2010 Asia Pacific Software Engineering Conference

A Software Tag Generation System to Realize Software Traceability

Shinya Yamada, Masataka Ugumori, Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
Email: {s-yamada, mugumori, kusumoto} @ist.osaka-u.ac.jp

Abstract—This paper describes a system that supports to
generate the software tag which makes software development
visible to software purchaser (users). A software tag is a partial
set of empirical data about a software development project
shared between the purchaser and developer. The purchaser
uses the software tag to evaluate the software project, allowing
them to recognize the quality level of the processes and
products involved. In order to implement the mechanism to
use the software tag effectively, it is necessary to support
generating the software tag. We have implemented a system
named CollectTag that supports to collect data and generate
the software tag. We conducted a case study to evaluate
the usefulness of CollectTag and generated software tag. The
results show that using CollectTag requires low cost to generate
the software tag.

Keywords-Project management, measurement, quality, em-
pirical software engineering

I. INTRODUCTION

Software systems are becoming huge and complex, and
our everyday life heavily depends on such software systems.
In such social context, there are various issues related to
software systems. For example, stoppage of a service in the
society’s infrastructure(ex. financial systems, transportation
systems) due to software faults causes huge social loss.

One of the major concerns of software purchasers (users)
in Japan is the quality of the software systems. Japanese
society generally demands high-quality software systems
with low fault rates and high operability levels. On the
other hand, many software purchasers in Japan are not
knowledgeable about the nature of software. It is reported
that only 40% of Japanese major companies employ a full-
time Chief Information Officer (CIO) and that only 20% of
all CIOs are confident of their knowledge about information
technologies[12].

Without a sufficient understanding of software quality
and software projects, many companies try to purchase
software systems from software developers (vendors). This
produces a very risky situation. For example, purchasers
cannot specify system requirements very well, and they
do not oversee the project properly. Such situations often
lead to project failures. It is reported that only 31.1% of
software projects are recognized as “successful projects” in
Japan[13]. To confront these issues, there is strong demand
to provide transparency of software projects to the software

1530-1362/10 $26.00 © 2010 IEEE
DOI 10.1109/APSEC.2010.55

423

purchaser and improve communications between purchaser
and developer.

A new concept “Software Traceability” has been pro-
posed to solve the issues [6][15]. That is, we apply the
concept of traceability in food distribution to the software
development process and traceability information, indicating
“when, where, by whom and how” the software has been
developed, is attached as a “software tag” to the actual
software product. The Software Tag is a new scheme to
provide information feedback about the project from the
developer to the purchaser. It establishes transparency of
the software development project by allowing purchasers
to view and analyze the elements of the tag. The Software
Traceability and Accountability for Global Software Engi-
neering (StagE) project [6][15] is a government-supported
project that pursues standardization and promotion of the
software tag scheme. In this project, we have defined the
detailed structure of the software tag.

There remain several challenges to implement the soft-
ware traceability based on the software tag. One of them is
to develop technologies to generate/produce the software tag
from software development projects. This paper proposes a
software tag generation system. In developing the system,
we focus on the following requirements: (1) it has general
versatility, that is, it can be applied to the wide variety
projects, (2) the cost to generate the software tag should
be low, that is, it can collect necessary data from the project
and generate the software tag at low cost and (3) it generates
a convenience software tag, that is, the generated tag can
be easily used for analysis of software projects. Based on
the requirements, we have implemented a prototype system
named CollectTag. CollectTag allows the user to define
concrete software tag definitions for his/her own project.
Also, it provides automatic measurement mechanisms to
collect metrics for specific elements of the software tag.
Finally, it outputs the software tag in the XML format. We
have applied CollectTag to the actual software development
project data and evaluated the usefulness of the system from
the viewpoint of cost to generate the software tag. As the
results, we found that by using CollectTag, generating the
software tag is not high-cost.

Section II briefly describes the software traceability and
the software tag. Next, Section III proposes a software
tag generation system, CollectTag and Section IV evaluates

IEEE
computer
® psouety

1. Purchase Order
5. Delivery

w

Softw are Purchaser

Software Developer

2.Data
Collection

3. Process
Improvement

Figure 1.

Overview of the software tag use

the usefulness of the system through a case study. Finally,
Section V concludes this paper.

II. SOFTWARE TRACEABILITY BASED ON THE
SOFTWARE TAG

A. Overview of the Software Tag Use

A software tag is a packaged data set about a software
project. It is currently composed of 41 characteristic ele-
ments of project data and progress data (See Section II-B).
Figure 1 shows an overview of the software tag use.

Stepl: A software purchaser orders development of a soft-
ware system. The purchaser includes both the final
products and the software tag in their requirements.
During software development, various kinds of
empirical data are created and generated. For ex-
ample, requirements documents, software design
documents, source code, test cases, issue tracking
logs, manual documents, review logs, and quality
analysis records may be produced. These are col-
lected and archived. Note that we collect not only
the final data at the end, but also interim snapshot
data during development.

The collected data is analyzed for process improve-
ment of the development organization, as is the
usual process improvement scheme for software
development organizations.

