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Abstract. Debugging is a heavy task in software development. Computer-
assisted debugging is expected to reduce these costs. Spectrum-based
Fault Localization (SBFL) is one of the most actively studied computer-
assisted debugging techniques. SBFL aims to identify the location of
faulty code elements based on the execution paths of tests. Previous re-
search reports that the accuracy of SBFL is a�ected by test types, such as
�aky tests. Our research focuses on exceptional behavior tests to reveal
the impact of such tests on SBFL. Since separating exceptional han-
dling from normal control �ow enables developers to increase program
robustness, we think the execution paths of exceptional behavior tests
are di�erent from the ones of normal control �ow tests, which means that
the di�erences signi�cantly a�ect the accuracy of SBFL. In this study,
we investigated the accuracy of SBFL on two types of faults: faults that
occurred in the real software development process and arti�cially gener-
ated faults. As a result, our study reveals that SBFL tends to be more
accurate when all failing tests are exceptional behavior tests than when
failing tests include no exceptional behavior tests.
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tional behavior test · exception handling

1 Introduction

Debugging is a heavy task in software development. Previous research reported
that the process of identifying and correcting faults during the software develop-
ment process represents over half of development costs [17]. Computer-assisted
debugging can reduce these costs.

Fault localization is one of the computer-assisted debugging techniques. So
far, many fault localization techniques have been proposed [6, 11]. Spectrum-
based Fault Localization (SBFL) is one of the most actively studied techniques
[18]. SBFL aims to identify the location of faulty code elements based on the
execution paths of tests.

Previous research reports that the accuracy of SBFL is a�ected by test types,
such as �aky tests [16]. In our research, we focus on exceptional behavior tests
to reveal the impact of such tests on SBFL. According to the previous inves-
tigation [4], separating exceptional handling from normal control �ow enables



developers to increase program robustness. Therefore, we think the execution
paths of exceptional behavior tests are di�erent from the ones of normal control
�ow tests, which means that the di�erence signi�cantly a�ects the accuracy of
SBFL. In addition, exceptional behavior tests ensure that their software can han-
dle unexpected situations, recover from errors, and continue to function correctly.
From this, we think that exceptional behavior tests can reduce the occurrence
of faults, and when faults occur, exceptional behavior tests help developers to
identify the causes. Therefore, we hypothesize that exceptional behavior tests
are more e�ective for SBFL.

In this study, we investigated the accuracy of SBFL on two types of faults:
faults that occurred in real software development processes and arti�cially gen-
erated faults. Our study revealed that SBFL tended to be more accurate when
all failing tests were exceptional behavior tests than when failing tests included
no exceptional behavior tests. We con�rmed that the number of program state-
ments that need to be checked during debugging was reduced by approximately
33% for faults in real software development processes, and by approximately 66%
for arti�cially generated faults in cases where all failing tests were exceptional
behavior tests. Therefore, exceptional behavior tests are important to achieve a
higher accuracy of SBFL.

Furthermore, we performed a more detailed categorization of exceptional
behavior tests based on the type of exceptions encountered: custom exceptions
and standard/third-party exceptions. As a result, we con�rmed that SBFL was
particularly accurate when all failing tests were exceptional behavior tests that
examine the occurrence of standard/third-party exceptions.

The main contributions of our study are as follows.

� This is the �rst study to investigate the impact of exceptional behavior tests
on SBFL.

� We con�rmed that SBFL tends to be accurate when all failing tests are
exceptional behavior tests.

� We found that SBFL tends to be particularly accurate when all failing tests
are exceptional behavior tests that examine standard/third-party exceptions.

2 Preliminaries

2.1 Spectrum-based Fault Localization (SBFL)

SBFL performs fault localization based on execution paths. SBFL is based on
the idea that program statements executed in failing tests are likely to be faulty
and those executed in passing tests are likely to be less faulty. Fig. 1 shows
the procedure for SBFL. The input is a faulty program and its tests. First, the
program is run through the tests to obtain the pass or fail of each test and
its execution path. From these, the suspicion values are calculated. A suspicion
value indicates the likelihood that the program statement includes a fault.

