Reachability Analysis of Probabilistic Timed Automata
Based on an Abstraction Refinement Technique

Takeshi Nagaoka, Akihiko Ito, Toshiaki Tanaka, Kozo Okano, Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University

{t-nagaok,a-ito,tstanaka,okano,kusumoto}@ist.osaka-u.ac.jp

ABSTRACT

Model checking techniques are considered as promising techniques
for verification of information systems due to their ability of ex-
haustive checking. Well-known state explosion, however, might
occur in model checking of large systems. In order to avoid it, sev-
eral abstraction techniques have been proposed. Some of them are
based on CounterExample-Guided Abstraction Refinement (CE-
GAR) technique proposed by E. Clarke et al.. This paper proposes
a reachability analysis technique for probabilistic timed automata.
In the technique, we abstract time attributes of probabilistic timed
automata by our abstraction technique proposed in our previous
work. Then, we apply probabilistic model checking to the gener-
ated abstract model which is just a markov decision process (MDP)
with no time attributes. Also, our technique can produce a counter
example as a set of paths when a given model does not satisfy a
specification. The paper also provides some experimental results
on applying our method to IEEE 1394, FireWire protocol. Experi-
mental results show our algorithm can reduce the number of states
and total execution time dramatically compared to one of existing
approaches.

Keywords
Probabilistic Timed Automaton, CEGAR, Model Checking, Real-
time System, Formal Verification

1. INTRODUCTION

Model checking[1] techniques are considered as promising tech-
niques for verification of information systems due to their ability
of exhaustive checking. For verification of real-time systems such
as embedded systems, timed automata are often used. On the other
hand, probabilistic model checking[2, 3, 4] can evaluate perfor-
mance, dependability and stability of information processing sys-
tems with random behaviors. In recent years, probabilistic mod-
els with real-time behaviors, called probabilistic timed automata
(PTA) attract attentions. As well as traditional model checking
techniques, however, state explosion is thought to be a major hurdle
for verification of probabilistic timed automata.

Clarke er al. proposed an abstraction technique called CEGAR
(CounterExample-Guided Abstraction Refinement)[5]. In the CE-
GAR technique, we use a counter example (CE) produced by a
model checker as a guide to refine abstracted models. In [6], we
have proposed an abstraction algorithm for timed automata based
on CEGAR. In this algorithm, we generate finite transition systems
as abstract models where all time attributes are removed. The re-
finement modifies the transition relations of the abstract model so
that the model behaves correctly even if we don’t consider the clock
constraints.

This paper proposes a reachability analysis technique for prob-
abilistic timed automata. In the technique, we abstract time at-
tributes of probabilistic timed automata by applying our abstrac-
tion technique for timed automata proposed in [6]. Then, we apply
probabilistic model checking to the generated abstract model which
is just a markov decision process (MDP) with no time attributes.
The probabilistic model checking algorithm calculates summation
of occurrence probability of all paths which reach to a target state
for reachability analysis. For probabilistic timed automata, how-
ever, we have to consider required clock constraints for such paths,
and choose the paths whose required constraints are compatible.
Since our abstract model does not consider the clock constraints,
we add a new flow where we check whether all paths used for prob-
ability calculation are compatible. Also, if they are not compatible,
we transform the model so that we do not accept such incompatible
paths simultaneously.

This paper also provides some experimental results on applying
our method to some examples. Experimental results show our al-
gorithm can reduce the number of states and total execution time
dramatically compared to one of existing approaches.

Several papers including Paper [2, 3, 4] have proposed probabilistic
model checking algorithms. These algorithms, however, don’t pro-
vide CEs when properties are not satisfied. Our proposed method
provides a CE as a set of paths based on k-shortest paths search.
This is a major contribution of our method. The proposed method
also performs model checking considering compatibility problem.
Few approaches resolve the compatibility problem. Our approach
also shows the efficiency via performing experiments.

The organization of the rest paper is as follows. Sec.2 provides
some definitions and lemmas as preliminaries. Sec.3 describes our
proposed abstraction technique for the probabilistic timed automa-
ton. Sec.4 gives some experimental results. Finally, Sec.5 con-
cludes the paper and gives future works.