The collected data is used to construct the software
tag. Parts of the empirical data are selected and
abstracted into the software tag format.

The software tag is delivered to the software pur-
chaser periodically during the development and/or
finally at the end of the development together with
the final software product. The software purchaser
evaluates the software development by viewing
and analyzing the tag, and accepts the delivered
software product.

If a controversy such as a question about the quality of
the product occurs between the software purchaser and the

Step?2:

Step3:

Step4:

Step5:

424

developer, the delivered software tag and (if necessary) the
empirical data are analyzed, providing a basis for exploring
a resolution to the controversy.

The software tag is a key to improving transparency of
software projects. By examining the software tag, the soft-
ware purchaser can identify and understand the development
process, which has been mostly hidden from the purchaser.
The purchaser can evaluate the quality of the processes
and products of the project. For the software developer, the
software tag is useful to prove that they have conducted
the proper activities in the software project. Also, it can be
used to trace the quality of the activities of sub-contractors
and sub-sub-contractors (such contracting chains are very
popular in Japan).

This scheme can be very useful for offshore and global de-
velopment, because transparency and traceability of software
development can be established with a fairly low overhead
for the developers. Standardizing the software tag will help
to establish a minimum baseline for project quality, and to
improve negotiations over software development contracts.
Evaluation of software products and projects based on the
objective empirical data contained in the software tag will
lead to more healthy use of software in society

B. Software Tag Standard

‘We have defined the elements of the software tag as shown
in Table I, named Software Tag Standard 1.0. It is composed
of 41 tag elements, which are categorized into project infor-
mation and progress information. The project information
depicts the overall sketch of the project with various basic
pieces of information. The progress information provides
qualitative and quantitative indices of project achievement
with various measures of the development phases. The tag
standard provides more precise explanations and example
metrics for each tag element which are not presented here.

We divided project information into five categories de-
scribed below, and settled tag elements for each category
(see Table I).
basic information of the software project (Basic Infor-
mation)
information of the system developed by the project
(System Information)
information of development framework applied to the
project (Development Information)
information of relationships between target project and
other projects (Project Organization)
other information (Others)

To settle progress information, we referred to ISO/IEC
12207 Software Life Cycle Processes and activities[7], and
included process, quality and effort information described
below into it.

« information of requirements, design, programming and

test for the software (Requirements, Design, Program-
ming, and Test)

Table 1
SOFTWARE TAG STANDARD 1.0

Classification Category No. Tag Element Explanation Classification Categor: No. Tag Element Explanation
. . . 2 |Scale Amount of testing
1 Project Name Unique name of project
Test 23 Revisions Amount of changed test
. esl
Basic 2 Organization Information of development organization 24 |Density Ratio of test to system size
Information 3 Project Information Inﬁ?rmalim medéd.m identify the % |Progress Status Test progress to plan
project characteristics 2 |Review Status Quantity information of review
4 Customer information Information identifying the purchaser or 27 |Review Dersit Ratio of review (0 system size
ou{ner — . . Ration of found defects to amount of
N Information identifying system 28 |Review Effectiveness)
System 5 System Configuration . o review
. . configuration to label the type of system
Project Information . 29 |Defect Count Number of defects found by test
N X 6 SystemScale Development system scale Quality " - -
Information 7 Devel A h Devel " . tochm 30 |Fixed Defect Count Number of fixed defects
evelopment roac evelopment process or techniques,
Development OP - P Ll - P P - mq 31 |Defect Density Ratio of defects to system size
N . 8 Organizational Structure Structure of development organization — -
Information - - - . Ratio of detected defects to consumed
9 Project Duration Information of development length p 32 |Defect Detecton Rate test
- - TOgress
Proi 10 Super-Project Information I\Esme (?f super project which creates Information 33 |Static Check Results Report of stattc checker
mj.ccl. this project - — 34 |Overall Cost Development and maintenance cost
Or ganization . N . Name of sub projects which is created ;) X
11 Sub-Project Information . . Development Cost . Ratio of amount of products to overal
by this project 35 [Productivity L
- - cost
. Other necessary or useful data for
Other 12 Special Notes . R v . Information on management of
interpreting or analyzing tag data 36 [Process Management
- " development process
. . Information of user-requirements - — —
13 User Hearing Information . Purchaser-Developer Meeting| Amount of user-vendor communication
. hearing Schedule and 37
Requirements . Status
14 Scale Amount of requirements Management " — -
- 38 |Total Risk Item Count Number of risk items n the development
15 Revisions Amount of changed requirement - —
. 39 |Risk Item Exist Period Time length between a risk item
P.mgreﬁs 16 Scal.c. Amount of design prodllf:!s 1S m EXxistence Feri creation and deletion
Information Design 17__ Revisions Amount of changed design £ al Amount of product metrics not listed
Design Coverage by Imple me ntation ratio of design for Scale bor
18 . : Other Products —
Requirements requirements . Amount of change in products not listed
19 Scale Amount of programming products 41 |Revisions above
Programming 20 Revisions Amount of changed programs
21 Complexity Complexity of programs

o information of quality assurance activities on the
project (Quality)

« information of development effort on the project (De-
velopment Cost)

« information of project plan and management on the
project (Schedule and Management)

o other information for the products attached to the
software (Other Products)

It is not mandatory to use all 41 elements in the software
tag in all cases. The purchaser and the developer can
negotiate and select elements to use. Also, they can discuss
and determine the details of the metrics. For example, #19,
Scale of Programming, might be agreed to be measured
by lines of code without comments. Based on the software
tag standard, the purchaser and the developer should decide
followings before using the software tag.

