.

Algorithm 2.7 shows both of the duplication algorithms for locations and tran-
sitions, because duplication algorithm for transitions depends on the information
of that for locations.

Here, we give a lemma about transitions duplicated in the algorithm.

Lemma 2.3.2. Given a timed automaton A and a path π corresponding to the
spurious counter example, suppose that we apply refinement to the k-th location lk
and transition ek of π, and let (lk, Dk) = succk(π). The semantic model T (A) =

32

Algorithm 2.8 RemoveTransition(A , e)
1: /* e is a transition to remove */
2: T := T \ {e}
3: return A

Algorithm 2.9 IsRemovable(A , R, e)
1: /* R = (l′, D′), e = (l, a, g, r, l′) */
2: R′ := Succ(A , (l,DI(l)), e) /* obtain the whole states reachable from l */
3: return (R = R′)

(S, s0,⇒) of A satisfies a following property;

There exists a transition (s1, a, s2) ∈⇒ such that s1 ∈ (lk, Dk), if and
only if there exists a duplicated transition (s′1, a, s

′
2) ∈⇒ such that s′1

is the duplicate of s1, and s′2 = s2 or s′2 is the duplicate of s2.

Proof. From the Expressions (2.3) and (2.4) in the Definition 2.3.9, we duplicate
all the transitions which are feasible from the states in (lk, Dk). Also, for transi-
tions duplicated in the step, the transformed automaton has the original transitions
on which the duplication is based. Therefore, T (A) satisfies the given prop-
erty.

Removal of Transitions

Let ek = (lk−1, ak, gk, rk, lk) be the k-th action transition in a path π, and
(lk, Dk) = succk(π) be the k-th reachable state set on π. Here, we also assume
that a duplicated location l′k = duplicateof((lk, Dk), I) and a duplicated transi-
tion e′k = (lk−1, ak, gk, rk, l

′
k) are generated by the latest application of the dupli-

cation operations. Here, let us consider that a semantic state s = (lk, ν) and its
duplicated state s′ = (l′k, ν) are essentially equivalent (all the enable transitions
from the states are equivalent) for all ν ∈ Dk. Then, if the successor state set
succ((lk−1, DI(lk−1)), ek) is equal to (lk, Dk), it seems that we can substitute e′k
for ek because succ((lk−1, DI(lk−1)), e

′
k) is equal to (l′k, Dk). From this fact we

can conclude that even if we remove the transition ek, the equivalence among the
semantic models is preserved. The equivalence is proved in Sec.2.4.

We define the condition to remove transitions in Definition 2.3.10. The func-
tion isRemovable in the definition is implemented as represented in Algorithm
2.9.

Definition 2.3.10 (Removable Transitions). Let T (A) = (S, s0,⇒) be a se-
mantic model of a timed automaton A = (A,L, l0, C, I, T). For a transition

33

e = (l1, a, g, r, l2) ∈ T and a state set (l2, D2) ⊂ S, the function isRemovable :
T × 2S × (L→ c(C)) → bool is defined as follows;

isRemovable(e, (l2, D2), I) =

{
true, if succ((l1 , DI(l1)), e)=(l2, D2)

false, otherwise.

In our approach, as represented in Algorithm.2.4, we finish the refinement oper-
ation when isRemovable(ek , succ

k (π), I) becomes true for the first time. Though
we are able to produce a finer model if we continue the refinement operation, we
finish the operation at this point to produce a coarser model that is enough to re-
move the spurious counter example.

We define transitions to remove in Definition 2.3.11, and in Algorithm 2.8 the
algorithm for removal of transitions is represented.

Definition 2.3.11 (Removal of Transitions). For a path π on a timed automaton
A = (A,L, l0, C, I, T) corresponding to the spurious counter example, let m be a
minimum positive integer which satisfies succm(π) = ∅. For a maximum positive
integer k ≤ m which satisfies isRemovable(ek , succ

k (π), I) = true, we remove
the k-th transition ek from T in the removal of transitions, if there exists such an
integer k.

In the rest of this thesis, we describe isRemovable(ek, succk(π), I) as
isRemovable(π, k, I) simply.

Lemma 2.3.3. If a transition was removed by Removal of Transitions, the same
transition will not be generated by Duplication of Transition.

Proof. Without loss of generality, we assume that a transition e = (l1, a, g, r, l2) is
removed in the i-th loop.

Here, there is (l2,D2) such that isRemovable(e,(l2,D2),
Ij) is true, and succ((l1, DIj(l1)), e) is equal to (l2, D2) by Definition 2.3.11. By
Sec.2.3.4, there is a duplicated location l′2 such that l′2 = duplicateof ((l2, D2), Ij))
and a duplicated transition (l1, a, g, r, l

′
2). D2 ⊂ DIi(l2) also holds.

We have to consider three cases that the transition e is regenerated in j(> i)-th
loop. The three cases are corresponding to Expressions (2.2), (2.3), and (2.4) of
Definition 2.3.9. Let assume that a sequence which is corresponding to a counter
example detected in the j-th loop, is πj .

Case Expression (2.2): In such a case, the (k − 1)-th location of πj is l1. Also
the k-th transition is ek = (l1, a, g, r, lk)(root(lk) = root(l2)), where l2 equals
duplicateof (succ(πj , k)), Ij). However, a set of every reachable state from l1 via
ek is (lk, D2). From the fact D2 ⊂ DIj(l2)(= DIi(l2))), l2 = duplicateof (succ(π,
k)), Ij) does not hold.

34

Case Expression (2.3) and (2.4): Let us assume that the k-th location of πj is
lk and succ(πj , k) is equal to (lk, Dk). Then for a transition e′ = (lk, a, g, r, l) ∈
Tj(root(l) = root(l2)), It should hold that l1 = duplicateof (lk, Dk), and
duplicateof (succ(lk, Dk), e

′), Ij) = l2 or ⊥. From the facts duplicateof (succ(lk,
Dk), e

′), Ij) = l′2 and l′2 ̸= l2 hold, which contradicts.
Thus, we can conclude that for any case of Definition 2.3.9, the transition e

will not be duplicated. Therefore, the lemma is proved.

2.3.5 Example

Figure 2.4 shows a process of Refinement for a counter example in Fig.2.2.
The last states reachable from the initial location through the path is represented
as (C, x ≤ 3 ∧ x == y). The algorithm duplicates the location C and obtains
a duplicated location C1. Then it duplicates transitions by Definition 2.3.9. This
process is shown in Fig.2.4 (a)-(c). The transition from C to B can fire in the state
(C, x ≤ 3 ∧ x == y). Therefore it generates a transition from C1 (Fig.2.4 (c)),
however it does not duplicate the transition from C to E, because it cannot fire in
the state (C, x ≤ 3 ∧ x == y).

At this point, if we could remove a transition from B to C, we would have
removed the counter example. However, we cannot remove the transition, because
the state set of C reachable from any state which satisfies the invariant of B is
(C, x ≤ 3) and it does not equal (C, x ≤ 3∧ x == y) which is the reachable state
set of C through the path. Instead of this, we perform the algorithm to location B
backwards the path (Fig.2.4 (d)-(g)).

Figure 2.4 (f) shows the process of Duplication of Transitions from B to C.
Here, the state set of C reachable from the state set (B, x == y), which is the
reachable state set on B via the path, is (C, x ≤ 3 ∧ x == y). The corresponding
location for (C, x ≤ 3 ∧ x == y) is already generated as location C1, hence
duplicateof ((C, x ≤ 3∧x == y), I) = C1. Therefore the transition from B to C
is duplicated as a transition from B1 to C1.

Figure 2.4 (g) shows the process of removal of a transition. A state set of
B reachable from (A, true) is (B, x == y), which is equal to a state set of B
reachable from the initial state set (A, x == y). Therefore a transition e1 from A
to B is removable, because isRemovable(e1, (B, x == y), I) is true.

Figure 2.5 (a) and (b) show the obtained timed automata applying second and
third refinements, respectively. In the second iteration, a spurious counter example
⟨Â τ→ B̂1 τ→ Ĉ1 τ→ B̂

τ→ Ĉ
τ→ Ê⟩ is detected for the abstract model for the

model in Fig.2.4 (g) (We assume that unlabelled transition is labelled by τ). For
such a spurious counter example, we can obtain a timed automaton in Fig.2.5 (b).

In a similar way, the third iteration detects counter example ⟨Â τ→ B̂1 τ→

35

Duplicate the location C

A

C E

x <=3

x < 3&y >= 10

C1

B

x <=3&x==y

x >= 3&y < 10

x:=0
B1

x==y

(e)

(d)

C E

x <=3

x < 3&y >= 10
B

x >= 3&y < 10

x := 0

y := 0

A

C E

x <=3

x < 3&y >= 10

C1

B

x <=3&x==y

x:=0
x >= 3&y < 10

C E

x <=3

x < 3&y >= 10
B

(b)

(a) Duplicate the location B

Duplicate the transition between B and C, which
is the case (1) of the Definition 2.3.9

Duplicate the transition between A and B, which
is the case (1) of the Definition 2.3.9

x:=0
x >= 3&y < 10

x:=0
x >= 3&y < 10

x:=0
x >= 3&y < 10

x := 0
y := 0

x := 0
y := 0

x := 0
y := 0

(f)

A C1

x <=3&x==y

x >= 3&y < 10

x:=0
B1

x==y

A

C E

x <=3

x < 3&y >= 10

C1

B

x <=3&x==y

x >= 3&y < 10

x:=0
B1

x==y
x := 0
y := 0

(g)

A C1

x <=3&x==y

A

C E

x <=3

x < 3&y >= 10

C1

B

x <=3&x==y

x >= 3&y < 10

x:=0

(c)
Duplicate the transition between C and B, which
is the case (2) of the Definition 2.3.9

Duplicate the transition between B and C, which
is the case (3) of the Definition 2.3.9

Remove the transition between A and B

x:=0
x >= 3&y < 10

x:=0
x >= 3&y < 10

x >= 3&y < 10

x := 0
y := 0

x := 0
y := 0

x := 0
y := 0

A

C E

x <=3

x < 3&y >= 10

C1

B

x <=3&x==y

x >= 3&y < 10

x:=0
B1

x==y

x:=0
x >= 3&y < 10

x := 0
y := 0

Figure 2.4: The Refinement Process for the Path in Fig.2.2

36

A

C E

x <=3

x < 3&y >= 10

C1

B

x <=3&x==y

x:=0

x >= 3&y < 10

x:=0

x >= 3&y < 10

B1

x==y

B2 C2

x <=3&x==y-3x== y - 3

x >= 3&y < 10

x:=0

x := 0
y := 0

(a)

C E

x <=3

x < 3&y >= 10

B

x >= 3&y < 10

B2 C2

B3 C3

x <=3&x==y-6x== y - 6

x:=0

x:=0

x <=3&x==y-3

x:=0

x== y - 3

x >= 3&y < 10

x >= 3&y < 10

x:=0

x >= 3&y < 10
(b)

A C1B1

x==y x <=3&x==y

x := 0
y := 0

Figure 2.5: The Timed Automata After the Second ((a) of the Figure) and Third
((b) of the Figure) Refinement Steps Respectively

Ĉ1 τ→ B̂2 τ→ Ĉ2 τ→ B̂
τ→ Ĉ

τ→ Ê⟩, which is a true counter example. As a result,
the algorithm terminates with the report of the counter example.

2.4 Correctness Proof

Paper [12] gives a theorem on a conservative class of abstractions which at-
tempts to preserve semantics of automata against state reductions under the condi-
tion that it checks only a property AG p for a proposition p.

From the theorem, we can derive the following theorem.

Theorem 2.4.1. Given a timed automaton A = (A,L, l0, C, I, T), E ⊂ L be a
set of error location and M̂ be the abstract model. The following statement always
holds.

M̂ |= AG
∧
e∈E

¬ê ⇒ A |= AG
∧
e∈E

¬e (2.5)

Proof. Let the semantic model of A be T (A) = (S, s0,⇒). For a proposition p,
if an abstraction function h satisfies the following for every s ∈ S:

h(s) |= p⇒ s |= p (2.6)

then M̂ |= AG p⇒M |= AG p holds by Theorem 1 in Paper [12].
Here we assume that p equals

∧
e∈E ¬e. From the Definition 2.3.1, h(l, ν)

equals l. Therefore, h((l, ν)) |=
∧

e∈E e ⇒ (l, ν) |=
∧

e∈E e obviously holds.
As a result, the abstraction function h satisfies the statement 2.6; Theorem 2.4.1 is
proved.

37

The transitions at the top are those of the semantic model of Fig.2.1
and at the bottom are those of Fig.2.4 (g).

Figure 2.6: An Example of the Case When s1
a⇒ s2 ̸∈⇒′ in the Proof (i) of

Lemma 2.4.1

Next, we prove that the transformation on a timed automaton is equivalent
transformation, and also that the abstract model generated by the refinement algo-
rithm is the refined model of the former abstract model.

We prove the equivalence of the transformation by proving that the semantic
model of the timed automaton after the transformation is bi-simulation equivalent
to the original one.

Lemma 2.4.1. Let A ′ be a timed automaton model obtained by applying refine-
ment algorithm into a timed automaton A . Then the semantic models of them are
bi-simulation equivalent to each other.

Proof. For semantic models T (A) = (S, s0,⇒) and T (A ′) = (S′, s′0,⇒′), we
define a relationR ⊆ S×S′ as follows, and prove thatR is a bi-simulation relation.

R = {(s, s′) | s ∈ S ∧ s′ ∈ S′ ∧ ((s = s′) ∨ (s′ is the duplicate of s))}

Let us denote a path on the A corresponding to the spurious counter example
used in the refinement step by π = ⟨l0

a1,g1,r1−→ l1
a2,g2,r2−→ · · · an,gn,rn−→ ln⟩, and denote

the i-th transition (li−1, ai, gi, ri, li) on π by ei.
Letm be the minimum positive integer which satisfies succm(π) = ∅, and k be

the maximum integer within 1 ≤ k ≤ m which satisfies isRemovable(π, k, I) =

38

true. If there is no such an integer k, we let k be 0. We are going to prove that R
is a bi-simulation relation by proving the following properties (i) to (iv).

(i) For all (s1, s′1) ∈ R and a ∈ A, if there exists an action transition s1
a⇒ s2,

there exists a corresponding transition s′1
a

⇒′s′2 and (s2, s
′
2) ∈ R holds.

First, we consider the case when s1 equals s′1 holds.

If s1
a

⇒′s2 holds, then the property is obviously satisfied.
In the case when s1 a⇒

′
s2 does not hold, (See Fig.2.6) that is when the transition

s1
a⇒ s2 is related to the transition ek, then k ̸= 0, s1 ∈ (lk−1, DI(lk−1)), s2 ∈

(lk, DI(lk)) and a = ak hold. In addition to this, isRemovable(π, k, I) is true
due to Definition 2.3.11. Also, if isRemovable(π, k, I) is true, any successor state
from s1 through ek is included in (lk, Dk) due to Definition 2.3.10, and this implies
s2 ∈ (lk, Dk). Also, there is a duplicated location corresponding to (lk, Dk), and
therefore, s2 has its duplication s′. In addition, by the Duplication of Transitions,
the transition s1 a⇒

′
s′2 is generated as the duplicate of s1

a⇒ s2, and (s2, s
′
2) ∈ R

holds.

In the case that holds s1 ̸= s′1, i.e. s′1 is the duplicate of s1, by Lemma 2.3.2
there always exists s′1

a⇒
′
s′2 as the duplicate transition of s1

a⇒ s2. In this case, s′2
is s2 itself or the duplicate of s2. Thus, (s2, s′2) ∈ R holds.

(ii) For every (s1, s
′
1) ∈ R and d ∈ R≥0, if there exists a delay transition s1

d⇒ s2,

there exists a corresponding transition s′1
d

⇒′s′2 and (s2, s
′
2) ∈ R holds.

In the case s1 = s′1, it obviously holds.
In the case s1 ̸= s′1, i.e. s′1 is the duplicate of s1, let s1 and s′1 be (l, ν)

and (l′, ν) respectively, which satisfies l ̸= l′ and l = parent(l′). Also, l′ is
the duplicated location based on a state set (l,D) (ν ∈ D) which is obtained by
the succ operation. According to Lemma 2.3.1, a state set obtained by the succ
operation closes under delay transitions. Here, although the invariants on l and
l′ are different, l′ is the duplicated location of l. Therefore, the invariant of l′

is stronger than that of l and this implies D ⊂ DI(l). From this fact, we find

that for all ν and d , (l, ν) d⇒ (l, ν+d) implies (l, ν+d) ∈ (l,D). Similarly

for such ν and d, (l′, ν+d) ∈ (l′, D) holds. Therefore, (l′, ν)
d

⇒′(l′, ν+d) and
((l, ν + d), (l′, ν + d)) ∈ R holds.

(iii) For every (s1, s
′
1) ∈ R and a ∈ A, if there exists an action transition s′1

a

⇒′s′2,
there exists a corresponding transition s1

a⇒ s2 and (s2, s
′
2) ∈ R holds.

39

If s′1
a

⇒′s′2 is not a duplicated transition, s′1
a⇒ s′2 holds obviously.

Otherwise, s′1
a⇒ s′2 does not hold. As implied in Lemma 2.3.2, however, a

duplicated transition always has the original one, and therefore, there exists the
original transition s1

a⇒ s2, and (s2, s
′
2) ∈ R.

(iv) For every (s1, s
′
1) ∈ R and d ∈ R≥0, if there exists a delay transition s′1

d

⇒′s′2,

there exists a corresponding transition s1
d⇒ s2 and (s2, s

′
2) ∈ R holds.

This is proved by Lemma 2.3.1 in a similar manner of the proof of (ii).
From the proof of (i), (ii), (iii) and (iv), R is proved to be a bi-simulation

relation. Thus, T (A ′) is bi-simulation equivalent to T (A).

Next, we show that an abstract model generated by applying our algorithm will
be a refined model of the previous one.

Lemma 2.4.2. Let M̂ ′ be a refined abstract model from M̂ by our proposing tech-
nique. M̂ ′ is a refined model of M̂ .

We prove the lemma by prove that M̂ simulates M̂ ′.
Let M̂ and M̂ ′ equal (Ŝ, ŝ0, ⇒̂), and (Ŝ′, ŝ′0, ⇒̂′), respectively. Then we can

define a relation R̂ ⊆ Ŝ′ × Ŝ as follows and we have only to prove that R̂ is a
simulation relation.

R̂ = {(ŝ′, ŝ) | ŝ′ ∈ Ŝ′ ∧ ŝ ∈ Ŝ ∧ (ŝ′ = ŝ) ∨ (ŝ = parent(ŝ′))}

We omit the detailed proof because it is similar to the case (iii) in the proof of
Lemma 2.4.1.