2. PRELIMINARY
2.1 Clock and Zone

Let C' be a finite set of clock variables which take non-negative real
values (R>o). Amap v : C' = Ry is called a clock assignment.
The set of all clock assignments is denoted by Rgo. For any v €
RE, and d € Rxq we use (v + d) to denote the clock assignment
defined as (v +d)(x) = v(x)+dforallz € C. Also, we use r(v)
to denote the clock assignment obtained from v by resetting all of
the clocks in » C C' to zero.

DEFINITION 2.1. Syntax and semantics of a differential inequal-
ity E on a finite set C of clocks is given as follows:
E:=z—y~alxz~a,
where x,y € C, a is a literal of a real number constant, and
~€ {<,>,<,>}. Semantics of a differential inequality is the
same as the ordinal inequality.

DEFINITION 2.2. Clock constraints c(C') on a finite set C of
clocks is defined as follows: A differential inequality in on C'is an
element of ¢(C). Let in1 and inz be elements of c(C), in1 A ing
is also an element of c¢(C).

A zone D € ¢(C) is described as a product of finite differential
inequalities on clock set C', which represents a set of clock assign-
ments that satisfy all the inequalities. In this paper, we treat a zone
D as a set of clock assignments v € RS, (For a zone D, v € D
means the assignment v satisfies all the inequalities in D).

2.2 Probability Distribution

A discrete probability distribution on a finite set) is given as
the function o : @ — [0, 1] such that ¥,cqu(q) = 1. Also,
support(p) is a subset of @ such that Vg € support(u).u(q) > 0
holds.

2.3 Markov Decision Process
A Markov Decision Process (MDP)[7] is a markov chain with non-
deterministic choices.

DEFINITION 2.3. A markov decision process M DP is 3-tuple
(S, so, Steps), where S is a finite set of states, so € S is an initial
state, and Steps C S x A x Dist(S) is a probabilistic transition
relation where Dist(S) is a probability distribution over S.

In our reachability analysis procedure, we transform a given PTA
into a finite MDP, and perform probabilistic verification based on
the Value Iteration[8] technique.

2.3.1 Adversary
An MDP has non-deterministic transitions called action. To resolve
the non-determinism, an adversary is used. The adversary requires
a finite path on an MDP, and decides a transition to be chosen at the
next step.

2.3.2 Value Iteration

A representative technique of model checking for an MDP is Value
Iteration[8]. The Value Iteration technique can obtain both of max-
imum and minimum probabilities of reachability and safety prop-
erties, respectively. At each state, Value Iteration can select an ap-
propriate action according to the property to be checked. Therefore,
the technique can obtain the adversary as well as the probability.

Figure 1: An Example of a PTA

2.4 Timed Automaton

DEFINITION 2.4. A timed automaton < is a 6-tuple (A, L, ly,
C,1,T), where A is a finite set of actions, L is a finite set of lo-
cations, ly € L is an initial location, C is a finite set of clocks,
I C (L — ¢(C)) is a mapping from locations to clock constraints,
called a location invariant, and T C L x A x ¢(C) x # x L is
a set of transitions, where c(C) is a clock constraint, called guards
and Z = 2° is a set of clocks 1o reset.

DEFINITION 2.5. Given a timed automaton «/ = (A, L, ly, C,
I,T), let S C L x]Rgo be a set of whole states of <f. The ini-
tial state of </ shall be given as (ly,0%) € S. For a transition
(l1,a,g,7,12) € T, the following two transitions are semantically
defined. The former one is called an action transition, while the

latter one is called a delay transition.

L "2 1, g(v), 1(l2) (r(v))
(i, v) = (I, 7(v))

vd <d I(l)(v+d)
(h,v) 2 (Li,v +d)

DEFINITION 2.6. For timed automaton of = (A, L, o, C, I,T),
an infinite transition system is defined according to the semantics
of &/, where the model begins with the initial state.

2.5 Probabilistic Timed Automaton

A PTA is a kind of a timed automaton extended with probabilistic
behavior. In the PTA, a set of probabilistic distributions is used
instead of a set I" of discrete transitions on the timed automaton.

