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Abstract - Model checking techniques are considered as
promising techniques for verification of information systems
due to their ability of exhaustive checking. Well-known state
explosion, however, might occur in model checking of large
systems. Such explosion severely limits the scalability of
model checking. In order to avoid it, several abstraction tech-
niques have been proposed. Some of them are based on
CounterExample-Guided Abstraction Refinement (CEGAR)
technique proposed by E. Clarke et al..

This paper proposes a reachability analysis technique for
probabilistic timed automata. In the technique, we abstract
time attributes of probabilistic timed automata by applying
our abstraction refinement technique for timed automata pro-
posed in our previous work. Then, we apply probabilistic
model checking to the generated abstract model which is just
a markov decision process (MDP) with no time attributes.
This paper also provides some experimental results on apply-
ing our method to IEEE 1394, FireWire protocol. Experi-
mental results show our algorithm can reduce the number of
states and total execution time dramatically compared to one
of existing approaches.

Keywords: Probabilistic Timed Automaton, CEGAR,
Model Checking, Real-time System, Formal Verification

1 Introduction

Model checking[1] techniques are considered as promising
techniques for verification of information systems due to their
ability of exhaustive checking. For verification of real-time
systems such as embedded systems, timed automata are often
used. On the other hand, probabilistic model checking[2]–[4]
can evaluate performance, dependability and stability of in-
formation processing systems with random behaviors. In re-
cent years, probabilistic models with real-time behaviors, ca-
lled probabilistic timed automata (PTA) attract attentions. As
well as traditional model checking techniques, however, state
explosion is thought to be a major hurdle for verification of
probabilistic timed automata.

Clarke et al. proposed an abstraction technique called CE-
GAR (CounterExample-Guided Abstraction Refinement)[5]
shown in Fig.1. In the CEGAR technique, we use a counter
example (CE) produced by a model checker as a guide to re-
fine abstracted models. A general CEGAR technique consists
of several steps. First, it abstracts the original model (the ob-
tained model is called abstract model) and performs model
checking on the abstract model. Next, if a CE is found, it
checks whether the CE is feasible on the concrete model or
not. If the CE is spurious, it refines the abstract model. The

Initial Abstraction

Refinement

Model Checkingtrue

property is 

satisfied

Simulation false

property is 

not satisfied

Counter-example

Concrete

model

property

refined model

+property

Figure 1: A General CEGAR Technique
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Figure 2: Our CEGAR Technique for Reachability Analysis
of a Probabilistic Timed Automaton

last step is repeated until the valid output is obtained. In the
CEGAR loop, an abstract model must satisfy the following
property: if the abstract model satisfies a given specification,
the concrete model also satisfies it.

In Paper[6], we have proposed an abstraction algorithm
for timed automata based on CEGAR. In this algorithm, we
generate finite transition systems as abstract models where
all time attributes are removed. The refinement modifies the
transition relations of the abstract model so that the model
behaves correctly even if we don’t consider the clock con-
straints.

This paper proposes a reachability analysis technique for
probabilistic timed automata. In the technique, we abstract
time attributes of probabilistic timed automata by applying
our abstraction technique for timed automata proposed in Pa-
per[6]. Then, we apply probabilistic model checking to the
generated abstract model which is just a markov decision pro-
cess (MDP) with no time attributes. The probabilistic model
checking algorithm calculates summation of occurrence prob-
ability of all paths which reach to a target state for reacha-
bility analysis. For probabilistic timed automata, however,
we have to consider required clock constraints for such paths,
and choose the paths whose required constraints are compat-
ible. Since our abstract model does not consider the clock



constraints, we add a new flow where we check whether all
paths used for probability calculation are compatible. Also, if
they are not compatible, we transform the model so that we do
not accept such incompatible paths simultaneously. The pro-
posed procedure for the probabilistic timed automata is shown
in Fig.2.

This paper also provides some experimental results on ap-
plying our method to some examples. Experimental results
show our algorithm can reduce the number of states and to-
tal execution time dramatically compared to one of existing
approaches.

Several papers including Paper[3] have proposed proba-
bilistic model checking algorithms. These algorithms, how-
ever, don’t provide CEs when properties are not satisfied. Our
proposed method provides a CE as a set of paths based on
k-shortest paths search. This is a major contribution of our
method. The proposed method also performs model checking
considering compatibility problem. Few approaches resolve
the compatibility problem. Our approach also shows the effi-
ciency via performing experiments.

The organization of the rest paper is as follows. Sec.2 pro-
vides some definitions and lemmas as preliminaries. Sec.3 de-
scribes our proposed abstraction technique for the probabilis-
tic timed automaton. Sec.4 gives some experimental results.
Finally, Sec.5 concludes the paper and gives future works.

2 Preliminary

This section gives some definitions about models used in
this paper and also describes a general CEGAR technique.

2.1 Clock and Zone
Let C be a finite set of clock variables which take non-

negative real values (R≥0). A map ν : C → R≥0 is called a
clock assignment. The set of all clock assignments is denoted
by RC

≥0. For any ν ∈ RC
≥0 and d ∈ R≥0 we use (ν + d) to

denote the clock assignment defined as (ν+d)(x) = ν(x)+d
for all x ∈ C. Also, we use r(ν) to denote the clock assign-
ment obtained from ν by resetting all of the clocks in r ⊆ C
to zero.