Next, we show that our refinement removes ρ̂ for a counter example ρ̂ = ⟨ŝ0
a1→

ŝ1
a2→ · · · an→ ŝn⟩ on an abstract model M̂i of i-th iteration.
Here, we show the simple case only. However, other cases are also discussed in

a similar way. We assume that path set Π corresponding to ρ̂ on timed automaton
Ai, has a single element π = ⟨l0

a1,g1,r1−→ l1
a2,g2,r2−→ · · · an,gn,rn−→ ln⟩.

Let integers k and b be the integers defined by Definition 2.3.11. The algo-
rithm generates duplicated locations l′k, l

′
k+1, · · · l′m−1 for the location lk to lm−1,

if these locations have not been generated, and also, it removes the transition
(lk−1, ak, gk, rk, lk) as shown in Fig.2.7. It also duplicates related transitions as
shown in Fig.2.7.

These transitions are duplicated using Expression (2.4) in Definition 2.3.9.
Each transition from lj−1 to lj is duplicated as a transition from l′j−1 to l′j , where
k ≤ j ≤ m− 1.

For abstract model M̂i+1 of a timed automaton Ai+1 which is obtained after the
i-th iteration, we can reach a state ŝ′m−1(= l′m−1) through a path ρ̂. However, we

40

π ...

...

l0 l1
...

......

lk

lk-1 lk lk+1

lk+1 lm-1

lm-1

...

...

ln

‘ ‘ ‘

Timed Automaton

After the Refinement Step

l0 l1 lk-1 lk lk+1
lm-1 ln

The hashed locations, and bold transitions mean duplicated locations
and duplicated transitions respectively.

Figure 2.7: An Overview of the Timed Automaton After the Refinement Step with
the Path π

cannot reach a state ŝm even considering duplicated transitions. Thus, the sprious
counter example is removed.

Theorem 2.4.2 (Correctness). Our abstraction refinement algorithm refines ab-
stract models correctly.

Proof. By Lemma 2.4.1, abstract models before and after the refinement step are
bi-simulation equivalent. Also, by Lemma 2.4.2, an original abstract model sim-
ulates its refined abstract model. These lemmas imply our abstraction refinement
algorithm refines abstract models correctly.

Theorem 2.4.3 (Termination). The proposed CEGAR algorithm terminates.

Proof. The proposed algorithm consists of three operations, Duplication of Loca-
tion, Duplication of Transition, and Removal of Transition.

For a given finite counter example without loop, at least one of the three opera-
tions is executed at each iteration. Therefore, our goal is to show that the numbers
of duplicated locations, duplicated transitions, and removal of transition are finite.
And also we have to show that the algorithm never repeats the process of regener-
ation of a transition which is once removed.

Duplication of Location duplicates the location for a given location l ∈ L and
zone D ∈ c(C). In general, a zone on C is finite[16] under the k-normalization.
Therefore, the duplicated location also be finite.

Duplication of Transition duplicates a transition. The number of locations in-
cluding the duplicated ones is finite. And also the number of application of Dupli-

41

cation of Transition is limited to the number of locations. Therefore the number of
duplicated transition is also finite.

The transition set which will be removed is subset of whole transitions; it is
finite. Lemma 2.3.3 states that the algorithm never repeats the process of the re-
generation. Thus, the algorithm terminates.

2.5 Experiment

This section shows experimental results of applying the proposed abstraction
to the example of “Gearbox Controller”[58], and also evaluates effectiveness of the
abstraction mainly from the view points of space consumption.

2.5.1 goals of the Experiments

In this experiment, we evaluated the performance of our proposed approach
with regard to execution time, memory consumption, We compared performance
of model checking using our abstraction technique with that of model checking by
UPPAAL[5] without any abstraction.

2.5.2 Example

The model of Gearbox Controller is composed of five processes (Gear Con-
troller, Interface, Gearbox, Clutch, and Engine), and has five clock variables. In
paper[58], 14 requirement specifications to verify are defined. In this experiment,
we verified five specifications of them (specifications (7) to (11) in [58]).

2.5.3 Procedure of the Experiments

Since our abstraction technique cannot accept timed automata described as
concurrent processes, we generated a parallel composition of the concurrent pro-
cesses and applied abstraction to the composition. When we performed model
checking without abstraction, we used two types of models. One is the model
described as concurrent processes (original model), and the other is the parallel
composition of them.

The experiments were performed under Intel Core2 Duo 1.8 GHz, 2GB RAM,
and Ubuntu 10.04 (64bit). The version of UPPAAL was 4.0.11.

2.5.4 Results of Experiments

Table 2.1 shows results of experiments. The columns of ‘original’ and ‘com-
position’ represent results of performing model checking to the original model and

42

Table 2.1: The Experimental Results

original composition abstraction
spec time(s) mem(MB) time(s) mem(MB) time(s) mem(MB) loop dup

(7) 0.10 1.62 0.80 18.92 471.91 10.18 104 538

(8) 0.10 1.62 0.80 35.43 470.48 9.77 96 392

(9) 0.10 1.62 0.80 19.06 514.89 10.05 112 485

(10) 0.10 1.62 0.80 18.90 503.53 9.86 105 435

(11) 0.10 1.62 0.80 46.13 987.63 10.17 175 521

parallel composition of it, respectively, and they are the result without abstrac-
tion. Also, the columns of ‘abstraction’ represent results of applying abstraction.
The columns of ‘time’ represent total execution time (sec), and those of ‘mem’
represent the maximum memory consumption during model checking (MB). The
columns of ‘loop’, ‘dup’ represent a count of loop, and a number of duplicated
location, respectively. The column of ‘spec’ means a specification verified in its
experiment.

The results show the proposed abstraction can reduce the memory consumption
from applying model checking without abstraction in all cases. Especially, For ver-
ification of the specification (11), the abstraction reduces the memory consumption
about 80 percent.

2.5.5 Discussion

The experimental results show that our model abstraction technique reduces
the memory consumption about 50 percent to 80 percent. From this results, we
conclude that our abstraction can reduce state space of a timed automaton. On the
other hand, the execution time increases drastically. This is because our abstrac-
tion requires more than 100 times of iteration to generate the appropriate abstract
model. Also, overheads of file I/O cause the increase of execution time since our
model checker and CEGAR tool in the prototype send and receive information
about abstract models through files for each iteration.

Unfortunately, results of ‘original’ show better performance than those of ‘ab-
straction.’ Comparison of the results of ‘original’ and ‘composition’ indicates
that parallel composition causes the increase of memory consumption. Therefore,
memory consumption of ‘abstraction,’ which requires a parallel composed model,
also increased in this experiment. For a model described as concurrent processes,
UPPAAL can use several state space reduction techniques such as the partial or-
der reduction[41] and symmetry reduction[43] techniques. Because of such tech-

43

niques, the results of ‘original’ show better performance.

2.5.6 Complexity

Here, the computational complexity and space complexity of our algorithm
(Initial Abstraction, Simulation and Refinement) are given.

For A = (L, l0, T, I, C,A)，let n = |C|.

Initial Abstraction From the Algorithm 2.1, the computational complexity is
O(|L|+ |T |) and the space complexity is also O(|L|+ |T |)

Simulation Let a length of counter example be l. In the algorithm Succ shown
in Algorithm 2.3, operational functions up and and are used. The computational
complexity of up and and are O(n) and O(n2), respectively. Therefore, the com-
putational complexity of Succ is O(n2). Also, because a new DBM is generated
in the algorithm Reach, the space complexity is O(n2) . Because the algorithm
Reach is called l times in Simulation, its computational complexity and space
complexity is O(l × n2) and O(l × n2), respectively.

Abstraction Refinement The computational complexity of the algorithms
DuplicateState, DuplicateTransition, RemoveTransition is O(n3), O(|T |),
O(n2). Therefore that of the algorithm Refinement becomes O(n3 + |T |). Also,
the space complexity of these algorithms is O(n2), O(|T |), and O(1). Thus, that
of the algorithm Refinement is O(n2 + |T |).

2.6 Summary

This study proposes a model abstraction technique for timed automata based on
the CEGAR algorithm. In general, most CEGAR based algorithms obtain refined
abstract models from the previous abstract models by modifying some transfor-
mations. In our algorithm, however, the refined model is obtained indirectly; we
transform the original timed automaton preserving the equivalence and from it we
generate an abstract model by eliminating clock attributes.

This study gives a formal description and correctness proof of our algorithms.

44

Chapter 3

Abstraction Refinement for
Probabilistic Timed Automata
based on CEGAR

3.1 Introduction

This chapter describes an extension of our CEGAR technique described in
Chapter 2 into abstraction for probabilistic timed automata.

Probabilistic timed automata are kinds of timed automata extended with prob-
abilistic behavior. This means that the probabilistic timed automata have proba-
bilistic distributions instead of discrete transitions. Therefore, we can extend our
abstraction technique into abstraction for probabilistic timed automata by replac-
ing the operations on discrete transitions used in the original algorithm with those
on probabilistic distributions.

The abstraction technique abstracts time attributes of probabilistic timed au-
tomata by applying our abstraction technique for timed automata. Then, we ap-
ply probabilistic model checking to the generated abstract model which is just a
Markov decision process (MDP) with no time attributes. The probabilistic model
checking algorithm calculates a summation of occurrence probability of all paths
which reach to a target state for reachability analysis. For probabilistic timed au-
tomata, however, we have to consider required clock constraints for such paths,
and choose the paths whose required constraints are compatible. Since our abstract
model does not consider the clock constraints, we add a new flow where we check
whether all paths used for probability calculation are compatible. Also, if they are
not compatible, we transform the model so that we do not accept such incompatible
paths simultaneously.

45

2

0.2

1

3 4

5 6

109

7 8

0.8

1.0

1.0

1.0

1.0
0.2

0.30.5

0.5
0.5

0.5 0.5

1.0

Figure 3.1: An Example of an MDP

In this research, we show the reachability analysis algorithm for probabilistic
timed automata, and prove its correctness.

3.2 Preliminary

3.2.1 Probability Distribution

A discrete probability distribution on a finite set Q is given as the function
µ : Q → [0, 1] such that Σq∈Qµ(q) = 1. Also, support(µ) is a subset of Q such
that ∀q ∈ support(µ).µ(q) > 0 holds.

3.2.2 Markov Decision Process

A Markov decision process (MDP)[59] is a Markov chain with non-deterministic
choices.

Definition 3.2.1 (Markov Decision Process). A Markov decision process MDP is
3-tuple (S, s0, Steps), where
S : a finite set of states;
s0 ∈ S : an initial state; and
Steps ⊆ S×A×Dist(S): a probabilistic transition relation where Dist(S) is a
probability distribution over S.

A set of infinite paths starting from the state s is denoted by Pathful(s). We
denote a probability measure over a set Ω of paths by Prob(Ω) .

In our reachability analysis procedure, we transform a given PTA into a finite
MDP, and perform probabilistic verification based on the Value Iteration[60] tech-
nique.

46

2

0.2

1

3

5 6

109

7

0.8

0.2
0.30.5

0.5
0.5

0.5 0.5

1.0

1

4

109

7

1.0

1.0

0.5

1

4

10

8

1.0

1.0

1.0

a) b) c)

0.5

Figure 3.2: Examples of Adversaries

Figure 3.1 shows an example of an MDP. In the figure, probability distributions
are associated with transitions. In the figure, transitions which belong to the same
distribution are connected with a small arc at their source points. The MDP has
several non-deterministic choices at the state 1 and 4. For example, at the state 1,
we have two choices; 1) the control moves to the state 2 with the probability 0.2
and to the state 3 with the probability 0.8, 2) the control moves to the state 4 with
the probability 1.0.

Adversary

An MDP has non-deterministic transitions called action. To resolve the non-
determinism, an adversary is used. The adversary requires a finite path on an MDP,
and decides a transition to be chosen at the next step. For any adversaryA and state
s, we let PathAful(s) denote the subset of Pathful(s) induced by A. For a given
MDP MDP , we denote the set of all adversaries on MDP by AdbMDP .

Figure 3.2 shows examples of resolving the non-determinism of the MDP shown
in Fig.3.1 by some adversaries. Figure 3.2. a) is the case where we choose the ac-
tion which moves to the state 2 or state 3 at the initial state 1. On the other hand,
b) and c) are the cases where we choose the action which moves to the state 4 at
the initial state 1. In the case of b), we choose the action which moves to the state
7 when we move from the state 1 to state 4. Also, in the case of c), we choose the
action which moves to the state 8 in the same trace.

Here, if we want to obtain the reachability probability from the state 1 to the
state 10, under the adversary of a), we can obtain the probability 0.08 (= 0.8 ×
0.2×0.5), which is the minimum reachability probability. On the other hand, under
the adversary of c), we can obtain the probability 1.0 (= 1.0 × 1.0 × 1.0), which
is the maximum reachability probability.

47

a

b

c

d
0.5

0.5
x:=0

x==0∧y>=1

x<1
1

1

Figure 3.3: An Example of a PTA

Value Iteration

A representative technique of model checking for an MDP is Value Iteration[60].
The Value Iteration technique can obtain both of maximum and minimum proba-
bilities of reachability and safety properties, respectively. At each state, Value
Iteration can select an appropriate action according to the property to be checked.
Therefore, the technique can produce the adversary as well as the probability.

3.2.3 Probabilistic Timed Automaton

A PTA is a kind of a timed automaton extended with probabilistic behavior.
Therefore, using the PTA, we can evaluate quantitative properties such as perfor-
mance of information systems based on the probabilistic model checking tech-
nique. In the PTA, a set of probabilistic distributions is used instead of a set T of
discrete transitions on the timed automaton.

Definition 3.2.2 (Probabilistic Timed Automaton). A probabilistic timed automa-
ton PTA is a 6-tuple (A,L, l0, C, I, prob), where
A: a finite set of actions;
L: a finite set of locations;
l0 ∈ L: an initial location;
C: a finite set of clocks;
I ⊂ (L→ c(C)): a location invariant; and
prob ⊆ L × A × c(C) × Dist(2C × L): a finite set of probabilistic transition
relations, where c(C) represents a guard condition, and Dist(2C × L) represents
a finite set of probability distributions p. The Distribution p(r, l) ∈ Dist(2C × L)
represents the probability of resetting clock variables in r and also moving to the
location l;

Figure 3.3 shows an example of a PTA. In the figure, from the location a, it
moves to the location b with the probability 0.5 and also moves to the location c
letting the value of the clock x reset to zero with the probability 0.5. Both of the

48

arcs starting location a are connected with a small arc at their source points, which
represents that they belong to the same probability distribution.

Definition 3.2.3 (Transitions of a Probabilistic Timed Automaton). For PTA =
(A,L, l0, C, I, prov), 6-tuple (l, a, g, p, r, l′) represents a transition generated by
a probabilistic distribution (l, a, g, p) ∈ prob such that p(r, l′) > 0.

By l
a,g,p,r→ l′, we denote the transition (l, a, g, p, r, l′).

Definition 3.2.4 (Semantics of a Probabilistic Timed Automaton). Semantics of a
probabilistic timed automaton PTA = (A,L, l0, C, I, prob) is given as a timed
probabilistic system TPSPTA = (S, s0, TSteps) where,

• S ⊆ L× RC;

• s0 = (l0, 0
C); and

• TSteps ⊆ S × A ∪ R≥0 ×Dist(S) is composed of action transitions and
delay transitions.

a) action transition
if a ∈ A and there exists (l, a, g, p) ∈ prob such that g(ν) and I(l′)(r(ν))
for all (r, l′) ∈ support(p), ((l, ν), a, µ) ∈ TSteps where for all
(l′, ν ′) ∈ S

µ(l′, ν ′) =
∑

r⊆C∧ν′=r(ν)

p(r, l′).

b) delay transition
if d ∈ R≥0, and for all d′ ≤ d, I(l)(ν + d′), ((l, ν), d, µ) ∈ TSteps
where µ(l, ν + d) = 1.

The concrete delay in the delay transition can be decided non-deterministically
on the semantics of a probabilistic timed automaton as well as those of a timed
automaton.

In this study, using a location l and a zone D, we describe a set of semantic
states as (l,D) = {(l, ν) | ν ∈ D}.

A probabilistic timed automaton is said to be well-formed if a probabilistic
edge can be taken whenever it is enabled[20]. Formally, a probabilistic timed au-
tomaton PTA = (A,L, l0, C, I, prob) is well-formed if

∀(l, g, p) ∈ prob. ∀ν ∈ RC
≥0. (g(ν)) → ∀(r, l) ∈ support(p). I(l)(r(ν)).

In this study, we assume that a given PTA is well-formed.

49

Definition 3.2.5 (Path on a Timed Probabilistic System). A path ω with length of
n on a timed probabilistic system
TPSPTA = (S, s0, TSteps) is denoted as follows.

ω = (l0, ν0)
d0,µ0−→ (l1, ν1)

d1,µ1−→ . . .
dn−1,µn−1−→ (ln, νn)

, where (l0, ν0) = s0, (li, νi) ∈ S for 0 ≤ i ≤ n and ((li, νi), di, µ) ∈ TSteps ∧
((li, νi + di), 0, µi) ∈ TSteps ∧ (li+1, νi+1) ∈ support(µi) for 0 ≤ i ≤ n− 1.

For model checking of a probabilistic timed automaton, we extract a number of
paths and calculate a summation of their occurrence probabilities in order to check
the probability of satisfying a given property. The important point is that we have
to choose a set of paths which are compatible with respect to time elapsing.

Lemma 3.2.1 (Compatibility of two paths). If two paths ωα = (lα0 , ν
α
0)

dα0 ,µ
α
0−→

(lα1 , ν
α
1)

dα1 ,µ
α
1−→ . . .

dαn−1,µ
α
n−1−→ (lαn , ν

α
n) and ωβ = (lβ0 , ν

β
0)

dβ0 ,µ
β
0−→ (lβ1 , ν

β
1)

dβ1 ,µ
β
1−→

. . .
dβm−1,µ

β
m−1−→ (lβm, ν

β
m) on a timed probabilistic system TPSPTA satisfy the fol-

lowing predicate isCompatible, then ωα and ωβ are said to be compatible.

isCompatible(ωα, ωβ) =



true, if ∀i < min(n,m). lαi = lβi ∧ dαi = dβi
or there exists i < min(n,m) such that
lαi ̸= lβi ∧ dαi = dβi ∧
∀j < i. lαj = lβj ∧ dαj = dβj

false, otherwise.

Above predicate isCompatible stands for that two paths are compatible if and
only if one path is a prefix of the other, or same amount of delay is executed in both
paths at the branching point of them.

Lemma 3.2.2 (Compatibility of a set of paths). If a set Ω of paths on a timed prob-
abilistic system TPSPTA satisfies the following predicate isCompatible, then all

50

of the paths over Ω are said to be compatible.

isCompatible(Ω) =



true, if ∀i ≤ min(Ω)
∧

ωα,ωβ∈Ω

∧ωα ̸=ωβ

(lαi = lβi ∧ dαi = dβi)

or there exists i ≤ min(Ω) such that∧
ωα,ωβ∈Ω

∧ωα ̸=ωβ

(lαi ̸= lβi ∧ d
α
i = dβi ∧

∧
j≤i

(lαj= lβj ∧ d
α
j= dβj)),

and also
∧

Ω′∈2Ω∧
Ω′ ̸=Ω∧|Ω′|≤2

isCompatible(Ω′)

false, otherwise.