DEFINITION 2.7. A probabilistic timed automaton PT A is a
6-tuple (A, L,lo,C, I, prov), where A is a finite set of actions, L
is a finite set of locations, lo € L is an initial location, C is a fi-
nite set of clocks, I C (L — ¢(C)) is a location invariant and
prob C L x A x ¢(C) x Dist(2° x L) is a finite set of proba-
bilistic transitions, where c¢(C') represents a guard condition, and
Dist(QC x L) represents a finite set of probability distributions p.
The Distribution p(r,1) € Dist(2° x L) represents the probability
of resetting clock variables in r and also moving to the location l;

Figure 1 shows an example of a PTA. In the figure, from the lo-
cation a, the control moves to the location b with the probability
0.5 and also moves to the location c letting the value of the clock x
reset to zero with the probability 0.5.

DEFINITION 2.8. Semantics of a probabilistic timed automaton
PTA = (A, L,lo,C,1,prob) is given as a timed probabilistic
system TPSpra = (S, so, T'Steps) where, S C L x RC is a set
of states, so = (lO,OC) is an initial state, and T Steps C S X
AUR>q x Dist(S) is composed of action transitions and delay
transitions, where

a) action transition
if a € A and there exists (1,a,g,p) € prob such that g(v)
and I1(I')(r(v)) for all (r,1") € support(p), ((L,v),a,p) €
T Steps where forall (I',v') € S

N(l/’ 7/) = Z

rCCAv =r(v)

p(r,1').

b) delay transition
ifd € Rso, and foralld' < d, I()(v+d'), (I,v),d,u) €
TSteps where u(l,v +d) = 1.

In this paper, using a location [and a zone D, we describe a set of
semantic states as (I, D) = {(l,v) | v € D}.

DEFINITION 2.9. A path w with length of n on a timed proba-
bilistic system TPSpra = (S, so, T'Steps, L) is denoted as fol-
lows.

dy,p dp—1,Hn-1 (l

do,
w = (lo,Vo) 0—H>O (ll,lll) — ... n,Vn)

, where (1;,v;) € S for0 < i <nand((li,v;),di, n) € TStepsA
((Liyvs + di),0,) € TSteps A (lspa, Vi) € support(us) for
0<i<n-—1

For model checking of a probabilistic timed automaton, we extract
a number of paths and calculate a summation of their occurrence
probabilities in order to check the probability of satisfying a given
property. The important point is that we have to choose a set of
paths which are compatible with respect to time elapsing.

LEMMA 2.1. Ifa set Q) of paths on a timed probabilistic system
T PSpra satisfies the following predicate isCompatible, then all
of the paths over) are said to be compatible.

isCompatible(Q) =
true, ifVi <min(Q) N (@F =1 Ad} =d))
w® wheq
Aw@H#wB

or there exists 1 < min(2) such that
N @£ de= dE AN\ =15 1 d5= df)),

w® wﬁ eQ i<i
Aw B
and also /\ isCompatible(Q")
Q' e29A

Q' AQA|Q|<2

false, otherwise.

In Lemma?2.1, we give the predicate isCompatible for a set 2 of
paths on a timed probabilistic system. In the lemma, we let paths
in {2 be compatible if there is no contradiction with respect to time
elapsing at the branching point of all the paths in €2, and also if
the compatibility is kept for every subset of 2 which contains more
than two paths.

2.6 CounterExample-Guided Abstraction Re-
finement
2.6.1 General CEGAR Technique

Since model abstraction sometimes over-approximates an original
model, we may obtain spurious CEs which are infeasible on the

Initial Abstraction

_Counter-example

Concrete
model
true <:|

property is
satisfied

false

’ D e
Figure 2: A General CEGAR Technique

Concrete

model
true <:|
property is

satisfied

refined model
+property

Initial Abstraction
Counter-example

Model Checking

false

|:> property is
not satisfied

Compatibility|
Checking

refined model
+property

refined Concrete model
+prope

lodel Transformatiol

Figure 3: Our CEGAR Technique for Reachability Analysis of
a Probabilistic Timed Automaton

original model. Paper[5] gives an abstraction refinement frame-
work called CEGAR (CounterExample-Guided Abstraction Refine-
ment) (Fig.2).