Definition 2.1 (Differential Inequalities on C). Syntax and
semantics of a differential inequality E on a finite set C of
clocks is given as follows:
E ::= x− y ∼ a | x ∼ a,
where x, y ∈ C, a is a literal of a real number constant, and
∼∈ {≤,≥, <,>}. Semantics of a differential inequality is
the same as the ordinal inequality.

Definition 2.2 (Clock Constraints on C). Clock constraints
c(C) on a finite set C of clocks is defined as follows:
A differential inequality in on C is an element of c(C).
Let in1 and in2 be elements of c(C), in1 ∧ in2 is also an
element of c(C).

A zone D ∈ c(C) is described as a product of finite dif-
ferential inequalities on clock set C, which represents a set of
clock assignments that satisfy all the inequalities. In this pa-
per, we treat a zone D as a set of clock assignments ν ∈ RC

≥0
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Figure 3: An Example of an MDP
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(For a zone D, ν ∈ D means the assignment ν satisfies all the
inequalities in D).

2.2 Probability Distribution
A discrete probability distribution on a finite set Q is given

as the function µ : Q → [0, 1] such that Σq∈Qµ(q) = 1. Also,
support(µ) is a subset of Q such that ∀q ∈ support(µ).µ(q) >
0 holds.

2.3 Markov Decision Process
A Markov Decision Process (MDP)[7] is a markov chain

with non-deterministic choices.

Definition 2.3 (Markov Decision Process). A markov deci-
sion process MDP is 3-tuple (S, s0, Steps), where
S : a finite set of states;
s0 ∈ S : an initial state; and
Steps ⊆ S×A×Dist(S): a probabilistic transition relation
where Dist(S) is a probability distribution over S.

In our reachability analysis procedure, we transform a given
PTA into a finite MDP, and perform probabilistic verification
based on the Value Iteration[8] technique.

Figure 3 shows an example of an MDP. In the figure, prob-
ability distributions are associated with transitions. In the fig-
ure, transitions which belong to the same distribution are con-
nected with a small arc at their source points. The MDP has
several non-deterministic choices at the state 1 and 4. For
example, at the state 1, we have two choices; 1) the control
moves to the state 2 with the probability 0.2 and to the state
3 with the probability 0.8, 2) the control moves to the state 4
with the probability 1.0.

2.3.1 Adversary

An MDP has non-deterministic transitions called action. To
resolve the non-determinism, an adversary is used. The adver-



sary requires a finite path on an MDP, and decides a transition
to be chosen at the next step.

Figure 4 shows examples of resolving the non-determinism
of the MDP shown in Fig.3 by some adversaries. Figure 4. a)
is the case where we choose the action which moves to the
state 2 or state 3 at the initial state 1. On the other hand, b)
and c) are the cases where we choose the action which moves
to the state 4 at the initial state 1. In the case of b), we choose
the action which moves to the state 7 when we move from the
state 1 to state 4. Also, in the case of c), we choose the action
which moves to the state 8 in the same trace.

Here, if we want to obtain the reachability probability from
the state 1 to the state 10, under the adversary of a), we can
obtain the probability 0.08 (= 0.8 × 0.2 × 0.5), which is the
minimum reachability probability. On the other hand, under
the adversary of c), we can obtain the probability 1.0 (= 1.0×
1.0× 1.0), which is the maximum reachability probability.

2.3.2 Value Iteration

A representative technique of model checking for an MDP is
Value Iteration[8]. The Value Iteration technique can obtain
both of maximum and minimum probabilities of reachability
and safety properties, respectively. At each state, Value Itera-
tion can select an appropriate action according to the property
to be checked. Therefore, the technique can produce the ad-
versary as well as the probability.

2.4 Timed Automaton
Definition 2.4 (Timed Automaton). A timed automaton A is
a 6-tuple (A,L, l0, C, I, T ), where
A: a finite set of actions;
L: a finite set of locations;
l0 ∈ L: an initial location;
C: a finite set of clocks;
I ⊂ (L → c(C)): a mapping from locations to clock con-
straints, called a location invariant; and
T ⊂ L×A× c(C)× R × L,
where c(C) is a clock constraint, called guards;
R = 2C : a set of clocks to reset.

A transition t = (l1, a, g, r, l2) ∈ T is denoted by l1
a,g,r−→

l2. A map ν : C → R≥0 is called a clock assignment. We
define (ν + d)(x) = ν(x) + d for d ∈ R≥0. r(ν) = ν[x 7→
0], x ∈ r, where ν[x 7→ 0] means the valuation that maps x
into zero, is also defined for r ∈ 2C .