« tag elements to be used

« metrics used for tag elements

« measurement targets of metrics (e.g. whole system, sub
systems, or files)

« frequency of measurement

o timing of offering the software tag to the purchaser
(e.g. every week, every month, or the end of respective
process)

In this standard, we have included various kinds of
information that are considered important to the purchasers.
The overall structure should be simple for the purchaser to
understand, so we have tried to keep it as simple as possible.

Also, we have tried to keep in mind the balance of the tag
elements. This standard does not include tag elements that
are computable from other tag elements. There are a number
of standards and reports such as SWEBOK, CMMI, ISO/IEC
15939, and reports by the Software Engineering Center in
Japan (SEC) which can help interpret the tag elements. The
definition process was based on discussions with industry
and academic collaborators.

Through the discussion, we recognized that appropriate
metrics (tag elements) set and calculation methods of them
are different for organizations or projects. Therefore, we
made tag elements selective, and on the tag standard, cal-
culation methods of corresponding metrics of tag elements
were not included but examples of the metrics are included.

In order effectively to use the software tag in the actual
software projects, it is necessary to support generating and
analyzing the software tag. In the StagE projects, we have
been developing several supporting tools. In the following
Sections, we describe the supporting tool for generating the
software tag.

III. SUPPORTING SOFTWARE TAG DATA GENERATION

In order to realize the software traceability based on
the software tag, first, it is necessary to develop a support
mechanism to effectively generate/construct the software
tag to various software development projects. This Section
describes the requirements for software tag data generation
system, our correspondence to them and a software tag data
generation system named CollectTag.

425

A. Requirements

We have the following requirements to the software tag
generation system:

o Project-independent software tag generation: As de-
scribed in Section II-B, the purchaser and the developer
negotiate and select elements of the software tag to
use. Also, the corresponding metrics to the elements
are determined by the purchaser and the developer. So,
it is necessary to provide a versatile mechanism that
can be applicable to various projects.

Low-cost software tag generation: It is very impor-
tant issue to reduce the cost of software development
projects. In the software development project under
a severe budget constraint, it would appear that it’s
difficult to assign resources to prepare the software tag.
Thus, it is necessary to provide an economical support
to collect data and prepare the software tag.

Output a convenient software tag: In order to confirm
the content of the tag, providing analysis/visualization
tools are useful for the purchaser. Also, to archive,
exchange and reuse the software tag, a standard data
format is needed. It is necessary to define the format
and the tag generation system should provide a feature
to output tags that meet the standard.

B. Features of CollectTag

In order to meet the requirements in Section III-A, we
realize the following features to the proposed system:

(1) The user can define each element and metric in the
software tag for his/her own project.

In order to flexibly generate the software tag, we imple-
ment a feature that the user can define the contents of his/her
project. Here, we call the definition of the tag-data rag-data-
definition and call the data collected tag-data. That is, the
tag-data-definition is defined to each of metrics for each tag
element collected in the project. It includes the name, the
explanation, measurement frequency and so on (See Section
II-D1). On the other hand, the tag data is created for each
metric when the user inputs the actual value and each tag
includes the value and the created date and time. So, we can
grasp the transition of the value for each metric.

Figure 2 shows the process of the tag data definition.

At first, after the user (the developer) and the purchaser
negotiate and select the elements in the tag and define
the metrics for each element, the user inputs them into
the system and makes the tag-data-definition. Then, the
system provides the input form based on the definition to the
user. According to the input form, the user inputs the data
(measurement results) to each element. Finally, the inputted
tag data are stored into the tag data repository.

This feature provides the extendable tag data collection.
By preparing the frequently-used tag-data-definitions in ad-
vance, the system just loads the definition and provides
the input form based on the definition. If the user needs

426

3.provide the input

form based on the
tag-data-definition

1.input a tag-data-
definition for the target
project
4.input tag-data

5.storethe data

—

2.readthe tag-
data-definition

L €

Tag-data-definition

TT‘L)’

Tag data

Datainput system
repository

Figure 2. Process of tag data definition

other tag elements and metrics, he/she can add them to
the frequently-used tag-data-definition and make the original
tag-data-definition for his/her project.

Currently, CollectTag provides the pre-registered tag-data-
definitions for the following elements: No.14 Requirements-
Scale, No.15 Requirements-Revisions, No.16 Design-Scale,
No. 17 Design-Revisions, No. 19 Programming-Scale,
No. 20 Programming-Revisions, No. 21 Programming-
Complexity, No. 24 Test-Density, No. 27 Quality-Review
Density, No. 29 Quality-Defect Count, No. 30 Quality-Fixed
Defect Count, No. 31 Quality-Defect Density and No. 32
Quality-Defect Detection Rate.