In Lemma3.2.2, we give the predicate isCompatible for a set Ω of paths on
a timed probabilistic system. In the lemma, we let paths in Ω be compatible if
there is no contradiction with respect to time elapsing at the branching point of all
the paths in Ω, and also if the compatibility is kept for every subset of Ω which
contains more than two paths.

Next, we give a simple example of a pair of paths which does not satisfy the
compatibility. In Fig.3.3, paths from the location a to d are given as ωα = (a, x =

0 ∧ y = 0)
0,0.5−→ (b, x = 0 ∧ y = 0)

0,1.0−→ (d, x = 0 ∧ y = 0) which reaches

to d through b, and ωβ = (a, x = 0 ∧ y = 0)
1,0.5−→ (c, x = 0 ∧ y = 1)

0,1.0−→
(d, x = 0 ∧ y = 1) which reaches to d through c. In the path ωα, we are required
to let delay at the location a be less than one unit of time because of the guarded
condition x < 1 of the transition between b and d. On the other hand, in the path
ωβ , we are required to let delay at a be grater than or equal to one unit of time
because of the condition x == 0 ∧ y ≥ 1 of the transition between c and d. Like
the paths ωα and ωβ , if the required conditions of time elapsing at the branching
point are contradict, we cannot use such paths simultaneously in the probability
calculation.

3.2.4 Probabilistic CTL

Definition 3.2.6 (Probabilistic Computational Tree Logic). Syntax of PCTL for-
mulae is given as follows,

ϕ := true | false | p | ¬ϕ | ϕ ∨ ϕ | P∼λ[ϕ U ϕ] | P∼λ[ϕ R ϕ],

where p is an arbitrary atomic proposition, ∼∈ {≤, <,>,≥}, and λ ∈ [0, 1].

51

Definition 3.2.7 (Semantics of PCTL). For a probabilistic transition systemPTS =
(S, Steps, L) where S is a set of states, Steps : S → [0, 1] is transition relation
on S, and L : S → 2AP is function labeling states with atomic propositions, and
for a state s ∈ S, the semantics of PCTL is given as follows.

s |= p ⇐⇒ p ∈ L(s)

s |= ¬ϕ ⇐⇒ not s |= ϕ

s |= ϕ1 ∨ ϕ2 ⇐⇒ s |= ϕ1 or s |= ϕ2

s |= P∼λΦ ⇐⇒ pAs (Φ) ∼ λ for all A ∈ AdvPTS ,

where p is an arbitrary atomic proposition, ϕ, ϕ1 and ϕ2 are arbitrary PCTL
formulae, pAs (Φ) = Prob{ω|ω ∈ PathAfull(s) ∧ ω |= Φ}, and for any path
ω ∈ PathAfull(s)

ω |= [ϕ1 U ϕ2] ⇐⇒ ∃i.(πi |= ϕ2 ∧ ∀j.(0 ≤ j < i→ πj |= ϕ1))

ω |= [ϕ1 R ϕ2] ⇐⇒ ∀i.(πi |= ϕ2 ∨ ∃j.(0 ≤ j < i→ πj |= ϕ1)),

where Prob represents the probability for a given set of paths and πi is the suffix
of π after the i-th state.

3.3 Proposed Approach

In this section, we will present our abstraction refinement technique for a prob-
abilistic timed automaton. In the technique, we use the abstraction refinement
technique for a timed automaton proposed in Chapter 2. Though the probabil-
ity calculated on the abstract model may be spurious because the abstract model
has no time attributes, the finite number of applications of the refinement algo-
rithm enables us to obtain correct results on the abstract model. In addition, we
resolve the compatibility problem shown in Sec.3.2.3 by performing a backward
simulation technique and generating additional location to distinguish the required
condition for every incompatible path. Figure 1.7 shows our abstraction refine-
ment framework. As shown in the figure, we add another flow where we resolve
the compatibility problem.

Our abstraction requires a probabilistic timed automaton PTA and a prop-
erty to be checked as its inputs. The property is limited by the PCTL formula
P<p[true U err]. The formula represents a property that the probability of reach-
ing to states where err (which means an error condition in general) is satisfied, is
less than p.

52

a

b

c

d
0.5

0.5

1

1x:=0

Figure 3.4: An Initial Abstract Model

3.3.1 Initial Abstraction

The initial abstraction removes all the clock attributes from a given probabilis-
tic timed automaton as well as the technique in Chapter 2. The generated abstract
model over-approximates the original probabilistic timed automaton. Also, the ab-
stract model is just an MDP without time attributes. We associate information of
guard conditions with labels of transitions on the abstract model.

Definition 3.3.1 (Abstract Model). For a given probabilistic timed automaton
PTA = (A,L, l0, C, I, prob), a Markov decision process ˆMDPPTA = (Ŝ, ŝ0,
ˆSteps) is produced as its abstract model, where

• Ŝ = L

• ŝ0 = l0

• ˆSteps = { (s, a g, p) | (s, a, g, p) ∈ prob }

Figure 3.4 shows an initial abstract model for the PTA shown in Fig.3.3 As
shown in the figure, the abstract model is just an MDP where all of the clock
constraints are removed though we keep a set of clock reset as a label of transitions.

3.3.2 Model Checking

In model checking, we apply Value Iteration[60] into the markov decision pro-
cess obtained by abstraction and calculate a maximum reachability probability.
Also, it decides an action to be chosen at every state as an adversary. If the ob-
tained probability is less than p, we can terminate the CEGAR loop and conclude
that the property is satisfied.

Although Value Iteration can calculate a maximum reachability probability,
it cannot produce concrete paths used for the probability calculation. To obtain
the concrete paths, we use an approach proposed in Paper[61] which can produce

53

counter example paths for PCTL formulas. The approach translates a probabilis-
tic automaton into a weighted digraph. And we can obtain at most k paths by
performing k-shortest paths search on the graph.

Definition 3.3.2 (Path on the Abstract Model). A path ρ̂ on an abstract model
ˆMDPPTA = (Ŝ, ŝ0, ˆSteps) for PTA = (A,L, l0, C, I, prob) is given as follows,

ρ̂ = ŝ0
a0 g0,p0,r0−→ ŝ1

a1 g1,p1,r1−→ . . .
an−1 gn−1,pn−1,rn−1−→ ŝn

, where ŝi ∈ Ŝ for 0 ≤ i ≤ n and (ŝi, ai gi, pi) ∈ ˆSteps∧(ri, ŝi+1) ∈ support(pi)
for 0 ≤ i ≤ n− 1.

As defined in Def. 3.3.2, we associate a set r of clock reset with a path on an
abstract model in order to show the difference of r over the probabilistic distribu-
tion p.

For the abstract model shown in Fig.3.4, Value Iteration outputs 1.0 as the
probability that it reaches to the location d from the location a. On the other hand,

k-shortest paths search (k ≥ 2) detects two paths ρ̂α = a
τ,0.5,{}−→ b

τ,1.0,{}−→ d and

ρ̂β = a
τ,0.5,{x:=0}−→ c

τ,1.0,{}−→ d, where τ represents a label for transitions with no
label in the figure.

3.3.3 Simulation

Simulation checks whether all the paths obtained by k-shortest paths search
are feasible or not on the original probabilistic timed automaton. For the path
ρ̂ = ŝ0

a0 g0,p0,r0−→ ŝ1
a1 g1,p1,r1−→ . . .

an−1 gn−1,pn−1,rn−1−→ ŝn on the abstract model,
the corresponding path on the original probabilistic timed automaton is given as
ρ = l0

a0,g0,p0,r0−→ l1
a1,g1,p1,r1−→ . . .

an−1,gn−1,pn−1,rn−1−→ ln, where li = ŝi. Since the
path on the abstract model has information of guard and reset clocks as its label,
we can decide the corresponding path with one-to-one relation.

We use the simulation algorithm shown in Chapter 2 where we use some oper-
ations of DBM (Difference Bound Matrix)[16] to obtain zones which are reachable
from the initial state. If there is at least one path which is infeasible on the original
PTA, we proceed to the abstraction refinement step.

Figure 3.5 shows the simulation results for two paths ρ̂α and ρ̂β . Simulation
concludes that the two paths are feasible on the original PTA.

3.3.4 Abstraction Refinement

In this step, we refine the abstract model so that the given spurious counter
example also becomes infeasible on the refined abstract model. We can use the

54

a b d

a

x==y

b

x==y

d

x==y & x<1

c

y>=x

A path on the abstract model

A corresponding path on the PTA

Reachable zones from the initial state

a

x==y

d

y-x>=1

Reachable zones from the initial state

a b d
x<1

a c d

A path on the abstract model

A corresponding path on the PTA
a c d

x==0 &
y>=1

x:=0

x:=0

0.5 1.0

1.0 1.0

1.0

1.01.00.5

0.5 0.5

0.5

0.5

Figure 3.5: Simulation Results for a Set of Paths

algorithm shown in Chapter 2. Since the refinement algorithm performs some op-
erations on transitions of a timed automaton, we replace such operations by those
on probability distributions of a probabilistic timed automaton.

3.3.5 Compatibility Checking

When all the paths obtained by k-shortest paths search are feasible and a sum-
mation of occurrence probabilities of them is greater than p, we also have to check
whether all the paths are compatible or not.

First, we define a predecessor state set by one discrete transition and one delay
transition.

Definition 3.3.3 (Predecessor State Set). Given a state set (l2, D2) on TPSPTA

for a probabilistic timed automaton PTA and a transition e = (l1, a, g, r, l2), a
predecessor state set pred((l2, D2), e) from (l2, D2) through the transition e is
defined as follows;

pred((l2, D2), e) = {(l1, ν) | (r(ν) + d) ∈ D2 ∧ d ∈ R≥0

∧ (l1, ν)
a⇒ (l2, r(ν)) ∧ (l2, r(ν))

d⇒ (l2, r(ν) + d) }.

For a given state set and a transition, Algorithm 3.1 computes pred. As well
as the succ operation, we denote k-th reachable state set from the last state set
(ln, DI(ln)) of the path ρ by predk(ρ).

Definition 3.3.4 (Reachable State Set). Given a path ρ = l0
a0,g0,p0,r0→ l1

a1,g1,p1,r1→
. . .

an−1,gn−1,pn−1,rn−1→ ln with length n on a probabilistic timed automaton PTA, a
k-th reachable state set (k ≤ n) which is reachable from the initial state and also
which can reach to ln is defined as follows.

reachable(ρ, k) = succ(ρ, k) ∩ pred(ρ, n− k).

55

Algorithm 3.1 Pred(PTA, R, e)
1: /* R = (l2, D2), e = (l1, a, g, p, r, l2) */
2: D1 := D2

3: D1 := down(D1) /* reverse the time elapse */
4: D1 := and(D1, I(l1))
5: D1 := free(D1, r) /* remove all constraints on r */
6: D1 := and(D1, g)
7: D1 := and(D1, I(l1))
8: return (l1, D1)

Here, we define the conditions using zone notations to satisfy compatibility on
a given set of paths. Compatibility Checking is based on Lemma 3.2.2.

Lemma 3.3.1 (Compatibility Check). For a given set P of paths on a probabilistic
timed automaton PTA, all of the paths over P are said to be compatible if the
following property holds;

For the maximum integer i ≥ 0 such that all the paths in P share the
same prefix with the sequence of i transitions,∩

ρ∈P
reachable(ρ, i) ̸= ∅

and, for all P ′ ∈ 2P where |P ′| ≥ 2 and all the paths in P ′ share the
same prefix with the sequence of at least i + 1 transitions, P ′ is said
to be compatible recursively.

In the compatibility checking, at each location of the paths, we have to ob-
tain the reachable state set reach. Next, we check the compatibility according to
Lemma 3.3.1. To obtain the state set reach, we have to perform both forward sim-
ulation shown in Sec. 3.3.3 and backward simulation for each path, and merge the
results. For the result of forward simulation, we can reuse the result obtained in the
Simulation step. Then we check the compatibility based on Lemma 3.3.1.

Backward Simulation

In the backward simulation, we calculate a reachable state set along with a
given path backwardly. Algorithm 3.1 calculates the predecessor state set by one
discrete transition. Functions and, free, down used in the algorithm are opera-
tion functions on a zone, and are defined in Paper[16]. Formally, for a zone D,
a constraint c, and a set r of clock reset, those functions are defined as follows;

56

Algorithm 3.2 BackwardSimulation(PTA, ρ)
1: /* PTA = (A,L, l0, C, I, prob)

ρ = l0
a0,g0,p0,r0→ l1

a1,g1,p1,r1→ . . .
an−1,gn−1,pn−1,rn−1→ ln */

2: Dρ
b,n := I(l̂n)

3: for i := n− 1 downto 0 do
4: Dρ

b,i := Pred(PTA,Dρ
b,i+1, ei) /* ei = (li, ai, gi, pi, ri, li+1) */

5: end for
6: return Dρ

b

a b d

a

x<1

b

x<1

d

true

c

x==0 &

y>=1

A path on the abstract model

A corresponding path on the PTA

Zones which are reachable to d

a

y>=1

d

true

a b d
x<1

a c d

A path on the abstract model

A corresponding path on the PTA
a c d

x==0 &
y>=1

x:=0

x:=0

0.5 1.0

1.0 1.0

1.0

1.01.00.5

0.5 0.5

0.5

Zones which are reachable to d

0.5

Figure 3.6: Results of Backward Simulation for a Set of Paths

and(D, c) = {u | u ∈ D ∧ u ∈ c}, free(D, r) = {u | r(u) ∈ D}, and
down(D) = {u | u+ d ∈ D ∧ d ∈ R≥0}

Algorithm 3.2 implements the backward simulation.
Figure 3.6 shows results of backward simulation for two paths ρ̂α and ρ̂β de-

tected in Sec. 3.3.2.

Determination of Compatibility

In this step, we check compatibility of the set P of paths on the abstract model
using the required conditions obtained by both of forward and backward simula-
tion. Algorithm 3.3 checks the compatibility of P using the Algorithm 3.4.

Algorithm 3.4 first checks whether the required conditions of the i-th loca-
tions for each path are compatible or not (l2-l8) using the results of forward and

Algorithm 3.3 IsCompatible(PTA, P , Df , Db)

1: /* PTA = (A,L, l0, C, I, prob), P̂ is a set of abstract paths, and Df and Db are sets
of forward and backward simulation results for each path ρ ∈ P ,respectively. */

2: return CompatibleCheck(PTA,P,Df , Db, 0)

57

Algorithm 3.4 CompatibleCheck(PTA, P , Df , Db, i)
1: D′ := true
2: foreach ρ ∈ P such that length(ρ) ≥ i do
3: Dρ

c,i := Dρ
f,i ∩D

ρ
b,i /* calculate the reach(ρ, i) */

4: D′ := D′ ∩Dρ
c,i

5: if D′ = ∅ then
6: return false
7: end if
8: end for
9: SP

i+1 := SplitPathSet(P, i+ 1)
10: /* split P into a set of its subsets without overlap with respect to the i+1-th location

and clock reset for each path in P */
11: foreach P ′ ∈ SP

i+1 such that |P ′| ≥ 2 do
12: if CompatibleCheck(PTA,P ′, D, i+1)=false then
13: return false
14: end if
15: end for
16: return true

Algorithm 3.5 SplitPathSet(P , i)
1: S := ∅
2: foreach ρ ∈ P do
3: /* ρ = l0

a0,g0,p0,r0→ l1
a1,g1,p1,r1→ . . .

an−1,gn−1,pn−1,rn−1→ ln */
4: if Pri−1,li ̸∈ S then
5: Pri−1,li := {ρ}
6: S := S ∪ Pri−1,li

7: else
8: lri−1,li := Pri−1,li ∪ {rho}
9: end if

10: end for
11: return S

backward simulation. Next, the algorithm divides P into its subsets based on the
(i+1)-th locations and the set of clock reset for each path (l9). Then, it checks the
compatibility for the following sequences of paths by applying the algorithm into
the divided subsets recursively (l11-l15). Although the predicate isCompatible in
the Lemma 3.2.2 checks the compatibility for each subset of P , the algorithm omit
redundant checks by dividing P based on the branches of the paths.

For the path ρα in Sec. 3.3.2, zones at a which is reachable from initial state
and which can move to d are given as Dρ̂α

f,0 = (x == y), and Dρ̂α

b,0 = (x < 1),

respectively. Also, a zone of the product of them is given asDρ̂α

c,0 = (x == y∧x <

58

1). Similarly, for the path ρ̂β , the product zone is given as Dρ̂β

c,0 = (x == y ∧ y >
1). Since Dρ̂α

c,0 and Dρ̂β

c,0 contradict each other, we can conclude that the paths ρ̂α

and ρ̂β are incompatible each other.

3.3.6 Model Transformation

When the compatibility check algorithm finds that a given set P of paths is
incompatible at i-th location, our proposed algorithm resolves the incompatibility
by refining behaviors from the i-th location. Our algorithm uses reachable(ρ, i)
defined in Definition 3.3.4, which is a product of results of forward and back-
ward simulation for a path ρ̂ ∈ P̂ . It duplicates locations which are reachable
from the zone of reach(ρ, i) by an action associated with the i-th distribution pi.
The compatibility checking algorithm checks compatibility for some subsets of P .
Therefore, if such subsets are incompatible, we apply model transformation based
on the subsets.

Definition 3.3.5 (Duplicated Locations to Resolve Incompatibility). For a given
(sub)set P of paths which is incompatible at i-th location, (i+1)-th distribution
(li, ai, gi, pi) , and a probabilistic timed automaton PTA = (A,L, l0, C, I, prob),
we generate the following sets Ld and Lcomp of duplicated locations;

Ld = {ld | I(ldup) = succ(reachable(ρ, i), ei+1) ∧
ρ ∈ P ∧ (l, r) ∈ L× 2C ∧ pi(l, r) > 0 ∧ ei+1 = (li, ai, gi, pi, r, l)}

Lcomp = {lcomp | I(lcomp) = succ(
∧
ρ∈P

¬reachable(ρ, i), ei+1) ∧

(l, r) ∈ L× 2C ∧ pi(l, r) > 0 ∧ ei+1 = (li, ai, gi, pi, r, l) }

Also the algorithm constructs transition relations so that the transformation
becomes equivalent transformation. For example, transition relations from a du-
plicated location are duplicated if the relations are executable from the invariant
associated with the duplicated location.

Definition 3.3.6 (Duplicated Distributions to Resolve Incompatibility). For a given
(sub)set P of paths which is incompatible at i-th location, (i+1)-th distribution
(li, ai, gi, pi), a probabilistic timed automaton PTA = (A,L, l0, C, I, prob), and
a set Ld of duplicated locations, we generate the following distributions;

• (li, ai, gi, pd,i) for each ρ ∈ P :
a duplicate of (li, ai, gi, pi) ∈ prob where the following property holds.
For all (l, r) ∈ L×2C such that pi(l, r) > 0, there exists the duplicate ld of l
where I(ld) = succ(reach(ρ, i), (li, ai, gi, pi, r, l)) holds, and pd,i(ld, r) =
pi(l, r) holds.