There are many formulae for calculating suspicion values. In previous re-
search, Abreu et al. concluded that Ochiai is the superior formula [1]. Eq. (1)
shows the de�nition of Ochiai.
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Fig. 1: SBFL �ow

@Test(expected=ArithmeticException.class)
public void testIncrementToIntegerMaxValue() {
Math.incrementExact(Integer.MAX_VALUE);

} 

Fig. 2: Exceptional behavior tests

@Test
public void testIncrementExact() {
int inc = Math.incrementExact(10);
assertEquals(inc,11);

} 

Fig. 3: Non-exceptional behavior tests

susp(s) =
fail(s)√

totalfails× (fail(s) + pass(s))
(1)

s : a program statement.
susp(s) : suspicion value of s.
totalfails : the number of failing tests.
fail(s) : the number of failing tests that execute s.
pass(s) : the number of passing tests that execute s.

2.2 Exceptional Behavior Tests

Exceptional behavior tests verify whether exceptions occur as intended. We in-
vestigate a project written in Java. In accordance with previous studies [3], we
de�ne exceptional behavior tests as tests that use the methods listed in Table 1.

Fig. 2 shows an example of exceptional behavior test: the test veri�es whether
an ArithmeticException occurs as intended using expected attribution in

Table 1: The test frameworks and methods for examining exception handling
used in previous research [3].

Framework Methods for detecting exceptions.

JUnit Using assertThrows.
Speci�cation of expected in @Test.
Using ExpectedException.

TestNG Speci�cation of expectedExceptions in @Test.

AssertJ Using assertThatThrownBy.
Using assertThatExceptionOfType.
Using assertThatIOException.

Common to all frameworks Using a fail call right before a catch block.



@Test from JUnit. The method under test, Math.incrementExact(int a), re-
turns an incremented value of its argument, int a. If the increment operation
results in an over�ow, it throws an ArithmeticException. In Fig. 2,
Integer.MAX_VALUE is speci�ed as the argument of Math.incrementExact(int
a). This causes an over�ow and triggers the throwing of an ArithmeticException.

Exceptions can be classi�ed into custom exceptions and standard/third-
party exceptions. Custom exceptions are exceptions implemented by developers
themselves, while standard/third-party exceptions are exceptions implemented
in standard/third-party libraries. Among exceptional behavior tests, we call
tests that inspect custom exceptions as custom exceptional behavior tests (here-
inafter referred to as CETest), and tests that inspect standard/third-party ex-
ceptions as standard/third-party exceptional behavior tests (hereinafter referred
to as STETest).

Tests that examine aspects other than exception handling are referred to as
non-exceptional behavior tests. All tests other than exceptional behavior tests
are non-exceptional behavior tests. An example of a non-exceptional behavior
test is shown in Fig. 3. The test provides 10 as an argument to
Math.incrementExact(int a) and expects the return value to be 11.

3 Research Questions

In this study, we set the following research questions to investigate whether
exceptional behavior tests matter on SBFL.

RQ1: Do exceptional and non-exceptional behavior tests have
di�erent e�ects on SBFL?

We investigate how the ratio of exceptional behavior tests in passing/failing tests
a�ects SBFL. If the ratio signi�cantly a�ects the accuracy of SBFL, this research
enables developers to make preliminary judgments about its reliability.

RQ2: Are there any di�erences in the length of execution paths
between exceptional and non-exceptional behavior tests?

We examine the number of statements executed in exceptional behavior tests and
non-exceptional behavior ones. In SBFL, statements executed in failing tests are
considered potential candidates for faults. Therefore, the number of statements
executed in failing tests is strongly related to the accuracy of the SBFL.

RQ3: Do custom exceptional behavior tests and standard/third
party exceptional behavior ones have di�erent e�ects on SBFL?

We investigate whether CETests and STETests have di�erent impacts on SBFL.
If the accuracy of SBFL di�ers signi�cantly between these two types of tests, our
study can suggest to developers which type of tests they should make proactively.