(2) The system provides automatic measurement for specific
elements.

In order to provide the software tag generation at low
cost, the system provides automatic measurement for some
elements under typical software development. In the soft-
ware tag, there are several elements related to software
products (requirements specifications, design specifications,
source codes, bug reports and so on). It needs extra efforts
to get metrics from the products. Recently, several software
tools are frequently used in the software development. For
example, version management systems, such as Subversion
and CVS, are well-known and commonly used. Software
products and the update history information are stored in
the product repository by version management systems.
Next, some metrics are measured from the specifications
and source codes. It’s not realistic to prepare automatic
measurement features for any specifications and source
codes. So, we focus on the UML models and source code
written in Java language since they are popular methodology
in recent software developments.

Our system automatically measures some metrics, related
to the selected elements in the software tag, from the data in
the product repository. Also, bug tracking systems, such as
Gnats[5] and KAGEMAI[10], are often used in the software
developments. Bug tracking systems store the information
about software bugs (faults) and so it’s possible to get some
metrics, related to the quality elements in the software tag,
from the bug data repository.

As a result, we focus on the software development where
the following software tools are used:

« Version management system: Subversion, CVS

o Bug tracking system:Gnuts, KAGEMAI

e Modeling tool: UML design tools that output UML
diagrams into the XMI files.

Table II summarizes the elements, metrics for each ele-
ment and sources for the metrics, that our system provides
the automatic measurement.

(3) Output the software tag as XML format

XML (Extensible Markup Language) is a set of rules for
encoding documents electronically. Many systems contain
data in incompatible formats. Exchanging data between such
systems is a time-consuming work. XML is a generic data
storage format and it is often used to define data format to
exchange information between such systems. So, we settled
the draft of the standard software tag format which is based
on XML format, called standard software tag format data.

C. Utilization process of CollectTag

Here, we explain the process of generating the software
tag based on CollectTag. The process consists of the follow-
ing five steps from the beginning to the end of the project.

Step 1:The user creates the new software tag project.

Step 2:The user makes the tag-data-definition for the
project.

Step 3The user inputs the necessary data to the input
form of the project. (some data are automatically
inputted (see Section III-B)).

Step 4:Repeat Step 3 at predetermined intervals until the
end of the project. (The intervals are determined
by the negotiation between the purchaser and the
developer.)

Step 5:The final software tag is generated.

The brief overview of Steps 3 and 4 is shown in Figure 3.
Figure 3 represents the flow of the project in chronological
order. After the project starts, the user inputs/collects the
data by using CollectTag. At predetermined intervals (in
Figure 3, the interval is 3 days), the user repeats the data
input. In Figure 3, on March 27th, the first data input was
conducted and on March 30th (after 3 days), the second was
done.

Collected tag data are stored in the tag data repository.
After completion of the project or as necessary, CollectTag
outputs the software tag in the XML format.

D. Structure of CollectTag

Figure 4 shows the system structure of CollectTag. It
mainly consists of three units: Tag data definition unit, Tag
data input unit and Tag data output unit.

The user inputs the tag-data-definition that defines the set
of elements and the corresponding metrics of the software
tag through the Tag data definition unit. The Tag data input
unit generates the input form according to the tag-data-
definition and provides the form to the user. Then, after the
user inputs the data on the form, the tag data is stored into

427

begin

27 Mar | .

=
= O

collect the tag
data by using
CollectTag

= O
=

30Marl|.

—>uj

28 May| 4 software tag

31 May| 4 —
end V
Figure 3. Overview of the tag data collection
Main
module
nerate
inputa tag-data-definition Tag data
for the target project definition
unit
provide the
\; Tag data
Input the data input unit
user requestfor
utput
\ Tag data
Presenta graphical output QUHEE WA
of the tag data [}
flow of control == output by XMLformat

flow of data software tag

=

Figure 4. System structure of CollectTag

the Tag data repository. If the user requests the output, the
Tag data output unit shows the tag data in graphical/tabular
form to the user or translates and outputs the data into XML
format.

In the following, we explain the details of each unit and
the data items managed in the unit.