59

Algorithm 3.6 TransformPTA(PTA, Dc, P , i)
1: Dcomplement := true
2: foreach ρ ∈ P do
3: Ldup := DuplicateLocation(PTA, ρ,Dρ

c,i, i)
4: L := L ∪ Ldup

5: probdup := DuplicateDistribution(PTA, ρ, Ldup, i)
6: prob := prob ∪ probdup
7: Dcomplement := Dcomplement ∩Dρ

c,i

8: end for
9: Ldup := DuplicateLocation(PTA, ρ,Dcomplement, i)

10: L := L ∪ Ldup

11: probdup := DuplicateDistribution(PTA, ρ, Ldup, i)
12: prob := prob ∪ probdup
13: prob := RemoveDistribution(PTA, li, ai, gi, pi)
14: /* All the paths in P share the same (i+1)-th distribution (li, ai, gi, pi) */
15: return PTA

• (li, ai, gi, pcomp,i) :
a duplicate of (li, ai, gi, pi) ∈ prob where the following property holds.
For all (l, r) ∈ L×2C such that pi(l, r) > 0, there exists the duplicate lcomp

of l where I(lcomp) = succ(
∧

ρ∈P ¬reachable(ρ, i), (li, ai, gi, pi, r, l)) holds,
and pcomp,i(ld, r) = pi(l, r) holds.

• (ld, a, g, pd) for each ld ∈ Ld

duplicated distributions from all of the duplicated locations ld such that ld
is the duplicate of l and (l, a, g, p) ∈ prob. Also, for all (l′, r) ∈ L ×
2C succ((ld, DI(ld), (l, a, g, p, r, l

′)) ̸= ∅ and pd(l, r) = p(l, r) hold.

Definition 3.3.7 (A Removed Distribution to Resolve Incompatibility). For a given
(sub)set P of paths which is incompatible at i-th location, and a probabilistic timed
automaton PTA = (A,L, l0, C, I, prob), we remove the distribution (li, ai, gi, pi)
from prob.

Algorithm 3.6 transforms a given PTA with considering its compatibility. The
algorithm calls DuplicateLocation (Algorithm 3.7) which duplicates locations,
DuplicateDistribution (Algorithm 3.8) which duplicates probabilistic transitions,
and RemoveDistribution (Algorithm 3.10) which removes probabilistic transi-
tions. In Algorithms 3.7 and 3.9, the procedure Succ (Algorithm 2.3) is used.

Figure 3.7 shows the transformed PTA by applying the model transformation
procedure for the paths ρα and ρβ . The locations b1 and c1 are duplicated locations
based on the path ρα and the zone Dρα

c,0 = (x == y ∧ x < 1) on the location a.
We associate invariants to b1 and c1 based on zones which are reachable from Dρα

c,0

60

Algorithm 3.7 DuplicateLocation(PTA, ρ,D, i)
1: /* PTA = (A,L, l0, C, I, prob)

ρ = l0
a0,g0,p0,r0→ l1

a1,g1,p1,r1→ . . .
an−1,gn−1,pn−1,rn−1→ ln */

2: Ldup := ∅
3: foreach (l, r) ∈ L× 2C such that pi(l, r) > 0 do
4: (l,D) := Succ(PTA, (li, D), e)
5: /* Succ is implemented in Algorithm 2.3, whose semantics is given in Definition

3.3.4 */
6: ldup := newLocation()
7: I(ldup) := D
8: Ldup := Ldup ∪ {ldup}
9: end for

10: return Ldup

Algorithm 3.8 DuplicateDistribution(PTA, ρ, Ldup, i)
1: /* PTA = (A,L, l0, C, I, prob)

ρ = l0
a0,g0,p0,r0→ l1

a1,g1,p1,r1→ . . .
an−1,gn−1,pn−1,rn−1→ ln */

2: probdup := ∅
3: pdup := newDistribution() /* generate a new distribution over L× 2C */
4: foreach (l, r) ∈ L× 2C do
5: if pi(l, r) > 0 then
6: pdup(ldup, r) := pi(l, r)
7: /* ldup is a duplicate location of l generated by DuplicateLocation algorithm */
8: else
9: pdup(l, r) := 0

10: end if
11: end for
12: probdup := Probdup ∪ {(li, ai, gi, pdup)}
13: foreach ldup ∈ Ldup do
14: probdup := Probdup∪ DuplicateDistFromDupLoc(PTA, ldup)
15: end for
16: return probdup

61

Algorithm 3.9 DuplicateDistFromDupLoc(PTA, ldup)
1: /* PTA = (A,L, l0, C, I, prob), and let l be an original location of ldup */
2: probdup := ∅
3: foreach (l, a, g, p) ∈ Prob do
4: fdup := true, pdup := newDistribution()
5: foreach (l′, r) ∈ L× 2C do
6: if Succ((l, I(ldup)), e) ̸= ∅ then
7: pdup(l

′, r) = p(l, r) /* e = (l, a, g, p, r, l′) */
8: else
9: fdup := false

10: break
11: end if
12: end for
13: if fdup then
14: /* duplicate the distribution if it is executable from the duplicate location */
15: probdup := probdup ∪ {(l, a, g, pdup)}
16: end if
17: end for

Algorithm 3.10 RemoveDistribution(PTA, li, ai, gi, pi)
1: prob := prob \ {(li, ai, gi, pi)}
2: return prob

62

a d

b1

c1

b2

c2

b3

c3

x==y

0<=y-x < 1

x>=1&x==y

y-x>=1

￢(x==y)&￢(x>=1&x==y)

￢(0<=y-x<1)&￢(y-x>=1)

x==0∧y>=1

x<1

0.5

0.5

1

1

0.5

0.5

0.5

0.5

x:=0

x:=0

x:=0

Figure 3.7: The Transformed PTA

through transitions from a to b, and from a to c, respectively. Also, we duplicate a
transition from b to d as the transition from b1 to d because the transition is feasible
from the invariant of b1. On the other hand, we do not duplicate a transition from
c to d because the transition is not feasible from the invariant of c1. Similarly,
locations b2 and c2 are duplicated locations based on the path ρβ and the zone
Dρβ

c,0. Locations b3 and c3 are generated as complements of the invariant associated
with each duplicated location in order to preserve the equivalence.

By transforming the original PTA in such a way, if we remove all clock con-
straints from the model in Fig.3.7, Value Iteration on its abstract model outputs 0.5
as the maximum probability.

3.4 Correctness Proof

In this section, we prove correctness of our algorithm. To prove it, we have to
show correctness of abstraction and correctness of model transformation to solve
the incompatibility. The correctness of abstraction is already proved in Chapter 2.

Lemma 3.4.1. Let PTA′ be a probabilistic timed automaton obtained by apply-
ing model transformation into a probabilistic timed automaton PTA. Then the
semantic models of them are bi-simulation equivalent to each other.

Proof. Let TPSPTA = (S, s0, TSteps) and TPSPTA′(S′, s′0, TSteps
′) be se-

mantic models of PTA and PTA′, respectively. Here, we define a relation R :

63

S × S′ as follows, and prove that R is a bi-simulation relation.

R = {(s, s′) | s ∈ S ∧ s′ ∈ S′ ∧ ((s = s′) ∨ (s′ is the duplicate of s))}

We are going to prove that R is a bi-simulation relation by proving the follow-
ing properties (i) to (iv).

(i) For all (s1, s′1) ∈ R and a ∈ A, if there exists an action transition (s1, a, µ),
there exists a corresponding transition (s′1, a, µ

′), and for all s2 ∈ S there exists
s′2 ∈ S′ such that µ(s2) = µ′(s′2) and (s2, s

′
2) ∈ R hold.

First, we consider the case when s1 = s′1 holds.
If (s1, a, µ) ∈ TSteps′ holds, then the property is obviously satisfied.
In the case when (s1, a, µ) ̸∈ TSteps′ holds, then the transition (s1, a, µ) is

removed by the Algorithm 3.10. As defined in Definition 3.3.6 and Definition
3.3.7, the removed distribution is duplicated. Therefore, Algorithm 3.8 produces
the distribution (s1, a, µ

′). where µ′(l, r) = µ(l, r) for all (l, r) ∈ L × 2C such
that l does not have its duplication, and for all (l, r) ∈ L × 2C such that l has
its duplication ldup, µ′(ldup, r) = µ(l, r) and µ′(l, r) = 0 hold. Since ldup is the
duplicate of l, (l, ldup) ∈ R holds. Therefore, the property is satisfied.

Next, we consider the case s1 ̸= s′1. If we let s1 and s′1 be (l1, ν) and (l′1, ν),
respectively, obviously, l′1 is the duplicated location of l1 generated by Algorithm
3.7. As defined in Definition 3.3.6, we duplicate distributions from the dupli-
cated location if they are enable. Therefore, there exists a corresponding transition
((l′1, ν), a, µ

′) where µ′(l, r) = µ(l, r) for all (l, r) ∈ L× 2C .

(ii) For every (s1, s
′
1) ∈ R and d ∈ R≥0, if there exists a delay transition (s1, d, µ),

there exists a corresponding transition (s′1, d, µ
′) and (s2, s

′
2) ∈ R holds where

µ(s2) = 1 and µ′(s′2) = 1 hold.

In the case s1 = s′1, it obviously holds.
Next, we consider the case s1 ̸= s′1. Let s1 and s′1 be (l, ν) and (l′, ν) respec-

tively. Obviously, l′ is the duplicated location of l generated by Algorithm 3.7. As
defined in Definition 3.3.5, the duplicated location l′ is based on succ operation
defined in Definition 2.3.4. According to Lemma 2.3.1, a state set obtained by the
succ operation closes under delay transitions. Therefore, if there exists a delay
transition ((l, ν), d, µ) ∈ TSteps where µ(l, ν + d) = 1, there also exists a corre-
sponding delay transition ((l′1, ν), d, µ

′) ∈ TSteps′ where µ′(l′, ν+ d) = 1. Since
l′ is the duplicate of l, ((l, ν + d), (l′, ν + d)) ∈ R is satisfied.

(iii) For every (s1, s
′
1) ∈ R and a ∈ A, if there exists an action transition

64

(s′1, a, µ
′), there exists a corresponding transition (s1, a, µ), and for all s′2 ∈ S

there exists s2 ∈ S such that µ′(s2) = µ(s′2) and (s2, s
′
2) ∈ R hold.

If (s′1, a, µ
′) is a transition which is not generated by Algorithm 3.8, (s′1, a, µ

′) ∈
TSteps holds obviously.

Otherwise, s′1
a⇒ s′2 does not hold. As implied in Lemma 2.3.2, however, a

duplicated transition always has the original one, and therefore, there exists the
original transition s1

a⇒ s2, and (s2, s
′
2) ∈ R.

(iv) For every (s1, s
′
1) ∈ R and d ∈ R≥0, if there exists a delay transition

(s′1, d, µ
′), there exists a corresponding transition (s1, d, µ) and (s2, s

′
2) ∈ R holds

where µ′(s′2) = 1 and µ(s2) = 1 hold.

This is proved by Lemma 2.3.1 in a similar manner of the proof of (ii).

From the proof of (i), (ii), (iii) and (iv), R is proved to be a bi-simulation
relation. Thus, TPSPTA′ is bi-simulation equivalent to TPSPTA.

3.5 Experiments

We have implemented a prototype of our proposed approach with Java, and
performed some experiments. Though the prototype can check the compatibility
of a given set of paths, currently it cannot deal with the model transformation.

The prototype performs k-shortest paths search and simulation concurrently in
order to reduce execution time. By implementing the algorithms concurrently, we
have not to wait until all of k paths are detected, i.e. if a path is detected by the
k-shortest paths search algorithm, we can immediately apply simulation and (if
needed) abstraction refinement procedures.

Also, our prototype continues the k-shortest search algorithm when a spurious
counter example is detected and the refinement algorithm is applied. If other paths
which do not overlap with the previous spurious counter examples are detected, we
can apply simulation and refinement algorithms to it again. This helps us reduce
the number of CEGAR loop.

3.5.1 Goals of the Experiments

In this experiment, we evaluated the performance of our proposed approach
with regard to execution time, memory consumption, and qualities of obtained
results. As a target for comparison, we chose the approach of Digital Clocks[45]
where they approximate clock evaluations of a PTA by integer values.

65

Table 3.1: The Experimental Results
Digital Clocks[45] Proposed Approach

D p Result T ime State MEM Result T ime Loop State Heap

5µs
1.09×10−1 false 20.90s 297,232 10.2MB false 4.19s 10 37 8.0MB
3.28×10−1 true 20.89s 297,232 10.2MB true 3.60s 9 36 8.0MB

10µs
1.26×10−2 false 54.80s 685,232 21.7MB false 8.16s 19 134 8.0MB
3.79×10−2 true 54.82s 685,232 21.7MB true 6.57s 15 115 8.0MB

20µs
1.85×10−4 false 176.93s 1,461,232 41.0MB false 1186.08s 47 477 64.0MB
5.56×10−4 true 177.46s 1,461,232 41.0MB true 31.32s 32 435 8.0MB

3.5.2 Example

We used a case study of the FireWire Root Contention Protocol[29] as an ex-
ample for this experiment. This case study concerns the Tree Identify Protocol of
the IEEE 1394 High Performance Serial Bus (called “FireWire”) which takes place
when a node is added or removed from the network. In the experiment, we checked
the probability that a leader is not selected within a given deadline. The probabilis-
tic timed automaton for the example is shown in Fig.1.3, which is composed of two
clock variables, 10 locations, and 18 transitions.

3.5.3 Procedure of the Experiments

In this experiment, we checked the property that “the probability that a leader
cannot be elected within a given deadline is less than p.” We considered three
scenarios where the parameter deadline is 5, 10, 20 µs, respectively. Also, for
each scenario, we conducted two experiments where the value of p is 1.5 times as
an approximate value of the maximum probability obtained by the Digital Clocks
approach[45] and a half of it, respectively. In the proposed approach, we searched
at most 5000 paths by letting the parameter k of the k-shortest paths search al-
gorithm be 5000. For evaluation of existing approach, we used the probabilistic
model checker PRISM[6].

The experiments were performed under Intel Core2 Duo 2.33 GHz, 2GB RAM,
and Fedora 12 (64bit).

3.5.4 Results of the Experiments

The results are shown in Table 3.1. The column of D means the value of
deadline. For each approach, columns of Results, Time, and States show the
results of model checking, execution time of whole process, and the number of
states constructed, respectively. The column MEM in the columns of the Dig-
ital Clocks shows the memory consumption of PRISM. The columns Loop and

66

Table 3.2: Analysis of Counter Example Paths
D p Path Probability CC

5µs 1.0938×10−1 7 1.2500×10−1 0.7ms
10µs 1.2635×10−2 43 1.2695×10−2 5.9ms
20µs 1.8500×10−4 2534 1.8501×10−4 296.9ms

Heap in the columns of the proposed approach show the number of CEGAR loops
executed and the maximum heap size of the Java Virtual Machine (JVM) which
executes our prototype, respectively.

Table 3.1 shows that for all cases we can dramatically reduce the number of
states and obtain correct results. Moreover, we can reduce the execution time more
than 80 percent except for the case when deadline = 20µs and p = 1.85× 10−4.
In this case, however, the execution time drastically increases.

Table 3.2 shows the results of analysis of counter example paths obtained when
the results of model checking are false. The columns of Path, Probability and
CC show the number of counter example paths, the summation of occurrence prob-
ability of them, and execution time for compatibility checking, respectively. For
this example, the obtained sets of counter example paths are compatible in every
case.

3.5.5 Discussion

From the results shown in Table 3.1, we can see that our proposed approach is
efficient with regard to both execution time and the number of states. Especially,
the number of states decreases dramatically. The execution time is also decreased
even though we perform model checking several times shown in the column of
Loop.

On the other hand, in the case when deadline = 20µs and p = 1.85 × 10−4,
the execution time increases drastically. We think that as shown in Table 3.2 we
have to search 2534 paths and this causes the increase of execution time especially
for k-shortest paths search. A more detailed analysis shows that the execution time
for k-shortest paths search accounts for 1123 seconds of total execution time of
1186 seconds. Also, the results show that the JVM needs 64MB as its heap size
in this case. This is because compatibility checking for 2534 of paths needs a
large amount of the memory. From the results, we have to resolve a problem of
the scalability when the number of candidate paths for a counter example becomes
large.

Our abstraction technique restricts the number of paths for a counter example to

67

the finite number k. Therefore, if k paths are not enough to refute a given property,
our technique might output incorrect results. In such a case, however, we can give
warning that the result may be incorrect by comparing the result of Value Iteration.
The important point is that the probability obtained by Value Iteration is always
larger than the actual probability. On the other hand, the probability based on the
k paths is always smaller than the actual probability. Therefore, even when the
summation of the occurrence probability does not reach to p, if the result of Value
Iteration is larger than p, we can warn that the result may be incorrect.

3.6 Summary

This study has proposed the abstraction refinement technique for a probabilistic
timed automaton by extending the existing abstraction refinement technique for
a timed automaton. In this research, we have shown the concrete algorithms of
the reachability analysis method for probabilistic timed automata, and proved its
correctness.

Future work includes completion of implementation. General DBM does not
support not operator[57]; so we have to investigate efficient algorithms for the not
operator.

68

Chapter 4

Qualitative Analysis of Real-time
Distributed Systems Using the
Probabilistic Model Checker
PRISM

4.1 Introduction

This chapter describes a hybrid technique of probabilistic model checking and
simulation to perform qualitative analysis on real-time distributed systems.

Nowadays real-time distributed systems like streaming media systems are widely
spreading. These systems require time based transmission such as QoS control to
prevent interruption of packet transmission caused by network delay, packet loss,
and so on. System developers preliminary have to estimate the QoS by simulation
techniques[62] or mathematical analysis[63].

Simulation techniques usually do not guarantee qualitative properties such as
the maximum throughput and the minimum jitter, and so on, though they can cal-
culate mean-values along typical traces. On the other hand, mathematical analysis
is logically correct, but in many cases the based models are too ideal; hence it is
sometimes hard to apply the mathematical analysis to realistic applications. Formal
verification techniques, especially model checking techniques[1] are considered as
promising techniques for information systems developing due to their ability of ex-
haustive checking. Among them, probabilistic model checking can evaluate perfor-
mance, dependability and stability of information processing systems with random
behaviors[19].

In order to find if the hybrid approach is applicable to real systems, this study

69

applies a hybrid analysis technique onto real-time distributed systems, which uses
both of simulation and model checking techniques. In our approach, we perform a
stepwise analysis using probabilistic models of target systems in different abstract
levels. First, we create a probabilistic model with detailed behavior of the system
(called detailed model), and apply simulation on the detailed model. Next, based on
the simulation results, we create a probabilistic model in an abstract level (called
simplified model). Then, we verify qualitative properties using the probabilistic
model checking techniques.