Definition 2.5 (Semantics of a Timed Automaton). Given a
timed automaton A = (A,L, l0, C, I, T ), let S ⊆ L × RC

≥0

be a set of whole states of A . The initial state of A shall be
given as (l0, 0C) ∈ S.
For a transition l1

a,g,r−→ l2 (∈ T ), the following two transi-
tions are semantically defined. The former one is called an
action transition, while the latter one is called a delay transi-
tion.

l1
a,g,r−→ l2, g(ν), I(l2)(r(ν))

(l1, ν)
a⇒ (l2, r(ν))

,
∀d′ ≤ d I(l1)(ν + d′)

(l1, ν)
d⇒ (l1, ν + d)

a

b

c

d
0.5

0.5
x:=0

x==0∧y>=1
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Figure 5: An Example of a PTA

Definition 2.6 (A Semantic Model of a Timed Automaton).
For timed automaton A = (A,L, l0, C, I, T ), an infinite tran-
sition system is defined according to the semantics of A ,
where the model begins with the initial state.

2.5 Probabilistic Timed Automaton
A PTA is a kind of a timed automaton extended with prob-

abilistic behavior. In the PTA, a set of probabilistic distribu-
tions is used instead of a set T of discrete transitions on the
timed automaton.

Definition 2.7 (Probabilistic Timed Automaton). A proba-
bilistic timed automaton PTA is a 6-tuple (A,L, l0, C,
I, prov), where
A: a finite set of actions;
L: a finite set of locations;
l0 ∈ L: an initial location;
C: a finite set of clocks;
I ⊂ (L → c(C)): a location invariant; and
prob ⊆ L×A× c(C)×Dist(2C × L): a finite set of prob-
abilistic transition relations, where c(C) represents a guard
condition, and Dist(2C × L) represents a finite set of proba-
bility distributions p. The Distribution p(r, l) ∈ Dist(2C×L)
represents the probability of resetting clock variables in r and
also moving to the location l;

Figure 5 shows an example of a PTA. In the figure, from
the location a, it moves to the location b with the probability
0.5 and also moves to the location c letting the value of the
clock x reset to zero with the probability 0.5. Both of the
arcs starting location a are connected with a small arc at their
source points, which represents that they belong to the same
probability distribution.

Definition 2.8 (Transitions of a Probabilistic Timed Automa-
ton). For PTA = (A,L, l0, C, I, prov), 6-tuple (l, a, g, p, r, l′)
represents a transition generated by a probabilistic distribu-
tion (l, a, g, p) ∈ prob such that p(r, l′) > 0.

Definition 2.9 (Semantics of a Probabilistic Timed Automa-
ton). Semantics of a probabilistic timed automaton PTA =
(A,L, l0, C, I, prob) is given as a timed probabilistic system
TPSPTA = (S, s0, TSteps) where,

• S ⊆ L× RC ;

• s0 = (l0, 0
C); and

• TSteps ⊆ S × A ∪ R≥0 × Dist(S) is composed of
action transitions and delay transitions.

a) action transition
if a ∈ A and there exists (l, a, g, p) ∈ prob such



that g(ν) and I(l′)(r(ν)) for all (r, l′) ∈ support(p),
((l, ν), a, µ) ∈ TSteps where for all (l′, ν′) ∈ S

µ(l′, ν′) =
∑

r⊆C∧ν′=r(ν)

p(r, l′).

b) delay transition
if d ∈ R≥0, and for all d′ ≤ d, I(l)(ν + d′),
((l, ν), d, µ) ∈ TSteps where µ(l, ν + d) = 1.

In this paper, using a location l and a zone D, we describe
a set of semantic states as (l,D) = {(l, ν) | ν ∈ D}.

A probabilistic timed automaton is said to be well-formed
if a probabilistic edge can be taken whenever it is enabled[2].
Formally, a probabilistic timed automaton PTA = (A,L, l0,
C, I, prob) is well-formed if

∀(l, g, p) ∈ prob. ∀ν ∈ RC
≥0. (g(ν))

→ ∀(r, l) ∈ support(p). I(l)(r(ν)).

In this paper, we assume that a given PTA is well-formed.

Definition 2.10 (Path on a Timed Probabilistic System). A
path ω with length of n on a timed probabilistic system
TPSPTA = (S, s0, TSteps) is denoted as follows.

ω = (l0, ν0)
d0,µ0−→ (l1, ν1)

d1,µ1−→ . . .
dn−1,µn−1−→ (ln, νn)

, where (l0, ν0) = s0, (li, νi) ∈ S for 0 ≤ i ≤ n and
((li, νi), di, µ) ∈ TSteps ∧ ((li, νi + di), 0, µi) ∈ TSteps ∧
(li+1, νi+1) ∈ support(µi) for 0 ≤ i ≤ n− 1.

For model checking of a probabilistic timed automaton, we
extract a number of paths and calculate a summation of their
occurrence probabilities in order to check the probability of
satisfying a given property. The important point is that we
have to choose a set of paths which are compatible with re-
spect to time elapsing.

Lemma 2.1 (Compatibility of two paths). If two paths ωα =

(lα0 , ν
α
0 )

dα
0 ,µα

0−→ (lα1 , ν
α
1 )

dα
1 ,µα

1−→ . . .
dα
n−1,µ

α
n−1−→ (lαn , ν

α
n ) and

ωβ = (lβ0 , ν
β
0 )

dβ
0 ,µ

β
0−→ (lβ1 , ν

β
1 )

dβ
1 ,µ

β
1−→ . . .

dβ
m−1,µ

β
m−1−→ (lβm, νβm)

on a timed probabilistic system TPSPTA satisfy the follow-
ing predicate isCompatible, then ωα and ωβ are said to be
compatible.

isCompatible(ωα, ωβ) =

true, if ∀i < min(n,m). lαi = lβi ∧ dαi = dβi
or there exists i < min(n,m) such that
lαi ̸= lβi ∧ dαi = dβi ∧
∀j < i. lαj = lβj ∧ dαj = dβj

false, otherwise.