In the algorithm, at the first step (called Initial Abstraction), it gen-
erates an initial abstract model. Next, it performs model checking
on the abstract model. In this step, if the model checker reports that
the model satisfies a given specification, we can conclude that the
original model also satisfies the specification, because the abstract
model is an over-approximation of the original model. If the model
checker reports that the model does not satisfy the specification,
however, we have to check whether the CE detected is spurious or
not in the next step (called Simulation). In the Simulation step, if
we find that the CE is valid, we stop the loop. Otherwise, we have
to refine the abstract model to eliminate the spurious CE, and repeat
these steps until valid output is obtained.

2.6.2 CEGAR Technique for a Timed Automaton

In [6], we have proposed the abstraction refinement technique for
a timed automaton based on the framework of CEGAR. In this ap-
proach, we remove all the clock attributes from a timed automa-
ton. If a spurious CE is detected by model checking on an abstract
model, we transform the transition relation on the abstract model so
that the model behaves correctly even if we don’t consider the clock
constraints. Such transformation obviously represents the differ-
ence of behavior caused by the clock attributes. Therefore, the fi-
nite number of application of the refinement algorithm enables us
to check the given property without the clock attributes. Since our
approach does not restore the clock attributes at the refinement step,
the abstract model is always a finite transition system without the
clock attributes.

3. PROPOSED APPROACH

In this section, we will present our abstraction refinement technique
for a probabilistic timed automaton. In the technique, we use the
abstraction refinement technique for a timed automaton proposed

Figure 4: An Initial Abstract Model

in [6]. In addition, we resolve the compatibility problem shown in
Sec.2.5 by performing a backward simulation technique and gen-
erating additional location to distinguish the required condition for
every incompatible path. Figure 3 shows our abstraction refinement
framework. As shown in the figure, we add another flow where we
resolve the compatibility problem.

Our abstraction requires a probabilistic timed automaton PT'A and
a property to be checked as its inputs. The property is limited by the
PCTL formula P<,[true U err]. The formula represents a property
that the probability of reaching to states where err (which means
an error condition in general) is satisfied, is less than p.

3.1 Initial Abstraction

The initial abstraction removes all the clock attributes from a given
probabilistic timed automaton as well as the technique in The gen-
erated abstract model over-approximates the original probabilistic
timed automaton.

DEFINITION 3.1. For a given probabilistic timed automaton
PTA = (A,L,lo,C, I,prob), a markov decision process
MDPpra = (8,30, Steps) is produced as its abstract model,
where S = L, 30 = lo, and Steps = { (s,a,p) | (s,a,9,p) €
prob }

Figure 4 shows an initial abstract model for the PTA shown in Fig.1
As shown in the figure, the abstract model is just an MDP where all
of the clock constraints are removed though we keep a set of clock
reset as a label of transitions.

3.2 Model Checking

In model checking, we apply Value Iteration[8] into the markov
decision process obtained by abstraction and calculate a maximum
reachability probability. Also, it decides an action to be chosen at
every state as an adversary. If the obtained probability is less than p,
we can terminate the CEGAR loop and conclude that the property
is satisfied.

Although Value Iteration can calculate a maximum reachability
probability, it cannot produce concrete paths used for the proba-
bility calculation. To obtain the concrete paths, we use an approach
proposed in [9] which can produce CE paths for PCTL formulas.
The approach translates a probabilistic automaton into a weighted
digraph. And we can obtain at most k paths by performing k-
shortest paths search on the graph.

_DEFINITION 3.2. A path& on an abstract model MDPpra =
(S, 0, Steps) for PTA = (A, L,lo,C, I,probd) is given as fol-
lows,

~ ~ @0,P0,T0 ~ @1,P1,T1 An—1:Pn—1:T"n—1 A
w=38 — 8§ = ... — Sn

A path on the abstract model A path on the abstract model
O—2—0—12—@

A corresg)onding path on the PTA A corr'esgonding path on the PTA
o0 6 0 A—0- 1.0 3

x<1 x:=0 x==0 &
y>=1

Products of zones obtained by
forward and backward simulation

Products of zones obtained by
forward and backward simulation

a 0.5 b 10 d a 05 ¢ 1.0
x==y& T2 x=y & T x==y & x==y & T x==0 & > yxo=1
x<1 x<1 x<1 y>=1 y>=1

Figure 5: Products of zones obtained by Forward and Back-
ward Simulation

, where 5; € S'for(] < i < nand (8,a:,p;) € Stéps A
(73, 8i4+1) € support(p;) for0 <i<mn— 1

As defined in Def. 3.2, we associate a set r of clock reset with a
path on an abstract model in order to show the difference of r over
the probabilistic distribution p.