4.2 Preliminary

4.2.1 Probabilistic Model Checker PRISM

Here, we simply describe an overview of the probabilistic model checker
PRISM[6, 27].

A model checking tool usually has two inputs, a model M and a logical expres-
sion p. The model is typically a transition system which represents behavior of the
system to be checked while the logical expression is a temporal logic expression
which represents a property to check. The typical output of the model checking
tool is whether the logical expression is valid on the model (M |= p). Some model
checker outputs a counter example when p is invalid.

The inputs of PRISM include the following three kinds of transition systems as
a model:

• Discrete-time Markov chains (DTMCs);

• Continuous-time Markov chains (CTMCs); and

• Markov decision processes (MDPs).

Each of three systems is a probabilistic transition system (Markov chain). The
inputs of PRISM also include Probabilistic Computation Tree Logic (PCTL)[35]
for DTMC and MDP, and Continuous Stochastic Logic (CSL)[36] for CTMC. They
are CTL based logics enchanted with probability.

PRISM has several analysis modes: a simulation mode, a numerical analy-
sis mode, and a verification mode. Using the simulation mode, we can observe
the behavior of the given model system visually. The numerical analysis mode
can evaluate the value of uncertain variable specified with PCTL or CSL based on
the model. Such numerical analysis is considered as a kind of parametric model
checking[64]. PRISM can draw a graph with several trials of such numeric analy-
sis. The verification mode is like typical model checking except that PRISM cannot
output counter examples.

70

In this study, we use DTMCs as the model of the network. Here, we describe
more precisely on a DTMC. Formally, a DTMC D is a tuple (S, s init, P, L),
where
S : a set of states (“state space”) ;
s init ∈ S : an initial state;
P : S × S → [0, 1] a transition probability matrix where Σs′∈SP (s, s

′) = 1 for all
s ∈ S; and
L : S → 2AP a function labeling states with atomic propositions.

PRISM allows a transition to specify an action and updating expressions on
D, where D is a set of variables with finite domain. In other words, a DTMC of
PRISM is a kind of an extended automaton with probabilities. Usually, one execu-
tion of a transition is translated into a unit time of time elapse (a tick event). Such
scheme is known as digital clock view of a DTMC. Using an integer variable (with
the upper-bound) explicitly as a clock variable, however, we can also represent a
system with discrete time in a DTMC. In this study, we use the latter scheme to
avoid the state explosion problem.

In the PRISM description, a model is composed of a number of modules. Each
module is a probabilistic automaton which has some variables and probabilistic
transitions. In the PRISM model, those modules can interact with each other. In
this chapter, the word module indicates the module in the PRISM description.

PRISM accepts a Reward Model in which certain values of rewards are as-
signed to the states and transitions of the probabilistic model[27]. It allows us to
evaluate quantitative properties. For example, if we assign a reward of one to all
transitions on the model, we can evaluate an expected number of transitions in the
paths to reach a given state from an initial state.

4.2.2 Protocols for Net-streaming

Here, we simply summarize typical protocols used in the Internet. Most of
the typical protocols have a congestion control mechanism in order to avoid net-
work congestion. For example, TCP (Transmission Control Protocol) uses AIMD
(Additive Increase Multiplicative Decrease) type window-flow control as such the
mechanism. It controls the data size of sending packets based on the current avail-
able bandwidth. Such a scheme has an advantage for the correct data transmission.
It, however, allows delays, which is not suitable for real-time data transmission.
Therefore, RTSP (Real Time Streaming Protocol) is used for real-time application.
RTSP is a protocol for the Internet streaming of voice and movies, on TCP/IP net-
work. Famous congestion control mechanisms for RTSP are RAP (Rate Adaptation
Protocol)[65] and TEAR (TCP Emulate At Receivers)[66]. Recently, TFRC (TCP-
Friendly Rate Control)[67] attracts attention. Hence, this study models TFRC.

71

RTSP

RTSP is one of the typical protocols working at end-to-end. RTSP has five
states, called SETUP, PLAY, RECORD, PAUSE and TEARDOWN. RTP (Real-
time Transport Protocol) is responsible for transmission of stream-data. It deter-
mines the throughput of RTP based on the rate control scheme of TFRC using the
report message of RTCP (RTP Control Protocol).

TCP Friendly Rate Control TFRC

TFRC is a rate control scheme for fairness between RTP and TCP. It controls
the rate in order to avoid bad effects on existing TCP flows in the same network,
which increases total effectiveness of the whole network. TFRC controls the rate
using the report message of RTCP. The report message contains loss of packets
and jitters, which can be estimated via the sequence number of received RTP pack-
ets and time stamps, respectively. RFC3448 describes the following formula for
determining the throughput:

X =
s

R∗
√

2∗b∗p/3 + (t RTO∗(3∗
√

3∗b∗p/8∗p∗(1+32∗p2)))

X is calculated as Byte/second. The parameters of the formula is summarized in
Table 4.1. The calculated throughput is a rate with which a RTSP server should
send packets considering the network congestion at the time. Therefore weighted
average values of the parameters in a short period are applied into the equation.
Paper [67] also defines the calculation methods for the parameters. When the value
of X is less than the bandwidth, TFRC lets RTSP set the value as throughput.

Table 4.1: Parameters of the Throughput Estimation Formula
R[seconds] Round trip time
p[%] A packet loss rate
s[Byte] Packet size
b[number of
times]

The number of packets acknowledged
by a single TCP acknowledgment

t RTO[seconds] A TCP retransmission timeout value

72

4.3 Proposed Approach

Probabilistic model checking which can evaluate complicated properties with
a high level of confidence is useful for performance evaluation of information
systems[19]. However, if we model whole systems with several simultaneous ses-
sions in detail, we cannot avoid the state explosion problem. To avoid the problem,
in our approach we model real-time distributed systems in different abstraction
levels. Using both of simulation and model checking techniques, we perform qual-
itative analysis in a stepwise fashion.

For a probabilistic model in a detailed level, we model behaviors of protocols
of RTSP, TCP, and UDP in detail, and perform several trials of simulation in order
to analyze throughput, packet loss rates, and so on. A simplified model is based on
the simulation results. For the simplified model, data transmission which we want
to analyze is modeled in detail, while other data transmission is abstracted. For the
transmission which we do not concern, we decide transmission rates probabilisti-
cally based on the simulation results.

In the rest of this chapter, we describe the detailed model and simplified model
with a case study of a video data streaming system[68]. In our approach, both of
the models are described with the PRISM language.

4.3.1 Target System

Here, we introduce an example of a real-time distributed system. As the exam-
ple system, we select a video data streaming system[68] shown in Fig.4.1. The sys-
tem is composed of a pair of a video server and its client, a number of pairs of FTP
servers and their clients, and a packet generator, which are connected to each other
through routers located at the middle of Fig.4.1. The routers are connected through
the 10Base–T Ethernet, which is considered as a bottleneck of packet transmis-
sion. In the considering scenario, the video server sends 80MB of video data with
throughput of 1Mbps using the rate control of TFRC. After 100 seconds from the
start of the video streaming, FTP servers and clients start their data transmission
through TCP sessions. Also, the packet generator always sends UDP packets with
the throughput of 8Mbps as background noise.

4.3.2 The Detailed Model

The main component of the detailed model is a queue which buffers packets
of a router in a bottleneck link. Behavior such as packet loss and round trip time
is based on the state of the queue. Also, for each application in the system, we
model behavior of its server in detail, while behavior of its client is abstracted as

73

Packet Generator

• 8Mbps UDP packets

Router Router

10Base-T 10Base-T

100Base-T

Media Server

• 80Mbytes Mpeg4

• RTP streaming

• Encoding rate 1M

Client

FTP Server (x n)

• TCP File Sender

FTP Client (x n)

• TCP File Receiver

Figure 4.1: A Configuration of Experimental System

Router

FTP Server
FTP Server

FTP Server

Abstracted

Packet Generator

Media

Server

Figure 4.2: An Abstract Outline of the Detailed Model

an operation of dequeue. Time elapsing is controlled discretely with an integer
variable. Figure 4.2 is an abstract outline of the detailed model for the case study
of Fig.4.1.

The detailed model is composed of seven modules named Timer, Router, Me-
diaServer, FTPServer(×3), RTTObserver, PLRObserver, while we abstract behav-
iors of the packet generator as a part of packet transmission behaviors of the module
Router

Module Timer

The module Timer manages time elapsing in the detailed model. In this module,
we declare an integer variable which represents current time. Time elapsing is
based on events such as packet transmission. In the detailed model, each module

74

registers time of occurrence of the next event. When all modules register the time,
the module Timer performs time elapsing into the latest time of the registered event.
After time elapsing, a corresponding module performs the registered event and
registers time of the next event again.

The module Timer contains two variables and is implemented as eleven lines
of code.

Module Router

The module Router manages buffer control of the router with a queue which
buffers transferring packets. In the module, the current queue length is managed
with an integer variable. Enqueue and dequeue behaviors are described in the
module as operations. Also, regardless of the current queue length, enqueueing
packets are dropped with certain probability. In order to construct the module
Router, we have to specify the maximum length of the queue, a packet transfer
rate of the link between the routers, and a constant probability to drop enqueueing
packets randomly as parameters.

In the enqueue operation, if the current queue length becomes larger than the
maximum one, the enqueueing packets are dropped (drop tail). The dequeue oper-
ation is abstracted; together with the time elapsing operation, a number of packets
are output from the queue at a time according to the packet transfer rate of the link.

Figure 4.3 shows the module Router described with the PRISM language. The
module also manages the history of packet loss intervals used for the congestion
control. It contains ten variables and is implemented as about 80 lines of code. In
Fig.4.3, the ten variables are firstly declared. Several actions are defined in CCS
like expressions with probabilities. For example, the expression

[ENQFTP1] (q_len <= MAXQLEN - pnum_ftp1)
-> 1 - P_LOSS_RATE : (q_len’ = q_len + pnum_ftp1);
+ P_LOSS_RATE : true;

stands for that when an action ENQFTP1 occurs and (q len
≤ MAXQLEN − pnum ftp1) holds, the variables q len is updated to q len +
pnum ftp1 with probability 1− P LOSS
RATE , or do nothing with probability P LOSS RATE .

Module MediaServer

The module MediaServer manages the transmission of RTSP packets. A packet
transmission rate is calculated from the throughput equation defined in [67]. To use
the equation, we also have to model round trip time and a packet loss rate of the

75

1. module Router
2.
3. q_len : [0..MAXQSIZE] init 0; //The current queue length
4.
5. //The history of packet loss intervals
6. int_p_loss0 : [0..10000] init 0;
7. int_p_loss1 : [0..10000] init 10000;
8. int_p_loss2 : [0..10000] init 10000;
9. int_p_loss3 : [0..10000] init 10000;
10. int_p_loss4 : [0..10000] init 10000;
12. int_p_loss5 : [0..10000] init 10000;
13. int_p_loss6 : [0..10000] init 10000;
14. int_p_loss7 : [0..10000] init 10000;
15. int_p_loss8 : [0..10000] init 10000;
16.
17. //A flag to observe whether the packet loss occurs burstly or not
18. p_loss_flag : bool init false;
19.
20. //When the queue length does not reach to its maximum,
21. //transferring packets are dropped with certain probability
22. [ENQMS] (q_len <= MAXQLEN - ms_pnum) ->
23. 1 - P_LOSS_RATE :
24. (q_len’ = q_len + ms_pnum) & (p_loss_flag’ = false) &
25. (int_p_loss0’ = int_p_loss0 + 1)
26. + P_LOSS_RATE :
27. (int_p_loss0’ = 0) & (int_p_loss1’ = int_p_loss0) &
28. (int_p_loss2’ = int_p_loss1) & (int_p_loss3’ = int_p_loss2) &
29. (int_p_loss4’ = int_p_loss3) & (int_p_loss5’ = int_p_loss4) &
30. (int_p_loss6’ = int_p_loss5) & (int_p_loss7’ = int_p_loss6) &
31. (int_p_loss8’ = int_p_loss7) ;
32.
33. //When the queue length reaches to its maximum
34. [ENQMS] (q_len > MAXQLEN - ms_pnum) & (!p_loss_flag) ->
35. (q_len’ = MAXQLEN) & (int_p_loss0’ = 0) &
36. (int_p_loss1’ = int_p_loss0 + 1)&
37. (int_p_loss2’ = int_p_loss1) & (int_p_loss3’ = int_p_loss2) &
38. (int_p_loss4’ = int_p_loss3) & (int_p_loss5’ = int_p_loss4) &
39. (int_p_loss6’ = int_p_loss5) & (int_p_loss7’ = int_p_loss6) &
40. (int_p_loss8’ = int_p_loss7) & (p_loss_flag’ = true);
41.
42. // When the packet loss occurs burstly
43. // (do not update the history of packet loss intervals)
44. [ENQMS] (q_len > MAXQLEN - ms_pnum) & (p_loss_flag) ->
45. (q_len’ = MAXQLEN) & (p_loss_flag’ = (q_len = MAXQLEN));
46.
47. //The ENQUEUE operations for the three FTP sessions
48. [ENQFTP1] (q_len <= MAXQLEN - pnum_ftp1) ->
49. 1 - P_LOSS_RATE : (q_len’ = q_len + pnum_ftp1);
50. + P_LOSS_RATE : true;
51.
52. [ENQFTP1] (q_len > MAXQLEN - pnum_ftp1) ->
53. (q_len’ = MAXQLEN);
54.
55. [ENQFTP2] (q_len <= MAXQLEN - pnum_ftp2) ->
56. 1 - P_LOSS_RATE : (q_len’ = q_len + pnum_ftp2)
57. + P_LOSS_RATE : true;
58.
59. [ENQFTP2] (q_len > MAXQLEN - pnum_ftp2) ->
60. (q_len’ = MAXQLEN);
61.
62. [ENQFTP3] (q_len <= MAXQLEN - pnum_ftp3) ->
63. 1 - P_LOSS_RATE : (q_len’ = q_len + pnum_ftp3)
64. + P_LOSS_RATE : true;
65.
66. [ENQFTP3] (q_len > MAXQLEN - pnum_ftp3) ->
67. (q_len’ = MAXQLEN);
68.
69. // DEQUEUE is executed together with
70. // the time elapsing event
71. [TIMER] (q_len != 0) ->
72. (q_len’ = max(0,
73. q_len - floor(min_lookahead *(RATE_OUT -RATE_PGEN))));
74.
75. [TIMER] (q_len = 0) -> true;
76.
77. endmodule

Figure 4.3: The Module of Router Described with PRISM Language

76

RTSP session. The module MediaServer contains six variables and is described
with about 37 lines of code.

In our model, the packet transmission behaviors are abstracted as a number of
packets are transmitted simultaneously.

Module FTPServer

The slow-start and congestion avoidance behaviors of TCP are embedded to
the module FTPServer. For each connection of the TCP, we declare two integer
variables to manage the slow-start threshold and the window size. In total, we
declare four variables and the behavior is implemented as about 26 lines of code
for each connection.

Module RTTObserver

The module RTTObserver observes round trip time of RTSP packets. In the
module, the round trip time is obtained using physical delay and delay in the router.
The delay in the router is calculated as the time to transmit all packets currently
buffered in the router. Therefore, we obtain the delay in the router using current
queue length and a packet transmission rate of the link.

Module PLRObserver

The module PLRObserver calculates a packet loss rate of RTSP packets. In the
TFRC specification[67], a packet loss rate is calculated using intervals of packet
loss. To avoid the loss rate varying rapidly, a history of the packet loss intervals is
used. Nine integer variables are declared to manage the history, which are declared
in the module Router. In the calculation of the loss rate, recent intervals in the
history are weighted heavily.

4.3.3 The Simplified Model

The detailed model described in Sec.4.3.2 is too complicated to verify its qual-
itative properties using probabilistic model checking.

Here, we create a simplified model based on simulation results on the detailed
model in order to perform model checking. Using the simplified model, we can
verify the minimum throughput of the media server.

In the simplified model, behavior of application servers which we do not con-
cern is abstracted. The abstraction is based on the simulation results on the de-
tailed model. In the simulation, we obtain probability distributions of transmission
rates for the application servers depending on current queue length. The simplified

77

Router AbstractedMedia

Server

ThrThr

Abstracted

ThTh

Abstracted

Figure 4.4: An Abstract Outline of the Simplified Model

model decides the packet transmission rate using the distributions to simulate the
behaviors of the servers. Fig.4.4 is an abstract outline of the simplified model. In
general, the simplified model uses an abstracted module which simulates such a
distribution approximately. The number of states is a few, thus the module con-
tributes reducing the number of whole states. The simplified model does not have
an integer variable to control time elapsing in order to reduce a state space. We as-
sign a certain period into an action transition of the model. Each module transmits
a number of packet due to its current transmission rate. In this study, we let the
period be 50ms. The simplified model consists of four modules and has 136 lines
of code.

Here, we describe how to analyse such probability distributions on the detailed
model and how to construct the abstracted module from the distributions.

Analysis of the Probability Distributions on the Detailed Model

We use reward descriptions of the PRISM to obtain the probability distributions
of transmission rates for application servers. In our detailed model, at every one
second in the scenario, we calculate a summation of packet transmission rates for
all application servers within the time period. If the calculated rate occurs in the
range of transmission rates specified by the reward property, we assign the reward
one in the reward description. Evaluation of the reward property by the PRISM
simulation can generate a histogram of the transmission rates among the extracted
paths. Then, we translate the histogram into the discrete probability distribution.
Since the distributions depend on the condition of the queue, we add the condition
of latest queue length in the reward description.

Figure 4.5 shows a part of the reward descriptions in our detailed model. The

78

rewards "ftp_1th0"
[CHECK] (prev_q_length >=MAXQSIZE*Q_OCC_LB1) &

(prev_q_length < MAXQSIZE*Q_OCC_UB1) &
(ftp_send >= 0) & (ftp_send < 20)

: 1; //within 0-80 Kbps
endrewards

rewards "ftp_1th1"
[CHECK] (prev_q_length >=MAXQSIZE*Q_OCC_LB1) &

(prev_q_length < MAXQSIZE*Q_OCC_UB1) &
(ftp_send >= 20) & (ftp_send < 40)

: 1; //within 80-160 Kbps
endrewards

rewards "ftp_1th2"
[CHECK] (prev_q_length >=MAXQSIZE*Q_OCC_LB1) &

(prev_q_length < MAXQSIZE*Q_OCC_UB1) &
(ftp_send >= 40) & (ftp_send < 60)

: 1; //within 160-240 Kbps
endrewards

rewards "ftp_1th3"
...

Figure 4.5: A Part of Reward Descriptions for Analysis of the Distribution

reward is assigned to the transition labeled with the CHECK action. The guard con-
dition for each reward description is composed of the conditions of the queue length
and those of the transmission rates. The parameters Q OCC LBn and Q OCC UBn
(1 ≤ n ≤ 4) stand for lower and upper bounds of queue occupancy rates, respec-
tively. Totally, in our detailed model, we specify 140 of reward properties to obtain
the histograms for all conditions of the queue.