1) Tag-data-definition: The tag-data-definition has the
information about each of metrics for each tag element.
Table III shows the constitution of the tag-data-definition.
It consists of the following 5 items:tagldentifier, name,
description, unit and frequency. tagldentifier is an identifier
of the tag-data, name is the name of metric for the tag
element, description is detailed information of the metric,
unit is the unit of the metric, and frequency means the

Table 11
ELEMENTS MEASURED AUTOMATICALLY BY COLLECTTAG

Classification No. Tag Element Metrics Input
Number of use case diagram
14 Scale[Transition] Number of use case
Requirements Number of actor]
Number of added, deleted use case diagram
15 Revisions[Transition] Number of added, deleted use case
Number of added, deleted actor
Number of class diagram Modeling file
. Number of sequence diagram based on XMI
16 Scale[Transition] Number of state machine diagram
Design Number of activity diagram
Number of added, deleted class diagram
17 Revisions[Transition] Number of added, deleted sequence diagram
Number of added, deleted state machine diagram
Number of added, deleted activity diagram
19 Scale[Transition] Lines of code
. . . Lines of added, deleted code Subversion or CVS
Programming 20 Revisions|[Transition] - .
Number of revisions repository
21 Complexity CK metrics[1]
29 Defect count[Transition] Number of defects found
Quality 30 Fixed defect count[Transition] Number of fixed defects Log files of
31 Defect Density Number of defects found / Lines of code Gnuts or KAGEMAI
32 Defect Detection Rate Number of defects found / Consumed test
Table TIT Table TV
TAG-DATA-DEFINITION TAG-DATA
name explanation example
name explanation example value actual measured value 10
tagldentifier identifier quality.revStatus.revNum tagldentifier identifier quality.revStatus.revNum
name name of data item number of review id hash value 1365431584
description detailed information It means the number of review. name name of data item number of review
the review is conducted every user measurer Ugumori
. . Wednesday. unit unit of element number
?mt lfmlt of elemfent - number X object measurement object minutes of review meeting
requency requency of measure once a wee date time and date 2007/4/18 15:00
remarks remarks dates of review, 3/27, ...

frequency of the measurement (input of the actual value to
the metric).

For example, from Table III, we can see that the qual-
ity.revStatus.revNum means the number of review and the
review is planned every Wednesday and it is measured once
a week.

2) Tag-data: Tag-data is created for each metric defined
in the tag-data-definition, when the actual value is inputted
by the user. Table IV shows the constitution of the tag-data.
It consists of 9 elements, that is, one actual measured value
for the tag-data (value) and meta data of value including
8 elements. tagldentifier, name and unit are the same as
ones in the tag-data-definition. id is a hash value, user is
a measurer of the metric, object is a source (ex. source
code, minutes) of the metric, date is the date when the
metric is measured, remarks is the remarks about the metric,
respectively.

For example, from Table IV, we can see that the project
conducted ten times reviews from the beginning to the date
(April 18, 2007), the number of the review (10 times) is
measured based on the minutes of review meeting and so
on. Saving the meta data enables us to check the reason or

428

evidence of the value of the tag-data.

3) Tag data definition unit: Tag data definition unit
has functionality to add and delete the tag-data-definition
described in Section III-D1. Figure 5 shows the edit screen
of tag-data-definition. The user makes the tag-data-definition
for each element of the software tag collected in the target
project through the screen. The tag-data-definitions made
by the user are stored in the tag-data-definition directory as
XML format and are used for generating the input form.

4) Tag data input unit: Structure of the Tag data input
unit is shown in Figure 6. It consists of input screen unit,
input form generating unit and automatic data collection
unit. The automatic data collection unit reads the tag-data-
definitions and generates the input form. Input screen unit
provides the input form to the user and the user inputs the
actual value into the form. On this occasion, the user makes
the setting for the metrics measured automatically. When the
input is completed, inputted data by the user are stored in
the tag data repository and the settings for the metrics are
delivered to the automatic data collection unit. The automatic

B cdit tag data definitions E@EJ

tagkentifier name description it frequency
the number of rumber of windon: middle
reviewed times fthe number of revien hieh L

e result of Checkst high
e number of require middle T
| delete

add, edit, or delete a tag
data definition

Number
ftime

Number
Number

add J

Kty t
the rumber of require.. |f
executesUser Hearing.

finish editing a tag data
definition

Figure 5. Edit screen of tag-data-definition

tag-data-definition

I Tag datainput unit .
generate theinput
form
Input screen unit |@|

input data

import
y

show the input forn
——

configure auto-coll
configuration

Input form
generating unit

ct
auto-collect configuration

userof the
system

Automatic data
collection unit

collected data

flow of control =3

flowof data

Tagdata
repository

Figure 6.

Structure of Tag data input unit

B wicard

input data to an input
form generated based
onthe tag data
definition
User hearing information /

executedUserHearing. 4

inputmeta data
(e.g. user’sname and
remarks)

Tag input wizard

he number of require men

User
ramada

Unit

Number

Object § 1
/31 Requirement/QualityF|
Remarks

size
the number of require.. [7]

[l the number of usecases % the number of actors [¥] the number of usecase diagrams

the rumber of requirements in the project
Change

size of changes about uses: [F] size of chanees about actors [7] size of changes about use:

Netion of the current uds file | C:#Frogram Files 688Mpleiadss-all-in-one=java 20|
o the prefious Juds file G¥Frogram Files: (E6Mpleiades-all-in-one=java 207

check any items if you
want the system to
collect metrics
automatically

set a location of
collecting files

[Back

J

Next][Complete][Cancel

Figure 7. Input screen

data collection unit! measures the value data in accordance
with the settings and the results are set in the form.