Above predicate isCompatible stands for that two paths
are compatible if and only if one path is a prefix of the other,
or same amount of delay is executed in both paths at the
branching point of them.

Lemma 2.2 (Compatibility of a set of paths). If a set Ω of
paths on a timed probabilistic system TPSPTA satisfies the

following predicate isCompatible, then all of the paths over
Ω are said to be compatible.

isCompatible(Ω) =

true, if ∀i ≤ min(Ω)
∧

ωα,ωβ∈Ω

∧ωα ̸=ωβ

(lαi = lβi ∧ dαi = dβi )

or there exists i ≤ min(Ω) such that∧
ωα,ωβ∈Ω

∧ωα ̸=ωβ

(lαi ̸= lβi ∧ dαi = dβi ∧
∧
j≤i

(lαj= lβj ∧ dαj= dβj )),

and also
∧

Ω′∈2Ω∧
Ω′ ̸=Ω∧|Ω′|≤2

isCompatible(Ω′)

false, otherwise.

In Lemma2.2, we give the predicate isCompatible for a
set Ω of paths on a timed probabilistic system. In the lemma,
we let paths in Ω be compatible if there is no contradiction
with respect to time elapsing at the branching point of all the
paths in Ω, and also if the compatibility is kept for every sub-
set of Ω which contains more than two paths.

Next, we give a simple example of a pair of paths which
does not satisfy the compatibility. In the Fig.5, paths from the
location a to d are given as ωα = (a, x = 0 ∧ y = 0)

0,0.5−→
(b, x = 0 ∧ y = 0)

0,1.0−→ (d, x = 0 ∧ y = 0) which reaches

to d through b, and ωβ = (a, x = 0 ∧ y = 0)
1,0.5−→ (c, x =

0 ∧ y = 1)
0,1.0−→ (d, x = 0 ∧ y = 1) which reaches to d

through c. In the path ωα, we are required to let delay at the
location a be less than one unit of time because of the guarded
condition x < 1 of the transition between b and d. On the
other hand, in the path ωβ , we are required to let delay at a be
grater than or equal one unit of time because of the condition
x == 0 ∧ y ≥ 1 of the transition between c and d. Like the
path ωα and ωβ , if the required conditions of time elapsing at
the branching point are contradict, we cannot use such paths
simultaneously in the probability calculation.

2.6 CounterExample-Guided Abstraction
Refinement

2.6.1 General CEGAR Technique

Since model abstraction sometimes over-approximates an orig-
inal model, we may obtain spurious CEs which are infeasible
on the original model. Paper [5] gives an abstraction refine-
ment framework called CEGAR (CounterExample-Guided Ab-
straction Refinement) (Fig.1).

In the algorithm, at the first step (called Initial Abstrac-
tion), it generates an initial abstract model. Next, it performs
model checking on the abstract model. In this step, if the
model checker reports that the model satisfies a given spec-
ification, we can conclude that the original model also satis-
fies the specification, because the abstract model is an over-
approximation of the original model. If the model checker
reports that the model does not satisfy the specification, how-
ever, we have to check whether the CE detected is spurious
or not in the next step (called Simulation). In the Simulation
step, if we find that the CE is valid, we stop the loop. Oth-
erwise, we have to refine the abstract model to eliminate the



spurious CE, and repeat these steps until valid output is ob-
tained.

2.6.2 CEGAR Technique for a Timed Automaton

In Paper[6], we have proposed the abstraction refinement tech-
nique for a timed automaton based on the framework of CE-
GAR. In this approach, we remove all the clock attributes
from a timed automaton. If a spurious CE is detected by
model checking on an abstract model, we transform the tran-
sition relation on the abstract model so that the model behaves
correctly even if we don’t consider the clock constraints. Such
transformation obviously represents the difference of behav-
ior caused by the clock attributes. Therefore, the finite num-
ber of application of the refinement algorithm enables us to
check the given property without the clock attributes. Since
our approach does not restore the clock attributes at the re-
finement step, the abstract model is always a finite transition
system without the clock attributes.

3 Proposed Approach

In this section, we will present our abstraction refinement
technique for a probabilistic timed automaton. In the tech-
nique, we use the abstraction refinement technique for a timed
automaton proposed in Paper[6]. In addition, we resolve the
compatibility problem shown in Sec.2.5 by performing a back-
ward simulation technique and generating additional location
to distinguish the required condition for every incompatible
path. Figure 2 shows our abstraction refinement framework.
As shown in the figure, we add another flow where we resolve
the compatibility problem.

Our abstraction requires a probabilistic timed automaton
PTA and a property to be checked as its inputs. The property
is limited by the PCTL formula P<p[true U err]. The for-
mula represents a property that the probability of reaching to
states where err (which means an error condition in general)
is satisfied, is less than p.