4 Experimental Setup

4.1 Tools

We use the following tools.

kGenProg3 kGenProg is an automated program repair tool developed in Higo
et al.'s study [5]. We use kGenProg to calculate suspicion values of SBFL.

ExceptionHunter4 ExceptionHunter is a static analysis tool for Java programs
developed in Francisco et al.'s study [3]. ExceptionHunter identi�es whether a
test is an exceptional behavior test or not.

Mutanerator5 Mutanerator is a mutant generation tool for Java programs. It
applies mutant operators described in Table 2.

4.2 Benchmarks

We take the following benchmarks.

� Faults occurred in the real-world software development process (hereafter
referred to as real faults).

� Faults arti�cially generated using Mutanerator (hereafter referred to as arti-
�cial faults).

We use Defects4J [7] as real faults. Defects4J is a dataset that collects faulty
Java programs that occurred in real development processes. Many previous stud-
ies use Defects4J as a benchmark [10,12]. Our experiment focuses on six projects
within Defects4J: Math, Chart, Lang, Jsoup, JacksonCore, and Codec. kGenProg
does not work well with the other projects, so we select these six projects. We
exclude some faults due to their inability to be within our environment.

3 https://github.com/kusumotolab/kGenProg
4 https://github.com/easy-software-ufal/exceptionhunter
5 https://github.com/kusumotolab/Mutanerator

Table 2: Mutation operators that are used in Mutanerator.

Mutation operators Description

Conditional Boundary Changing the bounds of relational operators.
Increments Swapping of increment/decrement.
Invert Negatives Rewriting of negative numbers to positive numbers.
Math Rewriting arithmetic operators.
Negate Conditionals Rewriting relational operators.
Void Method Calls Removing method calls of type void.
Primitive Returns Rewriting the return value of primitive types to 0.
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Fig. 4: Work�ow of our research

To introduce arti�cial faults, we apply a two-step process. Initially, we �x
faults in Defects4J. Subsequently, we employ Mutanerator to generate new faults.
This approach allows us to incorporate arti�cial faults into our benchmarks.

Arti�cial faults have been used as benchmarks in previous studies [2,9] Pre-
vious research reported that real and arti�cial faults have di�erent e�ects on
fault localization e�ectiveness [14]. However, Yan et al. reported that arti�cial
faults including seeded faults simulate the real scenarios, and may still happen in
practice [9]. Therefore, we include arti�cial faults as a benchmark in this study.

4.3 Work�ow

Fig. 4 shows the overall work�ow of our experiment. The work�ow consists of 4
steps. STEP-1 to STEP-3 are performed automatically by the tools:Mutanerator,
kGenProg, and ExceptionHunter. In STEP-4, we manually analyze the impact of
exceptional behavior tests on SBFL.

STEP-1. Mutanerator is applied to fault-free programs to generate arti�cial
faults. A fault-free program passes all tests. Mutanerator changes fault-free
programs into arti�cial faults that fail one or more tests.

STEP-2. We input a faulty program and its tests to kGenProg. kGenProg runs
the program through its tests and calculates the suspicion values.

STEP-3. ExceptionHunter classi�es tests into exceptional behavior tests or not.
ExceptionHunter can further classify exceptional behavior tests into CETest

and STETest.
STEP-4. Based on the results of STEP-2 and STEP-3, we investigate whether
exceptional behavior tests matter on SBFL.

4.4 Evaluation Metrics

This research uses Rank and rTop-N as evaluation metrics.



Rank

Rank is the position of a faulty statement when arranging program statements
in the descending order of suspicion values. If multiple statements share the
same suspicion value, Rank takes the average rank of their ties. For a fault with
multiple faulty statements, Rank takes the ranking of the �rst faulty statement,
because the localization of the �rst faulty statement is critical to debugging
[10,12,18]. For example, if three faulty statements in a given fault are ranked 2,
5, and 10, Rank of the fault becomes 2.

rTop-N

We create rTop-N with reference to Top-N. Top-N is the number of faults that
Rank within N . Top-N is an e�ective evaluation metric for SBFL and has been
used in many previous studies [10,12]. However, Top-N is inappropriate for com-
paring faults with di�erent sample sizes. For example, there is a di�erence in
meaning between Top-N being 100 out of 200 faults and Top-N being 100 out of
1000 faults. In this study, faults are classi�ed according to the ratio of excep-
tional behavior tests. Because the number of faults varies after classi�cation, we
need to compare faults with di�erent sample sizes. Therefore, we use rTop-N,
which is Top-N normalized by the sample size. Eq. (2) shows the de�nition of
rTop-N.

rTop-N =
The number of faults that Rank is within N.