Construction of the Abstracted Module

The abstracted module is based on the discrete probability distributions ob-
tained from the results of PRISM simulation. Figure 4.6 shows the abstracted
module obtained in our experiment shown in Sec.4.4, which simulates the behav-
iors of four FTP servers in the example of Sec.4.3.1. In the module, there are four
transitions labelled with the action ENQ with the different guarded conditions in-
volved with the queue length (q length). For each transition, it decides its packet
transmission rate (other rate) according to the probability distribution. In the sim-
plified model, the abstracted module interacts with the modules of the media server
and queue.

79

1. module Other_Servers
2. other_rate : [10..31] init 10; // the number of packets in 50 msec]
3.
4. [ENQ] (q_length < ceil(85*MAXQSIZE/100)) ->
5. 0.0000135260 : (other_rate’ = 13) //1040Kbps
6. + 0.0000608672 : (other_rate’ = 14) //1120Kbps
7. + 0.0004193071 : (other_rate’ = 15) //1200Kbps
8. + 0.0022385587 : (other_rate’ = 16) //1280Kbps
9. + 0.0094817500 : (other_rate’ = 17) //1360Kbps

10. + 0.0281882553 : (other_rate’ = 18) //1440Kbps
11. + 0.0671567600 : (other_rate’ = 19) //1520Kbps
12. + 0.1294238586 : (other_rate’ = 20) //1600Kbps
13. + 0.1955188249 : (other_rate’ = 21) //1680Kbps
14. + 0.2156793789 : (other_rate’ = 22) //1760Kbps
15. + 0.1728965326 : (other_rate’ = 23) //1840Kbps
16. + 0.1040828334 : (other_rate’ = 24) //1920Kbps
17. + 0.0497419909 : (other_rate’ = 25) //2000Kbps
18. + 0.0188891068 : (other_rate’ = 26) //2080Kbps
19. + 0.0051669451 : (other_rate’ = 27) //2160Kbps
20. + 0.0008656662 : (other_rate’ = 28) //2240Kbps
21. + 0.0001690754 : (other_rate’ = 29) //2320Kbps
22. + 0.0000067630 : (other_rate’ = 30); //2400Kbps
23.
24. [ENQ] (q_length >= ceil(MAXQSIZE*85/100)) & (q_length < ceil(MAXQSIZE*90/100)) ->
25. 0.0000186290 : (other_rate’ = 12) //960Kbps
26. + 0.0000521611 : (other_rate’ = 13) //1040Kbps
27. + 0.0002421768 : (other_rate’ = 14) //1120Kbps
28. + 0.0009798844 : (other_rate’ = 15) //1200Kbps
29. + 0.0047541161 : (other_rate’ = 16) //1280Kbps
30. + 0.0163935037 : (other_rate’ = 17) //1360Kbps
31. + 0.0452088123 : (other_rate’ = 18) //1440Kbps
32. + 0.0971091547 : (other_rate’ = 19) //1520Kbps
33. + 0.1661369826 : (other_rate’ = 20) //1600Kbps
34. + 0.2123070503 : (other_rate’ = 21) //1680Kbps
35. + 0.1995238432 : (other_rate’ = 22) //1760Kbps
36. + 0.1393857652 : (other_rate’ = 23) //1840Kbps
37. + 0.0729287367 : (other_rate’ = 24) //1920Kbps
38. + 0.0315314141 : (other_rate’ = 25) //2000Kbps
39. + 0.0102496656 : (other_rate’ = 26) //2080Kbps
40. + 0.0025745252 : (other_rate’ = 27) //2160Kbps
41. + 0.0005178857 : (other_rate’ = 28) //2240Kbps
42. + 0.0000707901 : (other_rate’ = 29) //2320Kbps
43. + 0.0000111774 : (other_rate’ = 30) //2400Kbps
44. + 0.0000037258 : (other_rate’ = 31); //2480Kbps
45.
46. [ENQ] (q_length >= ceil(MAXQSIZE*90/100)) & (q_length < ceil(MAXQSIZE*95/100)) ->
47. 0.0000025649 : (other_rate’ = 11) //880Kbps
48. + 0.0000205193 : (other_rate’ = 12) //960Kbps
49. + 0.0000718175 : (other_rate’ = 13) //1040Kbps
50. + 0.0002872701 : (other_rate’ = 14) //1120Kbps
51. + 0.0016005048 : (other_rate’ = 15) //1200Kbps
52. + 0.0065046156 : (other_rate’ = 16) //1280Kbps
53. + 0.0208270814 : (other_rate’ = 17) //1360Kbps
54. + 0.0545941412 : (other_rate’ = 18) //1440Kbps
55. + 0.1149516386 : (other_rate’ = 19) //1520Kbps
56. + 0.1788974471 : (other_rate’ = 20) //1600Kbps
57. + 0.2109511461 : (other_rate’ = 21) //1680Kbps
58. + 0.1836220141 : (other_rate’ = 22) //1760Kbps
59. + 0.1244212918 : (other_rate’ = 23) //1840Kbps
60. + 0.0657463764 : (other_rate’ = 24) //1920Kbps
61. + 0.0270623812 : (other_rate’ = 25) //2000Kbps
62. + 0.0084539483 : (other_rate’ = 26) //2080Kbps
63. + 0.0016877118 : (other_rate’ = 27) //2160Kbps
64. + 0.0002744455 : (other_rate’ = 28) //2240Kbps
65. + 0.0000230842 : (other_rate’ = 29); //2320Kbps
66.
67. [ENQ] (q_length >= ceil(MAXQSIZE*95/100)) ->
68. 0.0000074358 : (other_rate’ = 11) //880Kbps
69. + 0.0001041011 : (other_rate’ = 12) //960Kbps
70. + 0.0002354667 : (other_rate’ = 13) //1040Kbps
71. + 0.0007460578 : (other_rate’ = 14) //1120Kbps
72. + 0.0026719279 : (other_rate’ = 15) //1200Kbps
73. + 0.0078001457 : (other_rate’ = 16) //1280Kbps
74. + 0.0243274326 : (other_rate’ = 17) //1360Kbps
75. + 0.0614270772 : (other_rate’ = 18) //1440Kbps
76. + 0.1240562741 : (other_rate’ = 19) //1520Kbps
77. + 0.1859939423 : (other_rate’ = 20) //1600Kbps
78. + 0.2053790519 : (other_rate’ = 21) //1680Kbps
79. + 0.1726070382 : (other_rate’ = 22) //1760Kbps
80. + 0.1167344976 : (other_rate’ = 23) //1840Kbps
81. + 0.0625424460 : (other_rate’ = 24) //1920Kbps
82. + 0.0255989530 : (other_rate’ = 25) //2000Kbps
83. + 0.0078497177 : (other_rate’ = 26) //2080Kbps
84. + 0.0016507458 : (other_rate’ = 27) //2160Kbps
85. + 0.0002528169 : (other_rate’ = 28) //2240Kbps
86. + 0.0000148716 : (other_rate’ = 29); //2320Kbps
87. endmodule

Figure 4.6: The Abstracted Module for four FTP servers

80

4.4 Experiments

We have performed some experiments using our PRISM models described in
Sec.4.3. We have also modeled the system by NS-2[62, 69] to compare the sim-
ulation results. The experiments were performed under an environment of Fedora
13 (64 bit), Intel Core 2 Duo 2.33GHz, and 2.00GB of M.M.

In the experiments, we assume packet transmission parameters as follows: the
packet size is 500 Byte, the number of packets acknowledged by a single TCP
acknowledgment is one, and the TCP retransmission timeout value is 4 × RTT
second. We assume that transmitted packets are lost with the probability 0.001.

In this study, we have performed two experiments.
The first experiment checks the correctness of our detailed model. In the exper-

iment, we performed 1000 trial runs for PRISM and NS-2 simulation, respectively,
and compared the simulation results. In this experiment, we consider nine scenar-
ios with respect to the buffer size of routers and the number of the FTP servers.
In the scenarios, the buffer sizes are 32, 64, and 128 KB, respectively. Also, the
number of the FTP servers are three, four, and five, respectively.

In the second experiment, we performed about 10000 trial runs for PRISM
simulation, and created a more simplified PRISM model based on the simulation
results. As a target scenario, we select a scenario of 64KB of buffer and four FTP
connections. Using the simplified model, we verify the minimum throughput of
the RTP session.

4.4.1 Analysis of the Correctness

Before analyzing the 1000 trials of simulation, we extracted one sample from
the simulation results by PRISM and NS-2, respectively. Fig.4.7 and Fig.4.8 rep-
resent measured throughput and packet loss rates, respectively, in the scenario of
64KB of the buffer and four FTP connections. Throughput in the graph means the
average throughput within one second, and a packet loss rate means a calculated
value at the time as defined in [67]. In the scenario of the example, file transmission
starts after 100 seconds from the start of the RTP session, and this causes the net-
work congestion. Consequently, the throughput of the RTP session goes down and
the packet loss rate of it comes up. The simulation results of Fig.4.7 and Fig.4.8
show that our PRISM model and NS-2 model behave similarly even if the network
congestion occurs.

To analyze the correctness of our PRISM model in detail, we compare the av-
erage, variance, minimum and maximum of throughput of the media server in the
1000 of runs measured by PRISM and NS-2. Tables 4.2, 4.3 and 4.4 represent the
analyzed throughput in the period of congestion (after 120 seconds in the simu-

81

400

600

800

1000

1200

PRISM

NS-2
T

h
ro

u
g

h
p

u
t

[K
b

p
s]

0

200

400

600

800

1000

1200

0 50 100 150 200 250

PRISM

NS-2
T

h
ro

u
g

h
p

u
t

[K
b

p
s]

time [second]

Figure 4.7: Comparison of the Throughput

0.02

0.03

0.04

0.05

0.06

0.07

PRISM

NS-2

P
a

c
k
e

t
L
o

ss
 R

a
te

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 50 100 150 200 250

PRISM

NS-2

P
a

c
k
e

t
L
o

ss
 R

a
te

time [second]

Figure 4.8: Comparison of Packet Loss Rates

lation scenario). The row of Size stands for the buffer size of the router. Also
the rows of Max, Min, Ave and V ar represent the maximum (Kbps), minimum
(Kbps), average (Kbps), and variance of throughput, respectively.

Tables 4.2, 4.3, and 4.4 show that the behavior of our detailed model is similar
with that of the NS-2 model for all scenarios. Also we have analyzed packet loss
rates and RTT as well. The results also show our detailed model behaves similarly
to the NS-2 model. In the cases of the buffer size 32KB, however, we can see the

82

Table 4.2: Summary of the Analyzed Data (3 FTP servers)
Size 32KB 64KB 128KB
Model NS-2 PRISM NS-2 PRISM NS-2 PRISM
Max 1000 880 960 920 972 956
Min 44 24 128 132 224 128
Ave 536 523 515 530 535 513
Var 1.55E+04 1.20E+04 1.02E+04 1.03E+04 8.10E+03 1.20E+04

Table 4.3: Summary of the Analyzed Data (4 FTP servers)
Size 32KB 64KB 128KB
Model NS-2 PRISM NS-2 PRISM NS-2 PRISM
Max 992 796 856 832 768 800
Min 20 4 76 56 100 128
Ave 387 368 399 421 399 399
Var 1.37E+04 7.77E+03 7.82E+03 7.14E+03 5.09E+03 5.92E+03

Table 4.4: Summary of the Analyzed Data (5 FTP servers)
Size 32KB 64KB 128KB
Model NS-2 PRISM NS-2 PRISM NS-2 PRISM
Max 816 644 688 660 664 680
Min 4 4 36 40 84 100
Ave 289 270 317 332 317 330
Var 1.15E+04 5.63E+03 6.43E+03 5.35E+03 3.77E+03 3.94E+03

difference of the maximum throughput between the detailed model and NS-2. We
think one of the reasons is that we strongly abstract a packet sending mechanism
in the PRISM model, that is, when the packet transmission rate is high, our model
transmits a number of packets at a time. When the buffer size is small, transmit-
ted packets tend to be lost because of such abstraction. We think this causes the
differences of behaviors between the PRISM model and NS-2 one.

For one trial run of the PRISM simulation, it takes 2.5 seconds averagely, while
it takes 34.1 seconds in the simulation of NS-2.

83

0.1

0.15

0.2

0.25

Queue: ~85%

Queue: 85%~90%

Queue: 90%~95%

Queue: 95%~100%

0

0.05

0.1

0.15

0.2

0.25

880 960 1040 1120 1200 1280 1360 1440 1520 1600 1680 1760 1840 1920 2000 2080 2160 2240 2320 2400 2480

Queue: ~85%

Queue: 85%~90%

Queue: 90%~95%

Queue: 95%~100%

Throughput (Kbps)

Figure 4.9: The Discrete Probability Distribution of Throughput of the FTP Servers

4.4.2 Verification results for the simplified model

Here, we verify the minimum throughput that the media server may provide
in the worst case. In the verification, we use a simplified model based on the
simulation results on the detailed PRISM model. The simulation results should
contain discrete probability distributions of the throughput of FTP servers and the
packet generator. Since the packet generator generates UDP packets at the same
rate in the example, we can decide the transmission rate to be the same rate.

The discrete probability distributions of the total throughput of the four FTP
servers are shown in Fig.4.9, where the buffer size is 64KB and the number of the
FTP is four. The charts are divided with respect to values of buffer occupancy. It
takes about 173 minutes to perform 10000 trials of PRISM simulation.

Based on the results of Fig.4.9, we create the simplified model. The simplified
model is described with 136 lines of code and seven variables. In order to reduce a
state space, we have reduced a range of integer variables for the control of packet
loss intervals.

The verification property for checking the minimum throughput is given as fol-
lows; P>0 [F measure & throughput ≤ x]. This property means the probability
of throughput being the value of x is greater than 0, where throughput is a vari-

84

able to manage the throughput of the RTP session within one second periodically
andmeasure is a boolean variable which becomes true every one second. The ver-
ification is performed with varying the value of x from 0. The minimum throughput
is defined as a minimum value of x such that the result of model checking becomes
true. In the experiment, we have performed model checking with varying x from
0 to 56 which is the minimum throughput obtained by simulation on the detailed
model.

Model checking on the simplified model outputs the minimum throughput
20Kbps. The number of states constructed by PRISM is 10885476, and it takes
940 seconds for model checking. We can see that the obtained minimum through-
put doesn’t contradict with the simulation results shown in Table 4.3.

4.4.3 Discussion

In the simulation on the detailed model, we have obtained similar results with
NS-2. We conclude that we have modeled correctly the behavior of real-time dis-
tributed systems. Also, the execution time of PRISM simulation for one trial is
shorter than that of NS-2. We think that this is because NS-2 implements behav-
ior of protocols definitely while our detailed model has some abstracted behavior.
From the experimental results, we expect that we can use PRISM as a network
simulator for the real-time distributed systems.

In the verification on the simplified model, it has taken about 173 minutes for
simulation and about 15 minutes for model checking. We think that we can ver-
ify the property within the realistic time. For the state space, we have constructed
about ten millions of states, though we reduce the space by some abstraction. In
order to analyze other qualitative properties or apply our technique into more com-
plicated systems, we have to apply other abstraction techniques to reduce the state
spaces as a future work.

For validity, we did not fully show the validity of our simplified model by the
experiment. Therefore, we cannot say the results of probabilistic model checking
are reliable. We believe that, however, as reported in Paper[19] there are many
works in which they apply probabilistic model checking to performance evaluation
of information systems , and our hybrid approach is useful to reduce verification
costs. We have to show the validity of our simplified model by performing other
experiments in the future.

4.5 Summary

This study presents a hybrid evaluation method for a real-time distributed sys-
tem based on the probabilistic model checking technique and simulation. In our

85

approach, we perform stepwise analysis using probabilistic models of target sys-
tems in different abstract levels (detailed model and simplified model). To validate
the correctness of our model, we model it in a model for the well-known network
simulator NS-2, and give the comparison of their simulation results. The compar-
ison shows that the result of PRISM simulation is very similar to that of NS-2. It
shows that the proposed approach is useful to analyze the network performance.
We believe that such analysis is useful for other kind of network analysis.

The future works include validation of our simplified model, and also automatic
derivation of the simplified model suitable for model checking analysis. Many
abstraction techniques are proposed for model checking. We want to apply such
techniques to the process.

86

Chapter 5

Formal Verification with a
Stepwise Abstraction Approach
for UML/OCL Based Design of
Real-time Systems

5.1 Introduction

In this study, we propose a new method to verify consistency of timeliness
QoS of component-based real-time systems. We assume that timeliness QoS is
not only given to a whole system (Required QoS) but also associated with each
component of a given system (Provided QoS). Timeliness QoS is a time aspect of
QoS (Quality of Service) features[52]. In this study, we treat jitter, latency and
throughput as timeliness QoS.

The proposed method is a revised version of [53], which uses Linear Program-
ming (LP) for some of verification. The approach has a disadvantage that connec-
tion among components has to be acyclic, and it cannot be applied to hierarchical
design. The method proposed in this study uses abstract QoS automata instead of
using LP; thus it improves the former disadvantage. The heart of the technique is
formally to ensure that the required timeliness QoS is satisfied under the provided
timeliness QoS, if some properties of the network and the class diagram are given.

In order to avoid state-explosion while performing model checking, we sepa-
rate the problem into two steps. The first step checks the satisfiability using an ab-
stract model of each of components derived automatically from the provided QoS.
The second step performs model checking for each component independently using
a more detailed version of the behavioral model of a component. Such an approach

87

efficiently reduces the number of total states to be checked. Moreover the approach
can be extended into hierarchical design; therefore it has good scalability.

5.2 Preliminary

5.2.1 Timeliness QoS

Main building blocks of our model are components. Each component has one
or more interfaces to the environment, where all interactions between components
are conducted via the interfaces. Since we are mostly dealing with real-time sys-
tems and timeliness QoS, we shall assume that the interaction of a component with
its environment is carried out via input and output signals. As a result, interfaces
of a component specify signals that the component receives or emits.

Each component is associated with a number of input and output signals. In
this study, signals are denoted by x, y and z. Time of occurrence of a signal is
denoted via a non-negative sequence of rational numbers. For example, the time
of occurrence of a signal x is denoted with x1, x2, . . . representing time of first,
second, ... occurrence of x.

Timeliness QoS expressions [70] such as jitter, throughput and latency can be
expressed via first-order logic formulae on the set of time of occurrence of signals.

Throughput of at least (most) K within the time period T, for signal x can be
written as the first order formula ∀i ∈ N : xi+K−1−xi ≤ T (∀i ∈ N : xi+K−1−
xi ≥ T), respectively.

Notice, paper [55] refers to the above QoS constraint as Non-Anchored through-
put.
Jitter , also called Non-Anchored jitter , of a signal x can be defined by the ex-
pression ∀i ∈ N : T −m ≤ xi+1 − xi ≤ T +M, where T is the period of the
jitter and m,M are constant rational numbers.
Latency of at most T unit of time between two signals x and y as ∀i ∈ N : 0 <
xi − yKi+K′ ≤ T. A special case of the above definition (for K = 1 and K ′ = 0)
is the well-known definition of latency ∀i ∈ N : 0 < xi − yi ≤ T that applies to
the time difference of the i-th occurrence of x and y.