3.1 Initial Abstraction
The initial abstraction removes all the clock attributes from

a given probabilistic timed automaton as well as the technique
in Paper[6]. The generated abstract model over-approximates
the original probabilistic timed automaton. Also, the abstract
model is just an MDP without time attributes.

Definition 3.1 (Abstract Model). For a given probabilistic
timed automaton PTA = (A,L, l0, C, I, prob), a markov de-
cision process ˆMDPPTA = (Ŝ, ŝ0, ˆSteps) is produced as its
abstract model, where

• Ŝ = L

• ŝ0 = l0

• ˆSteps = { (s, a, p) | (s, a, g, p) ∈ prob }

Figure 6 shows an initial abstract model for the PTA shown
in Fig.5 As shown in the figure, the abstract model is just an
MDP where all of the clock constraints are removed though
we keep a set of clock reset as a label of transitions.

a

b

c

d
0.5

0.5

1

1x:=0

Figure 6: An Initial Abstract Model

3.2 Model Checking
In model checking, we apply Value Iteration[8] into the

markov decision process obtained by abstraction and calcu-
late a maximum reachability probability. Also, it decides an
action to be chosen at every state as an adversary. If the ob-
tained probability is less than p, we can terminate the CEGAR
loop and conclude that the property is satisfied.

Although Value Iteration can calculate a maximum reach-
ability probability, it cannot produce concrete paths used for
the probability calculation. To obtain the concrete paths, we
use an approach proposed in Paper[9] which can produce CE
paths for PCTL formulas. The approach translates a proba-
bilistic automaton into a weighted digraph. And we can ob-
tain at most k paths by performing k-shortest paths search on
the graph.

Definition 3.2 (Path on the Abstract Model). A path ω̂ on
an abstract model ˆMDPPTA = (Ŝ, ŝ0, ˆSteps) for PTA =
(A,L, l0, C, I, prob) is given as follows,

ω̂ = ŝ0
a0,p0,r0−→ ŝ1

a1,p1,r1−→ . . .
an−1,pn−1,rn−1−→ ŝn

, where ŝi ∈ Ŝ for 0 ≤ i ≤ n and (ŝi, ai, pi) ∈ ˆSteps ∧
(ri, ŝi+1) ∈ support(pi) for 0 ≤ i ≤ n− 1.

As defined in Def. 3.2, we associate a set r of clock reset
with a path on an abstract model in order to show the differ-
ence of r over the probabilistic distribution p.

For the abstract model shown in Fig.6, Value Iteration out-
puts 1.0 as the probability that it reaches to the location d from
the location a. On the other hand, k-shortest paths search

(k ≥ 2) detects two paths ω̂α = a
τ,0.5,{}−→ b

τ,1.0,{}−→ d and

ω̂β = a
τ,0.5,{x:=0}−→ c

τ,1.0,{}−→ d, where τ represents a label for
transitions with no label in the figure.

3.3 Simulation
Simulation checks whether all the paths obtained by k-

shortest paths search are feasible or not on the original prob-
abilistic timed automaton. We use the simulation algorithm
proposed in Paper[6] where we use some operations of DBM
(Difference Bound Matrix)[10] to obtain zones which are reach-
able from the initial state. If there is at least one path which is
infeasible on the original PTA, we proceed to the abstraction
refinement step.

Figure 7 shows the simulation results for two paths ω̂α and
ω̂β . Simulation concludes that the two paths are feasible on
the original PTA.

3.4 Abstraction Refinement
In this step, we refine the abstract model so that the given

spurious CE also becomes infeasible on the refined abstract



Algorithm 1 BackwardSimulation(PTA, ω)
1: /* PTA = (A,L, l0, C, I, prob)

ω̂ = ŝ0
a0,p0,r0→ ŝ1

a1,p1,r1→ . . .
an−1,pn−1,rn−1→ ŝn */

2: Dω̂
b,n := I(ŝn)

3: for i := n− 1 downto 0 do
4: Dω̂

b,i := Dω̂
b,i+1

5: Dω̂
b,i := down(Dω̂

b,i) /* reverse the time elapse */
6: Dω̂

b,i := and(Dω̂
b,i, I(ŝi+1))

7: Dω̂
b,i := free(Dω̂

b,i, ri) /* remove all constraints on ri */
8: Dω̂

b,i := and(Dω̂
b,i, gi) /* (ŝi, ai, gi, pi) ∈ prob */

9: Dω̂
b,i := and(Dω̂

b,i, I(ŝi))
10: end for
11: return Dω̂

b

a b d

a

x==y

b

x==y

d

x==y & x<1

c

y>=x
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Figure 8: Results of Backward Simulation for a Set of Paths

model. We can use the algorithm proposed in Paper[6]. Since
the algorithm of Paper[6] performs some operations on tran-
sitions of a timed automaton, we replace such operations by
those on probability distributions of a probabilistic timed au-
tomaton.

3.5 Compatibility Checking
When all the paths obtained by k-shortest paths search are

feasible and a summation of occurrence probabilities of them
is greater than p, we also have to check whether all the paths
are compatible or not. In this compatibility checking step,
at each location of the paths, we have to obtain a condition
(zone) which is reachable from the initial state and also reach-
able to the last state along with the path. Next, we check the
compatibility of such conditions among all paths. To obtain
such conditions, we have to perform both forward simulation
shown in Sec. 3.3 and backward simulation for each path,
and merge the results. For the result of forward simulation,
we can reuse the result obtained in the Simulation step. Then
we check the compatibility based on Lemma 2.2.