The total number of faults.
(2)

For example, suppose that Rank of two faults are 2 and 10, respectively. In
this case, we calculate rTop-5. For the two faults, only the �rst fault has Rank
within 5. Therefore, rTop-5 = 1/2 = 0.5.

In this study, we use a value of 5 for N. Previous study [8] reports that
73.58% of developers check only the top 5 elements returned by fault localization
techniques.

5 Results and Discussion

We answer RQ1-RQ3 with the experimental results.

5.1 RQ1: Do exceptional and non-exceptional behavior tests have
di�erent e�ects on SBFL?

In RQ1, we investigate whether the ratio of exceptional behavior tests in pass-
ing/failing tests a�ects SBFL. Hereafter, we describe the ratio of exceptional
behavior tests in failing tests as rEFail, and the one in passing tests as rEPass.
For example, in Fig. 4, the failing tests are ta and tb, and the exceptional be-
havior tests are ta. Since the failing exceptional behavior test is only ta, rEFail
is 1/2 = 0.5.



Does rEFail a�ect SBFL?

First, we investigate the impact of rEFail on SBFL. In this experiment, faults
are classi�ed as follows.

� rEFail = 0
Failing tests have no exceptional behavior test.

� 0 < rEFail < 1
Failing tests have both exceptional and non-exceptional behavior tests.

� rEFail = 1
All failing tests are exceptional behavior tests.

Table 3 shows the number of faults corresponding to each case. The upper
part shows real faults and the lower part shows arti�cial ones. Most of the faults
belong to rEFail = 0. Regarding real faults, there are only six faults with
0 < rEFail < 1 in total. Therefore, for real faults, we compare rTop-5 and Rank
only for rEFail = 0 and rEFail = 1.

First, we examine the e�ect of rEFail on rTop-5. Table 4 shows the results of
rTop-5. The hyphenation ��� indicates no fault corresponding to the condition
of rEFail. The bold letters mean the best rTop-5 for each project. Regarding
real faults, only Math, Lang, and JacksonCore have faults with rEFail = 1. For
all these three projects, the faults with rEFail = 1 achieve better rTop-5 than
the ones with rEFail = 0. As for arti�cial faults, four projects have faults with
rEFail = 1: Math, Lang, Jsoup, and Codec. Among these projects, Math, Lang,
and Codec have the best rTop-5 with rEFail = 1. While Jsoup shows the worst
rTop-5 with rEFail = 1, we think this is because there is only one fault with
rEFail = 1. From the results, we conclude that faults with rEFail = 1 tend to
achieve better rTop-5 than ones with rEFail = 0 or 0 < rEFail < 1.

Second, we examine the impact of rEFail on Rank. Fig. 5 and Fig. 6 show
Rank for real and arti�cial faults, respectively. The horizontal axis represents the
Rank, and each fault's Rank is denoted as a black dot overlaid on the box-and-
whisker plot. The outliers of Rank are excluded from the plots to make them
easier to read. The red diamond in the �gure represents the mean of Rank.