Figure 7 shows the input screen. The screen is automati-
cally suggested by the Wizard and the metrics are shown in
the order of the category of the software tag.

IWe have implemented a measurement tool based on MASU[11]. It
measures some metrics (ex. CK-metrics, LOC) from Java source codes.

429

<data name="the number of reviewing” source="rull™>
Lunit>Number</unit>4
{valuerhd valuer |
<{date>2007/04/18 0:00:00</date>
{userrYamada</user> 4
{obi>review documert</chir.
{remarks />

<Sdatar«

Figure 8. Software tag in XML format

5) Tag data output unit: Tag data output unit outputs the
software tag to the user. It shows the content of the software
tag in the form of a table and outputs it as a XML file.
Figure 8 shows the part of software tag written in XML
format. It can be used by some software tag analysis tools
[4] developed in StagE project.

IV. CASE STUDY
A. Purpose

In order to evaluate the applicability of CollectTag, we
applied CollectTag to the data collected from an actual
software development. In the evaluation, we focused on the
cost of generating the software tag: manual data collection
and automatic measurement by CollectTag.

B. Target project

We used the actual software development data provided
by “ITSpiral”’[8]. IT Spiral is a collaborative project by
nine universities and four industries in Japan to develop a
common curriculum for teaching software engineering. IT
Spiral ordered a curriculum coordination software system
to several software companies. They requested the com-
panies to deliver the software with all the related product
and process data. There exists many empirical data from
requirement definition, design, implementation, test and so
on.

The project took the water fall model. Basically, the
project adopted the object oriented approach and mainly
used the UML modeling tool, JUDE[9]. Then, the code was
implemented in Java language. It took two months from
the beginning of the project to the end of design. Then,
it took three months from the implementation to the end of
the project. So, the total amount of the duration was five
months. The amount of size of the data is about 450MB.
Table V shows the list of the empirical data.

C. Collected elements of the software tag

Since we applied CollectTag to the data collected from the
past project, we did not negotiate the contents of the software
tag with the developer. So, we selected typical elements
and the corresponding metrics. As the result, we selected
18 tag elements and 53 metrics for the project shown in
Table VI. Table VI shows the category, no., tag element,

Table V
EMPIRICAL DATA COLLECTED FROM THE PROJECT

Process
Requirements

Empirical data

requirements specification, business flow diagrams,
Screen list, use case diagrams, actor definition
documents, quality requirements specification
class diagrams, collaboration diagrams,

sequence diagrams,

architecture specification, entity-class

design specification, control-class design specification
Boundary-class design specification

source codes, API document, product

repository, records of static check

test plan documents

minutes of review meeting, project management
reports, change management documents

Analysis & Design

Implementation

Test
Project management

metrics, collection method and value? for each metric. In
the column of the collection method, “auto” means that the
data are collected automatically and “manual” means that
the data are collected manually.

D. Process of case study

The process of the case study is as follows:

Step 1:We defined the tag-data-definitions of the software
tag used for this project using CollectTag. Here, we
selected the elements in the software tag shown in
Table VI. As described in Section III-B, Collect-
Tag provides the pre-defined tag-data-definitions.
Here, we added the 13 tag-deta-definitions whose
corresponding metrics are labeled by * in Table VL.

Step 2:Using CollectTag, we inputted the value manually
and automatically according to the input wizard.
Inputting the data manually, we collected the nec-
essary value from the corresponding sources (em-
pirical data) shown in Table V. Inputting the data
automatically, at the first input, we just set the file
path to the corresponding element.

Step 3:We output the software tag of the project.

One of the authors conducted the Steps 1, 2 and 3. To
record the time of Steps 1 and 2, we used a stop-watch. We
inputted the data totally 30 times for the 5 months project,
which means the interval of input is about 3 days.

In Step 1, we only made the additional tag-data-definitions
for metrics collected manually by using the tag-data-
definition unit, since the tag-data-definitions corresponding
to the data collected automatically have already stored in
CollectTag.

We evaluated the generation cost of a software tag in terms
of the amount of time to generate tag data definitions, input
tag data manually, and measure the metrics automatically.

E. Result

In Step 1, the amount of time we spent to define 13 tag-
data-definitions was 9 min. and 50 sec. In Step 2, the amount

2The final value at the end of the project.

430

of time to input the tag data in 30 times was 70 min. and 47
sec., the average was 2min. and 17 sec., and the maximum
was 6 min. and 4 sec. Partial results for Step 2, input time
and time of automatic measurement, are shown in Table VII.

Table VII

RESULTS
Date of measured Input time Time for automatic collection
2007/03/27 0:01:54 0:00:01
2007/03/30 0:02:54 0:00:00
2007/04/04 0:02:27 0:00:00
2007/04/06 0:01:45 0:00:01
20070531 0:01:09 0:00:02
2007/12/12 0:06:04 0:00:41
2007/12/17 0:03:07 0:00:55
20080220 0:02:34 0:00:52
2008/02/25 0:02:15 0:00:52
2008/02/28 0:02:01 0:00:49
Total 1:10:47 0:14:28
Average 0:02:17 0:00:28
maximum 0:06:04 0:01:18

F. Evaluation

In Step 1, in order to add 13 tag-data-definitions, we spent
9 min. and 50 sec. Though adding one tag-data-definition
spent 46 sec. averagely, it was just conducted only once at
first. So, compared to the time of Step 2, it was not so much
cost, we consider.