3.5.1 Backward Simulation

Algorithm 1 implements the backward simulation. Func-
tions and, free, down used in the algorithm are operation
functions on a zone, and are defined in Paper[10]. Formally,

Algorithm 2 IsCompatible(PTA, Ω̂, Df , Db)

1: /* PTA = (A,L, l0, C, I, prob), Ω̂ is a set of abstract paths,
and Df and Db are sets of forward and backward simulation
results for each path ω̂ ∈ Ω̂,respectively. */

2: return CompatibleCheck(PTA, Ω̂, Df , Db, 0)

Algorithm 3 CompatibleCheck(PTA, Ω̂, Df , Db, i)
1: D′ := true
2: foreach ω̂ ∈ Ω̂ such that length(ω̂) ≥ i do
3: Dω̂

c,i := Dω̂
f,i ∩Dω̂

b,i

4: D′ := D′ ∩Dω̂
c,i

5: if D′ = ∅ then
6: return false
7: end if
8: end for
9: SΩ̂

i+1 := SplitPathSet(Ω̂, i+ 1)

10: /* split Ω̂ into a set of its subsets without overlap with respect to
the i+1-th location and clock reset for each path in Ω̂ */

11: foreach Ω̂′ ∈ SΩ̂
i+1 such that |Ω̂′| ≥ 2 do

12: if CompatibleCheck(PTA, Ω̂′, D, i+1)=false then
13: return false
14: end if
15: end for
16: return true

for a zone D, a constraint c, and a set r of clock reset, those
functions are defined as follows; and(D, c) = {u | u ∈
D∧u ∈ c}, free(D, r) = {u | r(u) ∈ D}, and down(D) =
{u | u+ d ∈ D ∧ d ∈ R≥0}

Figure 8 shows results of backward simulation for two paths
ω̂α and ω̂β detected in Sec. 3.2.

3.5.2 Determination of Compatibility

In this step, we check compatibility of the set Ω̂ of paths
on the abstract model using the required conditions obtained
by both of forward and backward simulation. Algorithm 2
checks the compatibility of Ω̂ using the Algorithm 3.

Algorithm 3 first checks whether the required conditions of
the i-th locations for each path are compatible or not (l2-l8)
using the results of forward and backward simulation. Next,
the algorithm divides Ω̂ into some subsets of it based on the
(i+1)-th locations and the set of clock reset for each path (l9).
Then, it checks the compatibility for the following sequences
of paths by applying the algorithm into the divided subsets
recursively (l11-l15). Although the predicate isCompatible

Algorithm 4 SplitPathSet(Ω̂, i)
1: S := ∅
2: foreach ω̂ ∈ Ω̂ do
3: /* ω̂ = ŝ0

a0,p0,r0→ ŝ1
a1,p1,r1→ . . .

an−1,pn−1,rn−1→ ŝn */
4: if Ω̂ri−1,ŝi ̸∈ S then
5: Ω̂ri−1,ŝi := {ω̂}
6: S := S ∪ Ω̂ri−1,ŝi

7: else
8: Ω̂ri−1,ŝi := Ω̂ri−1,ŝi ∪ {ω̂}
9: end if

10: end for
11: return S



Algorithm 5 TransformPTA(PTA, Dc, Ω̂, i)
1: Dcomplement := true
2: foreach ω̂ ∈ Ω̂ do
3: Ldup := DuplicateLocation(PTA, ω̂,Dω̂

c,i, i)
4: L := L ∪ Ldup

5: probdup := DuplicateDistribution(PTA, ω̂, Ldup, i)
6: prob := prob ∪ probdup
7: Dcomplement := Dcomplement ∩Dω

c,i

8: end for
9: Ldup := DuplicateLocation(PTA, ω̂,Dcomplement, i)

10: L := L ∪ Ldup

11: probdup := DuplicateDistribution(PTA, ω̂, Ldup, i)
12: prob := prob ∪ probdup
13: prob := RemoveDistribution(PTA, ŝi, pi)
14: /* for all path ω̂ ∈ Ω̂, the i-th state ŝi and i-th probability distri-

bution is pi */
15: return PTA

Algorithm 6 DuplicateLocation(PTA, ω̂,D, i)
1: /* PTA = (A,L, l0, C, I, prob)

ω̂ = ŝ0
a0,p0,r0→ ŝ1

a1,p1,r1→ . . .
an−1,pn−1,rn−1→ ŝn */

2: Ldup := ∅
3: foreach (l, r) ∈ L× 2C such that pi(l, r) > 0 do
4: (l,D) := Succ((ŝi, D), e)
5: /* succ returns a successor state set through a given edge e,

and e = (ŝi, ai, g, pi, r, l) */
6: ldup := newLocation()
7: I(ldup) := D
8: Ldup = ldup
9: end for

10: return Ldup

in the Lemma 2.2 checks the compatibility for each subset of
Ω, the algorithm omit redundant checks by dividing Ω based
on the branches of the paths.