We initially focus on real faults in Fig. 5. Three projects contain rEFail =
1: Math, Lang, and JacksonCore. For Math and JacksonCore, the faults with

Table 3: The number of faults categorized by rEFail.
Real faults

Math Chart Lang Jsoup JacksonCore Codec Total

rEFail = 0 67 13 20 14 14 13 141
0 < rEFail < 1 1 0 2 1 2 0 6

rEFail = 1 12 0 3 0 1 0 16

Arti�cial faults

Math Chart Lang Jsoup JacksonCore Codec Total

rEFail = 0 399 488 277 166 307 272 1909
0 < rEFail < 1 93 0 566 1 33 150 843

rEFail = 1 39 0 7 1 0 4 51
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Fig. 5: The distribution of Rank in real faults categorized by rEFail.
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Fig. 6: The distribution of Rank in arti�cial faults categorized by rEFail.

rEFail = 1 achieve better Rank than the ones with rEFail = 0 in terms of the
�rst quartile, median, third quartile, and mean values in the box-and-whisker
plots. In the case of Lang, however, the faults with rEFail = 1 yield the worse
mean and third quartile than those with rEFail = 0, while showing better
�rst quartile and median values with rEFail = 1 than with rEFail = 0. From
the results, we conclude that rEFail = 1 tends to achieve better Rank than
rEFail = 0 for real faults.

Turning our attention to arti�cial faults in Fig. 6. Four projects have faults
with rEFail = 1: Math, Lang, Jsoup, and Codec. Among these projects, Math,
Lang, and Codec exhibit the best mean, �rst quartile, median, and third quartile
values when rEFail = 1. As Jsoup does not take the best Rank when rEFail =
1, which could be attributed to the fact that Jsoup has only one fault with

Table 4: rEFail and rTop-5
Real faults Arti�cial faults

Math Chart Lang Jsoup JacksonCore Codec Math Chart Lang Jsoup JacksonCore Codec

rEFail = 0 0.30 0.38 0.35 0.29 0.07 0.23 0.22 0.52 0.49 0.51 0.25 0.51
0 < rEFail < 1 0.00 � 0.50 0.00 0.50 � 0.38 � 0.34 0.00 0.18 0.43

rEFail = 1 0.50 � 0.67 � 1.00 � 0.54 � 1.00 0.00 � 1.00



rEFail = 1. Overall, these results indicate that rEFail = 1 tends to achieve
better Rank than rEFail = 0 and 0 < rEFail < 1 for arti�cial faults. Then
we compare rEFail = 0 and 0 < rEFail < 1. From Fig. 6, Math, Lang, and
JacksonCore have a better Rank with rEFail = 0 than with 0 < rEFail < 1,
while Codec has better Rank when rEFail = 0. Therefore, it remains unclear
which of rEFail = 0 or 0 < rEFail < 1 tends to be better.

To con�rm our observation, we performed the Mann-Whitney U test at a
signi�cance level of 0.01. Since the results of the Shapiro-Wilk test con�rmed
that the distribution of Rank did not follow a normal distribution for both real
and arti�cial faults, we used the Mann-Whitney U test. First, we focus on real
faults. Regarding real faults, we do not distinguish the faults by projects due to
the small number of faults with rEFail = 1. For real faults, the p-value between
rEFail = 0 and rEFail = 1 is 0.083, which is not statistically signi�cant. We
think the lack of statistical signi�cance is likely due to the limited number of
faults with rEFail = 1. Next, we focus on arti�cial faults, and Table 5 shows
the results. We exclude projects without any faults with rEFail = 1 or 0 <
rEFail < 1 from the table. The bold letters indicate p-values that are below
the 0.01 signi�cance level. We focus on the p-values between rEFail = 0 and
rEFail = 1. We con�rmed that the p-values for Math and Codec are below the
0.01 signi�cance level. Although there is no signi�cant di�erence for Jsoup, we
think this is because there is only one fault with rEFail = 1. As for Lang,
while the p-value is not less than the signi�cance level, the mean of Rank with
rEFail = 1 is 24.93 better than with rEFail = 0. Based on these results, we
conclude that Rank tends to be better when rEFail = 1 than when rEFail = 0
for arti�cial faults. Then we focus on the p-values between 0 < rEFail < 1 and
rEFail = 1. No statistically signi�cant di�erence is found in Math and Codec,
even though they have 39 and 4 faults with rEFail = 1, respectively. Therefore,
we conclude that it is unclear which Rank tends to be better between rEFail = 1
and 0 < rEFail < 1.