5.2.2 UML/OCL Based Design of Real-time Systems

A real-time system can be designed as a set of components where signal com-
munication links exist among pairs of components. We can describe such compo-
nents in a UML class diagram in Fig. 5.1.

88

data_flow((a1,b1),(a2,b2))

<< network >>

 A_B
<<QoS>>network_delay

<< component >>

 A

<<QoS>>throughput(a1,100)
<<QoS>>throughput(a2,100)

<< component >>

 B

<<QoS>>jitter(b1,5)
<<QoS>>delay(b2,b3)

Figure 5.1: A Configuration of Components in UML Class Diagram

Type Component can be specified by Stereotyping “component,” by which user
can easily extend UML specifications. A signal communication can be specified
with the Association.

Each of components has provided QoS, which can be represented via OCL an-
notation. Each of network links (which has association class with the stereotype
“network”) also has network properties represented via OCL annotation. The net-
work properties are the same as timeliness QoS. Attribute regions of each class
includes special variables for QoS with “QoS” stereotype (in Fig. 5.1). The fol-
lowing is the syntax of the variables.

Throughput Variable := “throughput(” signal “,” period “)” ;
Jitter Variable := “jitter(” signal “,” period “)” ;
Latency Variable := “delay(” output “,” input “)” ;

A class with the “component” stereotype has three categories of timeliness QoS
(Jitter, throughput and latency), while a class with “network” has two categories of
timeliness QoS (Jitter and latency).

The OCL description is given as follows[70].
QoS description := “context” className invariant* ;
invariant := “inv: self.” constraint ;
constraint := variable op constant;
variable := Throughput Variable | Jitter Variable | Latency Variable
op := “>” | “<” | “≥” | “≤” ;
For example, the followings are examples for Fig. 5.1, where – means a com-

ment line.
context A

inv: self.throughput(a1,100) ≥ 20
– signal a1 is emitted at least 20 times in the period 100 units of time
inv: self.throughput(a2,100) ≤ 10
– signal a2 is emitted at most 10 times in the period 100 units of time

89

context B
inv: self.jitter(b1, 5) < 1
– signal b1 has jitter 1 with period 5 units of time
inv: self.delay(b2,b3) < 5
– latency between receiving signal b2 and sending signal b3 is less than 5
units of times

context A B
inv: delay ≤ 100
– latency (network delay) between component A and component B is less
than 100 units of time

5.3 The Verification Method

The verification consists of two steps; First Step and Second Step. If some
components are not simple enough, we repeat the process again from First Step on
each of the components. The following is the abstract level of steps of the proposed
method.
input:

• system required timeliness QoS represented in OCL;

• component level provided timeliness QoS represented in OCL; and

• network configuration represented in UML/OCL class diagram.

output:

• component level behavioral specification represented in UML/OCL state-
chart which satisfies required timeliness QoS under the configuration;

• or failure.

1. First step

(a) We generate a test automaton from the required timeliness QoS.

(b) We generate an abstract QoS automaton from each of the provided
timeliness QoS.

(c) We generate a configuration automaton from the network configura-
tion.

(d) We check the consistency from parallel composition of the above au-
tomata.

90

(e) If deadlock is detected by model checking, return failure. We have to
reconfigure the requirement or provided conditions.

(f) If deadlock is not detected, go to Second Step.

2. Second Step

(a) If the component is not small enough to represent simple state-chart,
then refine the component by;

i. renaming provided QoS of the component to required QoS;
ii. design sub components and provided QoS of each of them;

iii. design network configuration; and
iv. we repeat the First Step until the component is small enough.

(b) If the component is small enough to represent a simple state-chart, then
we describe the state chart of the component.

(c) We translate a test automaton from the provided timeliness QoS.

(d) We design network of timed automata from the state-chart.

(e) We check the consistency from parallel composition of the above au-
tomata.

(f) If deadlock is detected by model checking, return failure. We have to
reconfigure the state-chart.

(g) If deadlock is not detected, return success.

5.3.1 The First Step

Verification inputs are given as follows.

• Required QoS;

• a set of components with provided QoS; and

• a configuration automaton which represents network properties.

The output is whether a given required QoS is satisfied under a given set of compo-
nents with provided QoS and a given set of network links with network properties.

In usual methods, designer models behavior of each component in a network of
timed automata and for the whole network of timed automata. Then the designer
performs model checking, which often results in state explosion. Here, we give
a new method, in which timed automata (We call each of them an abstract QoS
automaton) is derived automatically from the provided QoS. The important point
is that derived automata are so small that state-explosion is avoided. Here, we give
a translate rule for each provided QoS.

91

T>=t

x!

t:=0, c:=0
c<M

x!

c++

c==M

x!

t :=0, c :=0

Figure 5.2: An Abstract QoS automaton for Anchored Throughput

t <= T+d1

t >= T- d0

x!

t:=0

Figure 5.3: An Abstract QoS automaton for Non-Anchored Jitter

Throughput

A translated abstract QoS automaton for throughput is shown in Fig.5.2. The
automaton transmits signal x at least M times during the period T . The variable c
and clock variable t are used for such the control.

When ”throughput must be at least k frames per P ms” is given as a pro-
vided QoS, the corresponding abstract QoS automaton is generated with substitu-
tion M = k and T = P .

Jitter

A translated abstract QoS automaton for jitter is also shown in Fig.5.3. The
automaton transmits signal x with the period T . The allowed jitter is [T − d0, T +
d1]. Using the clock variable t, it transmits signal x at every [T − d0, T + d1]
period.

When ”jitter must be [−d′0, d′1] with a period T ′” is given as a provided QoS, the
corresponding abstract QoS automaton is generated from Fig. 5.3 with substitution
T = T ′, d0 = d′0 and d1 = d′1.

Latency

For signal x and y, let m and M be the minimum and maximum latency, re-
spectively. A translated abstract QoS automaton for latency with above parameter

92

t<=M

y?

t:=0

t>=m
x!
t:=0

Figure 5.4: An Abstract QoS automaton for Latency

is shown in Fig.5.4. The automaton transmits signal x after receiving signal y with
the latency [m,M].

Unfortunately, the automaton does not accept input y until it emits output x. To
avoid the problem, a set of the same automata is needed. The number of automaton
decided from throughput property of the components.

When ”latency for signal x and y must be [m,M]” is given as a provided QoS,
and also parameter T representing period of signal y is given, the corresponding
abstract QoS automata are generated from Fig. 5.4. The number of copies is T .

Configuration Automaton

A configuration automaton models interfaces among components. As each
component has several inputs and outputs, such an I/O is represented as a channel
in the configuration automaton. Each channel synchronizes with some I/O of some
components with provided QoS (abstract QoS automaton). Abstract QoS automata
and the configuration automaton communicate each other as described above.

Test Automaton

For a given required QoS, we can verify whether the required QoS is satisfied
with the system by generating a corresponding test automaton from the required
QoS. Fig.5.5, 5.6, and 5.7 show templates of test automata for throughput, jitter,
and latency, respectively. For such templates, substituting each parameter with
concrete value specified by the required QoS, we can obtain the test automaton.

Throughput For a non-anchored throughput of which a signal e occurs at least k
times in a period T and at most k times in a period T0, a network of test automata
consisting of k processes of timed automata in Fig.5.5 observes the throughput.

The test automaton observes if T0 ≤ T (e, i+k)−T (e, i) ≤ T holds for some
i, where T (e, i) means the time of i-th occurrence of signal e. With k copies of
such test automata, they can observe if ∀i(T0 ≤ T (e, i+ k)− T (e, i) ≤ T) holds.

93

sleep active failurec == i

e ?
t := 0,
c := c + K

t >= T0 && t <= T &&
c == i

e ? t := 0,
c := c + K

t > T

t < T0 && c == i
e ?

Figure 5.5: A Test Automaton for Throughput

In other words, they can observes at least k times signal e occurs during [T0, T].
Parameters of the test automaton are k, T and T0.

In the network of test automata, the variables c is shared among automata glob-
ally. Each of timed automata is activated by turns along the value of variable K.
When there exists common divisor k for T, T0 and n, we can reduce the number
of copies of the test automaton to k/n with the parameters T/n, T0/n and k/n.
The discussion of such a reduction technique is described in Sec.5.4.4.

Jitter Figure 5.6 shows a test automaton for anchored jitter. It observes whether
a signal e occurs periodically in the period [nT − delta0, nT + delta1], where
n = 1, 2, 3,

The automaton in Fig.5.6 has two clocks t0 and t1. A path from s1 to s2 via
se12 or sl12 observes that the time of j-th occurrence of signal e is during the
period [jT − delta0, jT + delta1] using clock t0, while a path from s2 to s1 via
se21 or sl21 observes that the time of j + 1-th occurrence of signal e is during the
period [(j + 1)T − delta0, (j + 1)T + delta1] using clock t1.

Latency Figure 5.7 provides a component of test automata for latency between
a signal x and y. The test automaton shown in Fig.5.7 observes if ∀i(T (y, i) −
T (x, i) ≤ T) holds, where T (e, i) means the time of i-th occurrence of signal e.

We have to use T/D copies of such test automata, where D is period of signal
x. Variable cx and cy are shared variables with them, which serve to count the
occurrence of signal x and y.

Verification

The behavior of whole systems with timeliness properties also is modeled as
a network of timed automata, which is called a configuration automaton. Parallel
composition of an abstract automaton for every component and the configuration

94

s1

t0 <= T

s2

t1 <= T

s0

se12

t0 <= T

se21

t1 <= T

sl12

sl21

failure

e ?
t0 >= T - delta0, t0 < T

e ?
t0 := 0, t1 := 0

t0 == T
t1 := 0

t1 := 0
t0 == T

e ?
t0 <= T + delta1

t0 := 0
t1 == T t1 >= T - delta0, t1 < T

e ?

t1 == T
t0 := 0e ?

t1 <= T + delta1

t0 > T + delta1
e ?

t1 >T + delta1
e ?

t0 < T - delta0
e ?

t1 < T - delta1

e ?

e ?

e ?

Figure 5.6: A Test Automaton for Jitter

automaton and the test automaton for specified timeliness QoS decides whether the
whole system satisfies the specified timeliness QoS.

For the detail of process of the verification, refer [71].

Category Based Model Checking

Verification is performed for every timeliness QoS category (latency jitter and
throughput). The idea and approach is very simple. When we want to check only
latency as the required QoS, we build an abstract automaton for provided QoS of
latency only. The divided and conquer approach reduces the size of states.

5.3.2 The Second Step

For each of components, Second step has the following two cases depending
on the component’s abstraction

• We repeat First step to the given component recursively.

• We design detailed behavior of the component and verify whether provided
QoS is ensured by the design.

95

s0 s1
failure

cx == i
x ?
t := 0, cx := cx + K

cy == i && t <= T
y ?
cy := cy + K

cy == i && t > T

y ?

Figure 5.7: A Test Automaton for Latency

If the size of the given component is large and designer has to design the given
component from more detail components, then repeats First step. Hereafter, we
describe the later case.

At the Second step (of the later case), verification is independently performed
for each component. Before the Second step, the designer has to give detailed
behavior of each component. Such behavior is given as the UML state-chart. In
order to give time constraints on events, the state-chart has clocks.

Verification inputs are given as follows.

• component’s behavior given as the UML state-chart with clocks; and

• component’s provided QoS.

The output is whether provided QoS is satisfied under the given UML state-chart
with clocks.

The verification is performed based on a test automaton. We have to translate
the UML state-chart with clocks to a network of timed automata.

A state-chart can represent hierarchical architectures; while a network of timed
automata is a simple flat structure model. In general, hierarchical structure can
be flatten, but such translation increases the number of states. There are several
translations, and we adapt the one in [72]. The translation itself is an algorithm
to translate Hierarchical Timed Automata (HTA) to a network of timed automata
used by UPPAAL[5]. Thus, we have to translate state-charts to HTA. Fortunately,
syntax and semantics of state-chart and HTA are both similar, the translation is
simple.

We add the following constraints on the state-chart.

• the state-char diagram has clocks; and

96

 UML
Statechart

OCL

UPPAAL

Timed
Automata

Test Timed
Automata

Figure 5.8: Verification on UPPAAL Based on Test Automata

• arcs in the stat-chart has clock constraints in a form of the one same as Timed
automata in UPPAAL.

We also use test automata to check timeliness QoS. Test automata for jitter,
latency and throughput are given in Sec.5.3.1.

The verification can be performed with UPPAAL[5, 22]. Thanks to test au-
tomata, we just check deadlock property for each QoS. Logical expression for the
deadlock property in UPPAAL is “AG not deadlock.”

5.4 Experiment

The proposed method is applied to an example.

5.4.1 The example

A media server is an application delivering video stream and audio stream to
Digital Television and Audio System[73, 74]. Each of output devices required
timeliness QoS (throughput). Figure 5.9 shows the class diagram of the application,
which consists of twelve components.

In order to compare the proposed method to the old method, which uses LP
solver to First Step, we merge the twelve components to three components (Server
3 components , Audio client 4 components, and Video clients 5 components).

5.4.2 First Step

The following is the provided QoS.

• Throughput of Component MS–Server is equal or greater than 100 frames/s.

• Processing latency of Component MS-Storage is equal or less than 5ms.

• Network latency between MS–Server and Digital–TV is equal or less than
100ms.

97

Media Server

MS-Storage

MS-Controller

MS-Server

MS-DT_network

MS-AS_network

DT-Receiver DT-Controller

DT-L-Speaker DT-display DT-R-Speaker

AS-Receiver AS-Controller

AS-L-Speaker AS-R-Speaker

Digital-TV

Audio-System

Figure 5.9: The Class Diagram of Media Server

• Network latency between MS–Server and Audio–System is equal or less
than 150ms.

We give the following requirement for the Required QoS for the system.

• Throughput of Digital Display (DT Display) must be at least 30 frames/sec.

For these provided QoS, and a configuration automaton derived from the UML
class diagram, and Required QoS for the whole system, we apply the verification
along with First Step.

Figure 5.10 shows the Configuration automaton for the experiment. The Con-
figuration automaton in Fig.5.10 represents connection among the components. It
uses channels to communicate abstract QoS automata providing the provided QoS
mentioned above. For example channel x is used for communication to the ab-
stract QoS automaton with throughput 100 frames/sec at a transition between MS–
Controller and MS–Server. In order to avoid unfairness that frame communication
occurs only between MS–Server and Digital–TV (or only between MS–Server and
Audio–System), we use a parameter MAX FRAME, which is used in a condi-
tion that the maximum successive occurrence of signals between the same compo-
nents. We use a condition MAX FRAME = 1 for the experiment.

Figure 5.11 shows the test automaton for throughput as Required QoS. The
test automaton observes throughput of 3 frames per 100ms. As required QoS, the
required value of throughput is 30 frame/sec, We have to need 30 processes of
throughput test automata to observe the throughput exactly.

98

MS_Storage MS_Controller

MS_Server

Digital_TV

Audio_System

x3?x2?

x1?

c_DTFrame < MAX_FRAME

y3!

c_DTFrame++,
c_AudioFrame := 0

c_AudioFrame < MAX_FRAME
y2!

c_AudioFrame++, c_DTFrame := 0

y1!

x4?

Figure 5.10: The Configuration Automaton

Figure 5.11: The network of test automata for the given required QoS

At the First Step, we have performed verification experiments for two config-
urations: (1) an abstract QoS which outputs ten frames per 100 msec, and (2) an
abstract QoS which outputs 30 frames per 300 msec, respectively, are used for
abstraction of provided QoS for MS–Server.

The provided QoS of MS–Server is at least 100 frames/sec. To prevent the jitter
of frame signals, we adopt 100ms and 300ms as the period in the experiments. The
values are set in the configuration (1) and (2).

99

Table 5.1: The Result (1) of the First Step
of P result CPU time Used memories

3 not valid 0.3 ms 23.9MB
6 not valid 1.4 ms 24.4MB
9 valid 28 ms 24.8MB
12 valid 50.6 ms 25.9MB
15 valid 83.6 ms 26.8MB
30 valid 480 ms 34.4MB

Table 5.2: The Result (2) of the First Step
of P result CPU time Used memories

3 not valid 0.6 ms 23.9MB
6 not valid 0.7 ms 24.4MB
9 not valid 1.2 ms 24.7MB
12 not valid 1.6 ms 25.0MB
15 not valid 2.1 ms 25.1MB
30 valid 957 ms 40.4MB

Each of two experiments is performed with several numbers of test automata:
3, 6, 9, 12, 15 and 30. We have obtained CPU times and sizes of memory con-
sumed. The experiments are performed in the following environment: CPU is Intel
Core 2 Duo 2.33GHz, OS is Windows Vista Business and M.M. is 2GB. We used
UPPAAL4.1.0 as a model checker. Table 5.1 and Table 5.2 show the results of (1)
and (2), respectively. The column of “# of P” shows the number of processes (the
number of test automata).

In the previous experiment, we have performed First Step with Linear Pro-
gramming solver. In the experiment, we have performed it in 78 ms (although it
has been performed in different environment).

5.4.3 The Second Step

After First Step, we design inner behavior of each component.
In the example, recursive application of First Step is not performed, because

each component is small enough. Behavioral specification is described in UML
state-chart. The design must meet the provided QoS. Figure 5.12 shows behavioral
specification of Component MS–Storage.

100

off

on

on search error

control pack

/T:=0 MS-in[T>2]

/MS-out,T:=0 T<=2
/error

off

Figure 5.12: The UML Statechart Diagram of Component MS-Storage

entry?
tr:=tr+1

MS-in!
T:=0

T>2

error!

exit?
tr:=tr-1

MS-out!
T:=0

T<=2

Figure 5.13: The UPPAAL Timed Automaton of Component MS-Storage

In order to verify timeliness QoS for each component, State-chart must to be
translated into a network of timed automata and also timeliness QoS is converted
into test automata. Figure 5.13 depicts the translated result of on part in Fig.5.12.

The translating times are summarized as follows.
Translation time : 1153 ms
The number of states(before) : 89
The number of states(after) : 179

For every component and for every timeliness QoS, verification is performed.
The total CPU time is about one seconds. We found that for every component,
the verification is performed within a few seconds with UPPAAL without state
explosion. Also we found that there is no deadlock.

5.4.4 Discussion

Table 5.1 shows that when we perform the experiment with nine test automata,
it outputs the correct result. The result of Tab.5.2, however, shows that we cannot
obtain the correct result until the number of test automata increases to 30. When
we perform the experiment with 30 test automata, the CPU time increases expo-
nentially. Therefore, we can conclude that there is a trade-off between degree of
precision and CPU times. As shown in both tables, the CPU times of the experi-
ments with 30 test automata are too large. Thus, as we consider the trade-off, in

101

this experiment, the trade-off point is at which the number of process is 15.
Though we cannot exhibit that our proposed method is better than that of lin-

ear programming based method with respect to the CPU time, the performance of
the proposed method is within useful reasonable time. The linear programming
method has many constraints on configuration, while the new proposed method is
flexible and is able to apply recursively along with component hierarchy, which are
the advantage of the proposed method.