For the path ω̂α in Sec. 3.2, zones at a which is reachable
from initial state and which can move to d are given as Dω̂α

f,0 =

(x == y), and Dω̂α

b,0 = (x < 1), respectively. Also, a zone
of the product of them is given as Dω̂α

c,0 = (x == y ∧ x <

1). Similarly, for the path ω̂β , the product zone is given as
Dω̂β

c,0 = (x == y ∧ y > 1). Since Dω̂α

c,0 and Dω̂β

c,0 contradict
each other, we can conclude that the paths ω̂α and ω̂β are
incompatible each other.

3.6 Model Transformation
When the compatibility check procedure decides a given

set Ω̂ of paths is incompatible at i-th location, our proposed
algorithm resolves the incompatibility by refining behaviors
from the i-th location. Our algorithm uses Dω̂

c which is a
product of results of forward and backward simulation for a
path ω̂ ∈ Ω̂. It duplicates locations which are reachable from
the zone Dω̂

c,i by an action associated with the i-th distribution
pi. Also it constructs transition relations so that the trans-
formation becomes equivalent transformation. For example,
transition relations from a duplicated location are duplicated
if the relations are executable from the invariant associated
with the duplicated location.

Algorithm 5 transforms a given PTA with considering its

Algorithm 7 DuplicateDistribution(PTA, ω̂, Ldup, i)
1: /* PTA = (A,L, l0, C, I, prob)

ω̂ = ŝ0
a0,p0,r0→ ŝ1

a1,p1,r1→ . . .
an−1,pn−1,rn−1→ ŝn */

2: probdup := ∅
3: pdup := newDistribution()
4: /* generate a new distribution over L× 2C */
5: foreach (l, r) ∈ L× 2C do
6: pdup(ldup, r) := pi(l, r)
7: /* ldup is a duplicate location of l generated by DuplicateLo-

cation algorithm */
8: end for
9: probdup := Probdup ∪ {(ŝi, ai, g, pdup)}

10: /* (ŝi, ai, g, pi) ∈ prob */
11: foreach ldup ∈ Ldup do
12: probdup := Probdup∪
13: DuplicateDistFromDupLoc(PTA, ldup)
14: end for
15: return pdup

Algorithm 8 DuplicateDistFromDupLoc(PTA, ldup)
1: /* PTA = (A,L, l0, C, I, prob), and let l be an original loca-

tion of ldup */
2: probdup := ∅
3: foreach (l, a, g, p) ∈ Prob do
4: fdup := true, pdup := newDistribution()
5: foreach (l′, r) ∈ L× 2C do
6: if Succ((l, I(ldup)), e) ̸= ∅ then
7: /* e = (l, a, g, p, r, l′) */
8: pdup(l

′, r) = p(l, r)
9: else

10: fdup := false
11: break
12: end if
13: end for
14: if fdup then
15: /* duplicate the distribution if it is executable from the du-

plicate location */
16: Probdup := Probdup ∪ {(l, a, g, pdup)}
17: end if
18: end for

compatibility. The algorithm calls DuplicateLocation (Al-
gorithm 6) which duplicates locations, DuplicateDistribution
(Algorithm 7) which duplicates probabilistic transitions, and
RemoveDistribution (Algorithm 9) which removes proba-
bilistic transitions. The procedure Succ in Algorithms 6 and
8 calculates a successor state set from a given state set S
through a given edge e = (l, a, g, p, r, l′), i.e. Succ(S, e) =
{(l′, r(ν) + d) | (l, ν) ∈ S ∧ g(ν) ∧ I(l′)(r(ν)) ∧ ∀d′ ≤
d.I(l′)(r(ν) + d′)}

Figure 9 shows the transformed PTA by applying the model
transformation procedure for the paths ω̂α and ω̂β . The loca-

Algorithm 9 RemoveDistribution(PTA, l, p)
1: /* PTA = (A,L, l0, C, I, prob), and let l be an original loca-

tion of ldup */
2: foreach (l, a, g, p) do
3: prob := prob \ {(l, a, g, p)}
4: end for
5: return prob



Table 1: Experimental Result
Digital Clocks[3] Proposed Approach

D(µs) p Result T ime(s) State MEM(MB) Result T ime(s) Loop State Heap(MB)

5 1.09×10−1 false 20.90 297,232 10.2 false 4.19 10 37 8.0
3.28×10−1 true 20.89 297,232 10.2 true 3.60 9 36 8.0

10 1.26×10−2 false 54.80 685,232 21.7 false 8.16 19 134 8.0
3.79×10−2 true 54.82 685,232 21.7 true 6.57 15 115 8.0

20 1.85×10−4 false 176.93 1,461,232 41.0 false 1186.08 47 477 64.0
5.56×10−4 true 177.46 1,461,232 41.0 true 31.32 32 435 8.0
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Figure 9: A Transformed PTA

tions b1 and c1 are duplicated locations based on the path ω̂α

and the zone Dω̂β

c,0 = (x == y ∧ x < 1) on the location a.
We associate invariants to b1 and c1 based on zones which are
reachable from Dω̂β

c,0 through transitions from a to b, and from
a to c, respectively. Also, we duplicate a transition from b to
d as the transition from b1 to d because the transition is fea-
sible from the invariant of b1. On the other hand, we do not
duplicate a transition from c to d because the transition is not
feasible from the invariant of c1. Similarly, locations b2 and
c2 are duplicated locations based on the path ω̂β and the zone
Dω̂β

c,0 . Locations b3 and c3 are generated as complements of
the invariant associated with each duplicated location in order
to preserve the equivalence.