For the abstract model shown in Fig.4, Value Iteration outputs 1.0
as the probability that it reaches to the state d from the state a. On
the other hand, k-shortest paths search (k > 2) detects two paths

o =a 250 p IO gand of = o TORETO TIOE g

where T represents a label for transitions with no label in the figure.

3.3 Simulation

Simulation checks whether all the paths obtained by k-shortest paths
search are feasible or not on the original probabilistic timed au-
tomaton. We use the simulation algorithm proposed in [6] If there
is at least one path which is infeasible on the original PTA, we pro-
ceed to the abstraction refinement step.

3.4 Abstraction Refinement

In this step, we refine the abstract model so that the given spuri-
ous CE also becomes infeasible on the refined abstract model. We
can use the algorithm proposed in [6]. Since the algorithm of [6]
performs some operations on transitions of a timed automaton, we
replace such operations by those on probability distributions of a
probabilistic timed automaton.

3.5 Compatibility Checking

When all the paths obtained by k-shortest paths search are feasible
and a summation of occurrence probabilities of them is greater than
p, we also have to check whether all the paths are compatible or not.
In this compatibility checking step, at each location of the paths, we
have to obtain a condition (zone) which is reachable from the initial
state and also reachable to the last state along with the path. Next,
we check the compatibility of such conditions among all paths. To
obtain such conditions, we have to perform both forward simulation
shown in Sec. 3.3 and backward simulation for each path, and
merge the results. For the result of forward simulation, we can
reuse the result obtained in the Simulation step. Then we check the
compatibility based on Lemma 2.1. Paper[10] shows the algorithm
of compatibility checking in detail. In the algorithm, we check the
compatibility of such products of zones at every location of the
paths.

Figure 5 shows the products of zones obtained by both forward and
backward simulation for two paths & and @5 in Sec.3.2. For the
path &%, the product zone at a is given as D g = (z ==y Az <

Table 1: Experimental Result

Digital Clocks[3] Proposed Approach

D(ps) p Result Time(s) State MEM(MB) | Result Time(s) Loop State Heap(MB)
5 1.09x107* false 20.90 297,232 10.2 false 4.19 10 37 8.0
3.28x107* true 20.89 297,232 10.2 true 3.60 9 36 8.0

10 1.26x10~2 false 54.80 685,232 21.7 false 8.16 19 134 8.0
3.79x1072 true 54.82 685,232 21.7 true 6.57 15 115 8.0

20 1.85x10~ 7 false 176.93 1,461,232 41.0 | false 1186.08 47 471 64.0
5.56x107* true 177.46 1,461,232 41.0 true 31.32 32 435 8.0

—(x==y)&(e=18x==y)
0.5

x=0 0 et)a—(yxo=1)

Figure 6: A Transformed PTA

1), which means a zone which is reachable from the initial state
and also can move to d. Similarly, for the path &?, the product

. B . He B
zone is given as D¢g = (z ==y Ay > 1). Since D¢y and D¢
contradict each other, we can conclude that the paths w“ and P
are incompatible each other.

3.6 Model Transformation

When the compatibility check procedure decides a given set Q of
paths is incompatible at ¢-th location, our proposed algorithm re-
solves the incompatibility by refining behaviors from the i-th lo-
cation. Our algorithm uses D% which is a product of results of
forward and backward simulation for a path & € Q. It duplicates
locations which are reachable from the zone Dfl by an action as-
sociated with the ¢-th distribution p;. Also it constructs transition
relations so that the transformation becomes equivalent transfor-
mation. For example, transition relations from a duplicated loca-
tion are duplicated if the relations are executable from the invari-
ant associated with the duplicated location. Detailed Algorithms to
transform the model are given in [10].