Our proposed method has more acceptable inputs than the former method. The
difference between this and that of general class is very small. It is although not
faster than the former method, it is more flexible than the former method.

5.5 Summary

We proposed a stepwise verification method for design of real-time systems
with UML/OCL focusing on timeliness QoS aspects. The method uses abstract
QoS timed automata in order to reduce the possibility of state explosion. The
method can be applied to a design with complex connection of components.

Future works include simultaneous verification of several kinds of timeliness
QoS, and utilization of feedback information such as verification counter-examples.

102

Chapter 6

Conclusion

6.1 Summary

In this study, we have proposed model abstraction techniques for model check-
ing of real-time systems.

First, we have proposed a model abstraction technique for timed automata
based on the CEGAR framework. In the technique, we remove all of the clock vari-
ables from timed automata, and refine the abstract model by modifying transition
relation on the model. We have extended the abstraction technique into abstrac-
tion for probabilistic timed automata. In the technique, we remove clock variables
from given probabilistic timed automata as well as the original one. Then, we ap-
ply probabilistic model checking to the generated abstract model which is just a
Markov decision process (MDP) with no time attributes. In general, probabilistic
model checking does not produce concrete paths as a counter example which are
required for abstraction refinement. Therefore, we also perform k-shortest paths
search to obtain the concrete paths.

Second, we have proposed a QoS analysis technique of real-time distributed
systems based on hybrid analysis of probabilistic model checking and simulation.
In the hybrid analysis approach, we perform stepwise analysis using probabilistic
models of target systems in different abstract levels. First, we create a probabilistic
model with detailed behavior of the system (called detailed model), and apply sim-
ulation on the detailed model. Next, based on the simulation results, we create a
probabilistic model in an abstract level (called simplified model). Then, we verify
qualitative properties using the probabilistic model checking techniques.

Third, we have proposed a technique to verify consistency of timeliness QoS
of component-based designed real-time systems. In order to avoid state-explosion
while performing model checking, we separate the problem into two steps. The first
step checks the satisfiability using abstract model of each of components derived

103

automatically from the provided QoS. The second step performs model check-
ing each of components independently using more detailed version of behavioral
model of a component. Such an approach efficiently reduces the number of total
states to check.

6.2 Directions of Future Research

Although applying the CEGAR framework to model checking of timed au-
tomata or probabilistic timed automata helps us to reduce the state space of the
models, the experimental results have shown that execution time of whole CEGAR
processes increases. One direction of future research is to reduce the number of
CEGAR loop. In general, the number of CEGAR loop depends on choice of ex-
tracted counter example paths. Therefore, we are going to analyze which kinds of
counter example paths are effective for reducing the number of CEGAR loop.

In the model checking, diagnostic information, which is provided as a counter
example, is thought to be useful for error correction In the probabilistic model
checking, however, a detected counter example is represented as a set of paths
on a given model. Therefore, when the number of such paths becomes extremely
large, the counter example cannot help us to correct detected errors. This problem
might occur in our CEGAR technique for probabilistic timed automata. Another
direction of future research is to improve the descriptions of a counter example
on probabilistic timed automata. We are considering to use a technique proposed
in [75], which can describe a counter example on DTMCs with different levels of
abstraction.

104

Bibliography

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, editors. Model Checking. MIT
Press, 1999.

[2] M. Fitting, editor. First-order Logic and Automated Theorem Proving.
Springer, 1996.

[3] G.J. Holzmann. The Model Checker SPIN. IEEE Transactions on Software
Engineering, Vol. 23, No. 5, pp. 279–295, May 1997.

[4] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An OpenSource Tool for Sym-
bolic Model Checking. In Proc. of the 14th Int. Conf. on Computer Aided
Verification, Vol. 2404 of LNCS, pp. 241–268, 2002.

[5] G. Behrmann, A. David, K.G. Larsen andJ. Hakansson, P. Petterson, W. Yi,
and M. Hendriks. Uppaal 4.0. In Proc. of the 3rd Int. Conf. on Quantitative
Evaluation of Systems, pp. 125–126, October 2006.

[6] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool
for Automatic Verification of Probabilistic Systems. In Proc. of the 12th Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’06), Vol. 3920 of LNCS, pp. 441–444, March 2006.

[7] T. Nipkow, L.C. Paulson, and M. Wenzel, editors. Isabelle/HOL, Vol. 2283
of LNCS. Springer, 2002.

[8] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development: Coq’Art: The Calculus of Inductive Constructions. Springer,
2004.

[9] A. Bove, P. Dybjer, and U. Norell. A Brief Overview of Agda - A Functional
Language with Dependent Types. In Proc. of the 22nd Int. Conf. on Theorem

105

Proving in Higher Order Logics(TPHOLs 2009), Vol. 5674 of LNCS, pp. 73–
78, August 2009.

[10] J-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[11] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. Helmut. Counterexample-
guided Abstraction Refinement for Symbolic Model Checking. Journal of
the ACM, Vol. 50, No. 5, pp. 752–794, 2003.

[12] E. M. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based Abstraction-
Refinement using ILP and Machine Learning Techniques. In Proc. of the 14th
Int. Conf. on Computer Aided Verification, Vol. 2404, pp. 695–709, 2002.

[13] E. M. Clarke, A. Fehnker, Z. Han, J Ouaknine, O. Stursberg, and
M. Theobald. Abstraction and Counterexample-guided Refinement in Model
Checking of Hybrid Systems. Int. Journal of Foundations of Computer Sci-
ence, Vol. 14, No. 4, pp. 583–604, 2003.

[14] S. Graf and H. Saidi. Construction of abstract state graphs with PVS . In Proc.
of the 9th Int. Conf. on Computer Aided Verification, Vol. 1254 of LNCS, pp.
72–83, June 1997.

[15] S. Das, D. L. Dill, and S. Park. Experience with Predicate Abstraction. In
Proc. of the 11th Int. Conf. on Computer Aided Verification, Vol. 1633 of
LNCS, pp. 160–171, 1999.

[16] J. Bengtsson and W. Yi. Timed Automata: Semantics, Algorithms and Tools.
In Lecture Notes on Concurrency and Petri Nets, Vol. 3098, pp. 87–124, 2004.

[17] F. Wang, K. Schmidt, G. D. Huang, F. Yu, and B. Y. Wang. Formal Verifi-
cation of Timed Systems: A Survey and Perspective. In Proc. of the IEEE,
Vol. 92, pp. 1283–1307, 2004.

[18] R. Alur and L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, Vol. 126, No. 2, pp. 183–235, April 1994.

[19] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Performance
Evaluation and Model Checking Join Forces. Communications of the ACM,
Vol. 53, No. 9, pp. 76–85, September 2010.

[20] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang. Symbolic model
checking for probabilistic timed automata. Information and Computation,
Vol. 205, No. 7, pp. 1027–1077, July 2007.

106

[21] K.G. Larsen, P. Pettersson, and W. Yi. Uppaal in a nutshell. Software Tools
for Technology Transfer, Vol. 1, No. 1-2, pp. 134–152, October 1997.

[22] UPPAAL Model Checker. available at http://www.uppaal.com/.

[23] S. Yovine. Kronos: A Verification Tool for Real-time Systems. Software
Tools for Technology Transfer, Vol. 1, No. 1-2, pp. 123–133, October 1997.

[24] KRONOS. available at http://www-verimag.imag.fr/DIST-
TOOLS/TEMPO/kronos/index-english.html.

[25] D.A. Parker. Implementation of Symbolic Model Checking for Probabilistic
Systems. PhD thesis, University of Birmingham, 2002.

[26] T. Herman. Probabilistic Self-stabilization. Information Processing Letters,
Vol. 35, No. 2, pp. 63–67, June 1990.

[27] PRISM Manual. http://www.prismmodelchecker.org/manual/.

[28] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic Model Check-
ing of the IEEE 802.11 Wireless Local Area Network Protocol. In Proc. of
the 2nd Joint Int. Workshop on Process Algebra and Performance Modelling
and Probabilistic Methods in Verification (PAPM/PROBMIV’02), Vol. 2389
of LNCS, pp. 169–187, July 2002.

[29] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic Model Checking
of Deadline Properties in the IEEE1394 Firewire Root Contention Protocol.
Formal Aspects of Computing, Vol. 14, No. 3, pp. 295–318, April 2003.

[30] A. Pnueli. The Temporal Logic of Programs. In Proc. of the 18th Int. Symp.
on Foundation of Computer Science (FOCS), pp. 46–57, 1977.

[31] E. Clarke, E. Emerson, and A. Sistla. Automatic Verification of Finite-state
Concurrent Systems Using Temporal Logics. ACM Transactions on Program-
ming Languages and Systems, Vol. 8, No. 2, pp. 244–263, 1986.

[32] M.Y. Vardi and P. Wolper. Reasoning about Infinite Computations. Informa-
tion and Computation, Vol. 115, No. 1, pp. 1–37, November 1994.

[33] R. Alur, C. Courcoubetis, and D. L. Dill. Model-Checking for Real-Time
Systems. In Proc. of the 5th Annual Symposium on Logic in Computer Sci-
ence, pp. 414–425. IEEE, 1990.

107

[34] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic Model
Checking for Real-time Systems. Information and Computation, Vol. 111,
No. 2, pp. 193–244, June 1992.

[35] H. Hansson and B. Jonsson. A Logic for Reasoning about Time and Proba-
bility. Formal Aspects of Computing, Vol. 6, No. 5, pp. 512–535, September
1994.

[36] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying Continuous Time
Markov Chains. In Proc. of the 8th Int. Conf. on Computer Aided Verification
(CAV’96), Vol. 1102 of LNCS, pp. 269–276, July 1996.

[37] H. Nakajima and Y. Kameyama. Improvement on Real-Time Model Check-
ing using Abstraction-Refinement (In Japanese). Transactions of Information
Processing Society of Japan, Vol. 45, No. SIG12 (PRO23), pp. 11–24, 2004.

[38] S. Kemper and A. Platzer. SAT-based Abstraction Refinement for Real-time
Systems. In Proc. of the Third Int. Workshop on Formal Aspects of Compo-
nent Software, Vol. 182, pp. 107–122, 2006.

[39] H. Dierks, S. Kupferschmid, and K G. Larsen. Automatic Abstraction Refine-
ment for Timed Automata. In Proc. of the 5th Int. Conf. on Formal Modelling
and Analysis of Timed Systems, Vol. 4763, pp. 114–129, 2007.

[40] R. Alur, R.K. Brayton, T.A. Henzinger, S. Qadeer, and S.K. Rajamani.
Partial-Order Reduction in Symbolic State-Space Exploration . Formal Meth-
ods in System Design, Vol. 18, No. 2, pp. 97–116, March 2001.

[41] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial Order Reductions
for Timed Systems . In Proc. of the 9th Int. Conf. on Concurrency Theory
(CONCUR’98), Vol. 1466 of LNCS, pp. 485–500, September 1998.

[42] E.A. Emerson and A.P. Sistla. Symmetry and Model Checking. Formal Meth-
ods in System Design, Vol. 9, No. 1-2, pp. 105–131, August 1996.

[43] M. Hendriks, G. Behrmann, K. Larsen, P. Niebert, and F. Vaandrager. Adding
Symmetry Reduction to UPPAAL. In Proc. of the 1st Int. Conf. on Formal
Modeling and Analysis of Timed Systems (FORMATS 2003), Vol. 2791 of
LNCS, pp. 46–59, September 2003.

[44] M. Kwiatkowska, G. Norman, and D. Parker. Symmetry Reduction for Prob-
abilistic Model Checking . In Proc. of the 18th Int. Conf. on Computer Aided
Verification (CAV 2006), Vol. 4144 of LNCS, pp. 234–248, August 2006.

108

[45] M. Kwiatkowska, G. Norman, and J. Sproston. Performance Analysis of
Probabilistic Timed Automata Using Digital Clocks. Formal Methods in Sys-
tem Design, Vol. 29, No. 1, pp. 33–78, August 2006.

[46] M. Kattenbelt, M. Kwiatowska, G. Norman, and D. Parker. A Game-based
Abstraction-Refinement Framework for Markov Decision Processes. Int.
Journal on Formal Methods in System Design, Vol. 36, No. 3, pp. 246–280,
September 2010.

[47] A. Morimoto, R. Komagata, and S. Yamane. Probabilistic Timed CEGAR (In
Japanese). In IEICE Technical Report, Vol. 109, pp. 25–30, June 2009.

[48] E. M. Clarke, A. Donzé, and A. Legay. On Simulation-Based Probabilis-
tic Model Checking of Mixed-Analog Circuits. Formal Methods in System
Design, Vol. 36, No. 2, pp. 97–113, June 2010.

[49] S. Tschirner, L. Xuedong, and Y. Yi. Model-Based Validation of QoS Prop-
erties of Biomedical Sensor Networks. In Proc. of the 8th ACM Int. Conf. on
Embedded Software, pp. 69–78, October 2008.

[50] Object Management Group: Unified Modeing Language Specification ver-
sion 2.1. available at http://www.omg.org/.

[51] B. Bordbar, J. Derrick, and A. G. Waters. A UML Approach to the Design of
Open Distributed Systems. Formal Methods and Software Engineering, Vol.
2495, pp. 561–571, November 2002.

[52] R. Staehli, F. Eliassen, J. Aagedal, and G. Blair. Quality of Service Seman-
tics for Component-Based Systems. In Proc. of the 2nd Int. Workshop on
Reflective and Adaptive Middleware Systems, pp. 153–157, October 2003.

[53] E. Nagai, A. Makidera, K. Okano, and K. Taniguchi. A Method to Develop
Distributed Real–Time Applications Based on UML/OCL (in Japanese). IE-
ICE Transactions on Information and Systems, Vol. J89-D, No. 4, pp. 683–
692, April 2006.

[54] L. Aceto, P. Bouyer, A. Burgue no, and K. G. Larsen. The Power of Reacha-
bility Testing for Timed Automata . In Proc. of the 18th Int. Conf. on Founda-
tions of Software Technology and Theoretical Computer Science, Vol. 1530
of LNCS, pp. 245–256, December 1998.

[55] H. Bowman, G. Faconti, and M. Massink. Specification and Verification of
Media Constraints Using UPPAAL. In Proc. of the 5th Eurographics Work-

109

shop on the Design, Specification and Verification of Interactive Systems, pp.
261–277, June 1998.

[56] R.Alur. Techniques for Automatic Verification of Real-time Systems. PhD
thesis, Stanford University, 1991.

[57] A. David, J. Hakansson, K G. Larsen, and P. Pettersson. Model Checking
Timed Automata with Priorities using DBM Subtraction. In Proc. of the 4th
Int. Conf. on Formal Modelling and Analysis of Timed Systems (FORMATS
2006), Vol. 4202 of LNCS, pp. 128–142, 2006.

[58] M. Lindahl, P. Pettersson, and W. Yi. Formal Design and Analysis of a Gear
Controller . Int. Journal on Software Tools for Technology Transfer (STTT),
Vol. 3, No. 3, pp. 353–368, August 2001.

[59] C. Derman, editor. Finite-State Markovian Decision Processes. New York:
Academic Press, 1970.

[60] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Sci-
entific, 1995.

[61] H. Aljazzar and S. Leue. Directed Explicit State-Space Search in the Genera-
tion of Counterexamples for Stochastic Model Checking. IEEE Transactions
on Software Engineering, Vol. 36, No. 1, pp. 37–60, January 2010.

[62] The Network Simulator - ns-2. available at http://www.isi.edu/nsnam/ns/.

[63] E. J. Kim, K. H. Yum, and C. R. Das. Calculation of Deadline Missing Proba-
bility in a QoS Capable Cluster Interconnect. In Proc. of the IEEE Int. Symp.
on Network Computing and Applications (NCA’01), p. 36, October 2001.

[64] R. Alur, T. A. Henzinger, and M. Y. Vardi. Parametric Real-time Reason-
ing. In Proc. of the 25th ACM Annual Symp. on the Theory of Computing
(STOC’93), pp. 592–601, May 1993.

[65] R. Rejaie, M. Handley, and D. Estrin. RAP: An End-to-end Rate-based Con-
gestion Control Mechanism for Realtime Streams in the Internet. In Proc. of
IEEE INFOCOM 1999, Vol. 3, pp. 1337–1345, March 1999.

[66] I. Rhee, V. Ozdemir, and Y. Yi:. TEAR: TCP Emulation at Receivers – Flow
Control for Multimedia Streaming. Technical report, NCSU, 2000.

[67] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP Friendly Rate Control
(TFRC): Protocol Specification. RFC 3448 (Proposed Standard), January
2003. Obsoleted by RFC 5348.

110

[68] Y. Taniguchi, A. Ueoka, N. Wakamiya, M. Murata, and F. Noda. Implementa-
tion and Evaluation of Proxy Caching System for MPEG-4 Video Streaming
with Quality Adjustment Mechanism. In Proc. of the 5th Association of East
Asian Research Universities Workshop on Web Technology, pp. 27–34, Octo-
ber 2003.

[69] D. Mahrenholz and S. Ivanov. Real-Time Network Emulation with ns-2. In
Proc. of the 8th IEEE Int. Symp. on Distributed Simulation and Real-Time
Applications, IEEE Computer Society, pp. 29–36, October 2004.

[70] UML Profile for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms. Request for Proposal, available at
http://www.omg.org.

[71] B. Bordbar and K. Okano. Verification of Timeliness QoS Properties in Multi-
media Systems. In Proc. of the 5th International Conference on Formal Engi-
neering Methods (ICFEM ’03), Vol. 2885 of LNCS, pp. 523–540, November
2003.

[72] A. David and M. O. Möller. From HUPPAAL to UPPAAL: Translation from
Hierarchical Timed Automata to Flat Timed Automata. Technical Report RS-
01-11, BRICS, 2001.

[73] K. Havelund, A. Skou, K. G. Larsen, and K. Lund. Formal Modelling and
Analysis of an Audio/Video Protocol: An Industrial Case Study Using UP-
PAAL. In Proc. of the 18th IEEE Real-Time Systems Symposium, pp. 2–13,
December 1997.

[74] D. Akehurst, J. Derrick, and A.G. Waters. Design and Verification of Dis-
tributed Multi-media Systems. In Proc. of the 6th IFIP WG 6.1 Int. Conf. on
Formal Methods for Open Object-Based Distributed Systems, Vol. 2884 of
LNCS, pp. 276–292, November 2003.

[75] E. Abraham, N. Jansen, R. Wimmer, J-P. Katoen, and B. Becker. DTMC
Model Checking by SCC Reduction. In Proc. of the 7th Int. Conf. on Quanti-
tative Evaluation of Systems (QEST’10), IEEE Computer Society, pp. 37–48,
September 2010.

111