Since the requirement analysis and design were conducted
from March 27 to May 31, 2007, the source codes did not
exist. Also, defects data were not registered to KAGEMAL
So, during the duration, automatic measurements were just
for the elements of requirement and design categories and
the time was about 1 sec. shown in Table VII.

On the other hand, the time for measurements became
longer from Dec. 12, 2007. Especially, on Dec. 12, it spent
about 6 min. Because the programming started at the time.
In order to measure metrics from the source code, it is
necessary to spend time to export all source codes from the
Subversion repository and execute the several measurement
tools. It was also necessary to set the file path to the
corresponding element but the setting was just conducted
only once. So, from Dec. 17, the time became shorter (about
3 min.).

The average time was 2 min. and 17 sec. Here, we
consider the cost to generate the software tag in one month.
Usually, in software development projects, the project man-
ager asks the project members to submit some reports (daily
or weekly) to grasp the progress situation. So, if we assume
that the reports are submitted weekly and the data for the
software tag are inputted in time for the weekly report
submission, the total times of input data becomes 4. If the
time for each software tag data input needs 2 min. and

Table VI
COLLECTED ELEMENTS OF THE SOFTWARE TAG IN THE CASE STUDY

Category No. Tag element Metrics Collection method Value
Requirements 14 Scale[Transition] Number of usecase diagram auto 12
Number of usecase auto 25
Number of actor auto 7
Number of defined-requirements* manual 7
15 Revisions[Transition] Number of added usecase diagram auto 12
Number of added usecase auto 37
Number of added actor auto 7
Number of deleted usecase diagram auto 0
Number of deleted usecase auto 12
Number of deleted actor auto 0
Scale[Transition] Number of screen* manual 23
Design 16 Number of class diagram auto 72
Number of sequence diagram auto 20
Number of state machine diagram auto 0
Number of activity diagram auto 2
17 Revisions[Transition] Number of added class diagram auto 83
Number of added sequence diagram auto 23
Number of added state machine diagram auto 0
Number of added activity diagram auto 2
Number of deleted class diagram auto 11
Number of deleted sequence diagram auto 3
Number of deleted state machine diagram auto 0
Number of deleted activity diagram auto 0
Programming 19 Scale[Transition] Lines of code auto 26033
20 Revisions|Transition] Lines of Lines of added or deleted code auto 92303
Lines of added code auto 62586
Lines of deleted code auto 29717
Number of file modification auto 2249
21 Complexity CK metrics. WMC (average) auto 6.278
CK metrics.NOC (average) auto 0.739
CK metrics.CBO (average) auto 10.43
CK metrics.RFC (average) auto 13.00
CK metrics. LCOM (average) auto 10.96
CK metrics.DIT (average) auto 2.81
Test 22 Scale[Transition] Number of unit test item* manual 238
Number of integration test item™* manual 75
Number of system test item* manual 508
24 Density Number of unit test item / Lines of code auto 0.009
Number of system test item / Number of usecase auto 20.32
25 Progress Status Number of consumed system test item / Number of system test item auto 1
Number of consumed system test item* manual 508
Quality 26 Review Status Number of review* manual 22
Total review time* manual 50.75
27 Review Density Number of review / Total review time auto 0.43
28 Review Effectiveness[Transition] Number of defect found by review* manual 529
29 Defect Count[Transition] Number of defects found by test auto 19
30 Fixed Defect Count[Transition] Number of fixed defects auto 19
31 Defect Density Number of defects / Lines of code auto 0.00073
32 Defect Detection Rate Number of defects / Number of consumed system test item auto 0.037
33 Static Check Results Number of check by checkstyle*® manual 359
Number of check by findbugs* manual 52
Number of check by pmd* manual 387
Number of check by pmd-cpd* manual 5

17 sec., the total time becomes 0.167 (hours) (=9 min.
and 8 sec.). Considering one person-month is 160 hours
(8hours x 20 days), the cost to input tag data becomes about
0.001(person-month). As the results, we consider that using
CollectTag would be useful to generate the software tag at
low cost.

G. Threats to Validity

There are some threats to validity in the case study.

In this case study, we added only 13 tag-data-definitions
and so the cost to define them was not so high. However, in
practice, much more tag-data-definitions might be added. For
example, if we collect more than 100 elements, we would
take much effort to add them manually. So, it is necessary to

431

provide as many pre-defined tag-data-definitions as possible
to the user.

As described in Section IV-F, most time of the automatic
measurement spent to export source codes from the reposi-
tory and execute analysis tools. In this case study, the final
program size was about 26033 LOC. The more the size
becomes, the much time would be needed for the automatic
measurement. Hence, it is necessary to evaluate the cost of
automatic measurement against the large scale software. Just
for information, we applied analysis tools to an open source
program whose LOC is about 210 thousand and it took about
7 minutes to calculate the same metrics in this case study.