Figure 6 shows the transformed PTA by applying the model trans-
formation procedure for the paths & and &”. The locations b*
and ¢! are duplicated locations based on the path &* and the zone

B

oo = (x ==y Az < 1) on the location a. We associate invari-

ants to b' and ¢* based on zones which are reachable from DZJ ﬁ
through transitions from « to b, and from a to c, respectively. Also,
we duplicate a transition from b to d as the transition from b* to d
because the transition is feasible from the invariant of b*. On the
other hand, we do not duplicate a transition from c to d because the
transition is not feasible from the invariant of ¢'. Similarly, loca-
tions b2 and ¢? are duplicated locations based on the path & and
the zone Df,g. Locations b® and ¢® are generated as complements
of the invariant associated with each duplicated location in order to
preserve the equivalence.

By transforming the original PTA in such a way, if we remove all
clock constraints from the model in Fig.6, Value Iteration on its

abstract model outputs 0.5 as the maximum probability.

4. EXPERIMENTS

We have implemented a prototype of our proposed approach with
Java, and performed some experiments. Though the prototype can
check the compatibility of a given set of paths, currently it cannot
deal with the model transformation.

The prototype performs k-shortest paths search and simulation con-
currently in order to reduce execution time. By implementing the
algorithms concurrently, we have not to wait until all of k£ paths are
detected, i.e. if a path is detected by the k-shortest paths search
algorithm, we can immediately apply simulation and (if needed)
abstraction refinement procedures. Also, our prototype continues
the k-shortest search algorithm when a spurious CE is detected and
the refinement algorithm is applied. If other paths which do not
overlap with the previous spurious CEs, are detected, we can ap-
ply simulation and refinement algorithms to it again. This helps us
reduce the number of CEGAR loop.

4.1 Goal of the Experiments

The goal of this experiment is to check that our approach, which
also searches a CE, is performed within realistic time. In this ex-
periment, we evaluated the performance of our proposed approach
with regard to execution time, memory consumption, and quali-
ties of obtained results. As a target for comparison, we chose the
approach of Digital Clocks[3], which is considered as a basic ap-
proach, where they approximate clock evaluations of a PTA by in-
teger values.

4.2 Example

We used a case study of the FireWire Root Contention Protocol[11]
as an example for this experiment. This case study concerns the
Tree Identify Protocol of the IEEE 1394 High Performance Serial
Bus (called “FireWire”) which takes place when a node is added
or removed from the network. In the experiment, we checked the
probability that a leader is not selected within a given deadline. The
probabilistic timed automaton for the example is composed of two
clock variables, 11 locations, and 24 transitions.

4.3 Procedure of the Experiments

In this experiment, we checked the property that “the probability
that a leader cannot be elected within a given deadline is less than
p.” We considered three scenarios where the parameter deadline
is 5, 10, 20 us, respectively. Also, for each scenario, we conducted
two experiments where the value of p is 1.5 times as an approximate
value of the maximum probability obtained by the Digital Clocks
approach[3] and a half of it, respectively. In the proposed approach,
we searched at most 5000 paths by letting the parameter & of the k-
shortest paths search algorithm be 5000. For evaluation of existing
approach, we used the probabilistic model checker PRISM[12].

Table 2: Analysis of Counter Example Paths

D(us) p Path Probability CC(ms)
5 1.0938x10~ T 7 1.2500x107T 0.7
10 1.2635x1072 43 1.2695x1072 5.9
20 1.8500x107% || 2534 1.8501x10~* 296.9

The experiments were performed under Intel Core2 Duo 2.33 GHz,
2GB RAM, and Fedora 12 (64bit).

4.4 Results of the Experiments

The results are shown in Table 1. The column of D means the value
of deadline. For each approach, columns of Results, Time,
and States show the results of model checking, execution time of
whole process, and the number of states constructed, respectively.
The column M E M in the columns of the Digital Clocks shows the
memory consumption of PRISM. The columns Loop and Heap in
the columns of the proposed approach show the number of CEGAR
loops executed and the maximum heap size of the Java Virtual Ma-
chine (JVM) which executes our prototype, respectively.

Table 1 shows that for all cases we can dramatically reduce the
number of states and obtain correct results. Moreover, we can re-
duce the execution time more than 80 percent except for the case
when deadline = 20us and p = 1.85 x 10™%. In this case, how-
ever, the execution time drastically increases.

Table 2 shows the results of analysis of CE paths obtained when
the results of model checking are false. The columns of Path,
Probability and C'C' show the number of CE paths, the summation
of occurrence probability of them, and execution time for compati-
bility checking, respectively. For this example, the obtained sets of
CE paths are compatible in every case.