By transforming the original PTA in such a way, if we re-
move all clock constraints from the model in Fig.9, Value
Iteration on its abstract model outputs 0.5 as the maximum
probability.

4 Experiments

We have implemented a prototype of our proposed approach
with Java, and performed some experiments. Though the pro-
totype can check the compatibility of a given set of paths,
currently it cannot deal with the model transformation.

The prototype performs k-shortest paths search and simu-
lation concurrently in order to reduce execution time. By im-
plementing the algorithms concurrently, we have not to wait
until all of k paths are detected, i.e. if a path is detected by the
k-shortest paths search algorithm, we can immediately apply
simulation and (if needed) abstraction refinement procedures.

Also, our prototype continues the k-shortest search algo-
rithm when a spurious CE is detected and the refinement al-
gorithm is applied. If other paths which do not overlap with
the previous spurious CEs, are detected, we can apply sim-
ulation and refinement algorithms to it again. This helps us

reduce the number of CEGAR loop.

4.1 Goals of the Experiments
In this experiment, we evaluated the performance of our

proposed approach with regard to execution time, memory
consumption, and qualities of obtained results. As a target
for comparison, we chose the approach of Digital Clocks[3]
where they approximate clock evaluations of a PTA by integer
values.

4.2 Example
We used a case study of the FireWire Root Contention Pro-

tocol[11] as an example for this experiment. This case study
concerns the Tree Identify Protocol of the IEEE 1394 High
Performance Serial Bus (called “FireWire”) which takes place
when a node is added or removed from the network. In the
experiment, we checked the probability that a leader is not
selected within a given deadline. The probabilistic timed au-
tomaton for the example is composed of two clock variables,
11 locations, and 24 transitions.

4.3 Procedure of the Experiments
In this experiment, we checked the property that “the prob-

ability that a leader cannot be elected within a given deadline
is less than p.” We considered three scenarios where the pa-
rameter deadline is 5, 10, 20 µs, respectively. Also, for each
scenario, we conducted two experiments where the value of p
is 1.5 times as an approximate value of the maximum proba-
bility obtained by the Digital Clocks approach[3] and a half
of it, respectively. In the proposed approach, we searched at
most 5000 paths by letting the parameter k of the k-shortest
paths search algorithm be 5000. For evaluation of existing ap-
proach, we used the probabilistic model checker PRISM[12].

The experiments were performed under Intel Core2 Duo
2.33 GHz, 2GB RAM, and Fedora 12 (64bit).

4.4 Results of the Experiments
The results are shown in Table 1. The column of D means

the value of deadline. For each approach, columns of Results,
Time, and States show the results of model checking, exe-
cution time of whole process, and the number of states con-
structed, respectively. The column MEM in the columns of
the Digital Clocks shows the memory consumption of PRISM.
The columns Loop and Heap in the columns of the proposed
approach show the number of CEGAR loops executed and the



Table 2: Analysis of Counter Example Paths
D(µs) p Path Probability CC(ms)

5 1.0938×10−1 7 1.2500×10−1 0.7
10 1.2635×10−2 43 1.2695×10−2 5.9
20 1.8500×10−4 2534 1.8501×10−4 296.9

maximum heap size of the Java Virtual Machine (JVM) which
executes our prototype, respectively.

Table 1 shows that for all cases we can dramatically reduce
the number of states and obtain correct results. Moreover, we
can reduce the execution time more than 80 percent except for
the case when deadline = 20µs and p = 1.85 × 10−4. In
this case, however, the execution time drastically increases.

Table 2 shows the results of analysis of CE paths obtained
when the results of model checking are false. The columns
of Path, Probability and CC show the number of CE paths,
the summation of occurrence probability of them, and exe-
cution time for compatibility checking, respectively. For this
example, the obtained sets of CE paths are compatible in ev-
ery case.

4.5 Discussion
From the results shown in Table 1, we can see that our pro-

posed approach is efficient with regard to both execution time
and the number of states. Especially, the number of states
decrease dramatically. The execution time is also decreased
even though we perform model checking several times shown
in the column of Loop.

On the other hand, in the case when deadline = 20µs and
p = 1.85×10−4, the execution time increases drastically. We
think that as shown in Table 2 we have to search 2534 paths
and this causes the increase of execution time especially for k-
shortest paths search. A more detailed analysis shows that the
execution time for k-shortest paths search accounts for 1123
seconds of total execution time of 1186 seconds. Also, the
results shows that the JVM needs 64MB as its heap size in this
case. This is because compatibility checking for 2534 of paths
needs a large amount of the memory. From the results, we
have to resolve a problem of the scalability when the number
of candidate paths for a CE becomes large.

5 Conclusion

This paper proposed the abstraction refinement technique
for a probabilistic timed automaton by extending the existing
abstraction refinement technique for a timed automaton.

Future work includes completion of implementation. Gen-
eral DBM does not support not operator[13]; so we have to
investigate efficient algorithms for the not operator.
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