Also, if the user of CollectTag has not enough knowledge

about the project, much more time would be needed. In
this case study, the subject had enough knowledge about the
project data. For example, he knew where the requirements
specification, minutes of review meeting, the UML model
files, the results of static checking and so on. So, he took
only a second to get the necessary data to input CollectTag.
In that sense, the user of CollectTag must be the person who
knows the detailed of the target project.

V. CONCLUSION

This paper describes a system, named CollectTag, which
supports to generate the software tag which makes software
development visible to software purchaser (users).

CollectTag has versatility in the sense of allowing the user
to define software tag definitions for his/her own project.
It provides automatic measurement mechanisms to collect
metrics for some elements of the software tag and reduces
the cost of collecting data. Finally, it outputs the software
tag in the XML format and provides a convenient software
tag for some tools that analyze the tag.

As a case study, we have applied CollectTag to the
actual software development project data and evaluated the
usefulness of it from the viewpoint of cost to generate
the software tag. As the results, we found that by using
CollectTag, generating the software tag needs not high-cost.

We have to improve the functionality and usability of Col-
lectTag. At first, we are going to enrich the pre-defined tag-
data-definitions. Insufficient pre-defined tag-data-definitions
urges the user to input additional tag-data-definitions. Next,
we have to implement the display form for the user intu-
itively to understand the software tag anytime as the financial
statements of company evaluations or inspection results of
the complete medical checkup. But, it is necessary to collect
enough data to set the standard or limiting value for each
metric of each tag element. This can be achieved when the
software traceability becomes widely used and the software
tag is commonly used in the software development projects.

Finally, the evaluation of CollectTag is essential in the
context of the actual software development projects. We are
going to ask some companies that support the StagE project
to use CollectTag and also release CollectTag from the Web
site of the StagE project. Based on the feedbacks through
the evaluations, we are going to improve the applicability of
CollectTag.

As the StagE project, we will focus on making inter-
national/domestic standards of the software tag. With such
standardization, the software tag is expected to be used in
various software industries, where we think it will strongly
promote participation and understanding of software devel-
opment by purchasers. Also, to reduce adaptation cost of
the software tag, we will delivery software tag support tools
and the software tag guidebook which explains how to use
the software tag. That would accelerate incorporating the
software tag scheme in the industrial practices. Moreover, we

432

will make a template of the contract document, considering
software tag and legal issues of software development.

ACKNOWLEDGMENT

This work is being conducted as a part of the StagE
project, The Development of Next-Generation IT Infras-
tructure, supported by the Ministry of Education, Culture,
Sports, Science and Technology. We are grateful to the
members of the StagE project. Also, we would like to thank
the support of Japan Society for the Promotion of Science,
Grant-in-Aid for Scientific Research (C) (N0.20500033)

REFERENCES
[1] S. R. Chidamber and C. F. Kemerer: “A Metrics Suite for
Object Oriented Design”, IEEE Trans. Software Eng., 20, 6
pp. 476-493, 1994.
[2]
(3]

(4]

http://checkstyle.sourceforge.net/
http://findbugs.sourceforge.net/

K. Fushida, J. Takata, T. Yonemitsu, Y. Fukuchi, S. Kawaguchi,
and H. lida: “A Framework and System for Planning and
Tailoring Software Development Processes with Quantitative
Management,” Proc. of the 4th International Conference on
Project Management (ProMAC 2008), pp.286-294, 2008.

(5]
(6]

http://www.gnu.org/software/gnats/

K. Inoue: “Software Tag for Traceability and Transparency of
Maintenance”, Proc. of 24th IEEE International Conference on
Software Maintenance, pp. 476-477, 2008.

[7] ISO/IEC 12207: Systems and software engineering - Software
life cycle processes. International Organization for Standard-
ization, 2008.

[8] M. Barker and K. Inoue: “IT SPIRAL: A Case Study in
Scalable Software Engineering Education”, Proc. of the 22nd
Conference on Software Engineering Education and Training,
pp. 53-60, 2009.

[9] http://jude.change-vision.com/jude-web/index.html
[10] http://www.daifukuya.com/kagemai/ (in Japanese)
[11] http://masu.sourceforge.net/

[12] Nikkei Business Publications, Inc.: “Survey Report on IT
Investment and CTO in Japan”, Nikkei Information Strategy,
2008(in Japanese).

[13] Nikkei Business Publications, Inc.: “Second Survey of
Japanese Software Projects”, Nikkei Computer, Dec. 1, pp. 36-
53, 2008(in Japanese).

[14] http://pmd.sourceforge.net/

[15] M. Tsunoda, T. Matsumura, H. Iida, K. Kubo, S. Kusumoto,
K. Inoue and K. Matsumoto: “Standardizing the Software Tag
in Japan for Transparency of Development”, Proc. of 11th
International Conference on Product Focused Software Devel-
opment and Process Improvement, No.LNCS 6156, pp.220-
233, 2010.