4.5 Discussion

From the results shown in Table 1, we can see that our proposed
approach is efficient with regard to both execution time and the
number of states. Especially, the number of states decrease dramat-
ically. The execution time is also decreased even though we per-
form model checking several times shown in the column of Loop.

On the other hand, in the case when deadline = 20us and p =
1.85 x 10~%, the execution time increases drastically. We think
that as shown in Table 2 we have to search 2534 paths and this
causes the increase of execution time especially for k-shortest paths
search. A more detailed analysis shows that the execution time for
k-shortest paths search accounts for 1123 seconds of total execu-
tion time of 1186 seconds. Also, the results shows that the JVM
needs 64MB as its heap size in this case. This is because com-
patibility checking for 2534 of paths needs a large amount of the
memory. From the results, we have to resolve a problem of the
scalability when the number of candidate paths for a CE becomes
large.

S. CONCLUSION

This paper proposed the abstraction refinement technique for a prob-
abilistic timed automaton by extending the existing abstraction re-
finement technique for a timed automaton. The main contribution
of this work is generation of a CE. Also, the experimental results
show the efficiency of our technique compared to one of existing
approaches.

Future work includes completion of implementation. General DBM
does not support not operator[13]; so we have to investigate effi-
cient algorithms for the not operator.

Acknowledgments

This work is being conducted as a part of Stage Project, the Devel-
opment of Next Generation IT Infrastructure, supported by Min-
istry of Education, Culture, Sports, Science and Technology, as
well as Grant-in-Aid for Scientific Research C(21500036), as well
as grant from The Telecommunications Advancement Foundation.

6. REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, editors. Model
checking. MIT Press, 1999.

[2] M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang.
Symbolic model checking for probabilistic timed automata.
Information and Computation, 205(7):1027-1077, 7 2007.
M. Kwiatkowska, G. Norman, and J. Sproston. Performance
analysis of probabilistic timed automata using digital clocks.
Int. Journal on Formal Methods in System Design,
29(1):33-78, 7 2006.

M. Kwiatkowska, G. Norman, and D. Parker. Stochastic

games for verification of probabilistic timed automata. In

Proc. of the 7th Int. Conf. on Formal Modeling and Analysis

of Timed Systems (FORMATS’09), volume 5813 of LNCS,

pages 212-227, 9 20009.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. Helmut.

Counterexample-guided abstraction refinement for symbolic

model checking. Journal of the ACM, 50(5):752-794, 2003.

T. Nagaoka, K. Okano, and S. Kusumoto. An abstraction

refinement technique for timed automata based on

counterexample-guided abstraction refinement loop. IEICE

Transactions on Information and Systems,

E93-D(5):994-1005, 5 2010.

[7] C. Derman, editor. Finite-State Markovian Decision

Processes. New York: Academic Press, 1970.

D. P. Bertsekas. Dynamic programming and optimal control.

Athena Scientific, 1995.

[9] H. Aljazzar and S. Leue. Directed explicit state-space search
in the generation of counterexamples for stochastic model
checking. IEEE Transactions on Software Engineering,
36(1):37-60, 1 2010.

[10] A.Ito, T. Nagaoka, K. Okano, and S. Kusumoto.
Reachability analysis for probabilistic timed system based on
timed abstraction refinement technique (in japanese). In
IEICE Technical Report, volume 109, pages 85-90, 3 2010.

[11] M. Kwiatkowska, G. Norman, and J. Sproston. Probabilistic
model checking of deadline properties in the ieee1394
firewire root contention protocol. Formal Aspects of
Computing, 14(3):295-318, 4 2003.

[12] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker:.
PRISM: A tool for automatic verification of probabilistic
systems. In Proc. of the 12th Int. Conf. on Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS’06), volume 3920, pages 441-444, 2006.

[13] A. David, J. Hakansson, K G. Larsen, and P. pettersson.
Model checking timed automata with priorities using dbm
subtraction. In Proc. of the 4th Int. Conf. on Formal
Modelling and Analysis of Timed Systems, pages 128—142,
2006.

[3

—

[4

—

[6

—_

[8

—_—