From these results, we can conclude that SBFL tends to be more accurate
when rEFail = 1 than when rEFail = 0. When comparing rEFail = 1 with
rEFail = 0, the average of Rank with rEFail = 1 is about 33% better for
real faults and 66% better for arti�cial faults. We discuss the reason for this in
Section 5.2.

Table 5: The p-value in arti�cial faults

0 < rEFail < 1
rEFail = 0

0 < rEFail < 1
rEFail = 1

rEFail = 0
rEFail = 1

Math 3.8E-04 5.6E-02 1.9E-06

Lang 5.5E-02 4.6E-03 1.8E-02
Jsoup 7.6E-01 1.0 5.3E-01
Codec 5.1E-02 1.5E-02 2.3E-03
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Fig. 7: The distribution of Rank in real faults categorized by rEPass.

Does rEPass a�ect SBFL?

As in the case of rEFail, we classify faults into three categories based on rEPass:
rEPass = 0, 0 < rEPass < 1, and rEPass = 1. Table 6 shows the distribution of
faults for each case. There is no fault with rEPass = 1, both in real and arti�cial
faults.

Table 7 shows the results of rTop-5. Regarding real faults, while Math and
Codec achieve better rTop-5 with 0 < rEPass < 1, Chart, Lang, Jsoup, and
JacksonCore achieve better rTop-5 with rEPass = 0. For arti�cial faults, the
superiority of rTop-5 with 0 < rEPass < 1 or rEPass = 0 varies depending on
the projects. Therefore, no clear regularity regarding the impact of rEPass on
rTop-5 is revealed in this experiment.

Fig. 7 and Fig. 8 show box-and-whisker plots of Rank for real and arti�cial
faults, respectively. Regarding real faults, Math, Chart, and Codec exhibit bet-
ter Rank when 0 < rEPass < 1 than when rEPass = 0. Conversely, for Lang

and JacksonCore, Rank with rEPass = 0 is distributed in a better range than
with 0 < rEPass < 1. Therefore, it remains uncertain which category yields
better Rank for real faults. As for arti�cial faults, the superiority of either Rank,
rEPass = 0 or 0 < rEPass < 1, depends on the projects. Consequently, we
cannot say which of rEPass = 0 or 0 < rEPass < 1 tends to be better.

Table 6: The number of faults categorized by rEPass.
Real Faults

Math Chart Lang Jsoup JacksonCore Codec Total

rEPass = 0 21 11 11 14 16 5 78
0 < rEPass < 1 59 2 14 1 1 8 85

rEPass = 1 0 0 0 0 0 0 0

Arti�cial faults

Math Chart Lang Jsoup JacksonCore Codec Total

rEPass = 0 81 325 8 105 202 13 734
0 < rEPass < 1 450 163 842 63 138 413 2069

rEPass = 1 0 0 0 0 0 0 0
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Fig. 8: The distribution of Rank in arti�cial faults categorized by rEPass.

� �
Answer for RQ1: Our �ndings indicate that when all failing tests are
exceptional behavior tests, SBFL results are signi�cantly more accurate
compared to scenarios where failing tests have no exceptional behavior tests.
The number of statements that must be examined before identifying the
�rst faulty location is reduced by approximately 33% for real faults and
66% for arti�cial faults when all failing tests are exceptional behavior tests.
Therefore, we conclude that exceptional behavior tests matter on SBFL.� �

5.2 RQ2: Are there any di�erences in the length of execution paths
between exceptional and non-exceptional behavior tests?

In RQ2, we focus on rEFail since we revealed that rEFail signi�cantly af-
fects the accuracy of SBFL in RQ1. Table 8 shows the results. We �nd that
when rEFail = 1, the number of program statements executed in failing tests
is smaller than when rEFail = 0 for both real and arti�cial faults. The reason
for this can be attributed to how programs handle abnormal processes. When a
program encounters an abnormal process, it throws an exception to deal with the
abnormal process. The thrown exception is caught in an appropriate lower-layer
class during propagating to higher-layer classes. Therefore, exceptional behavior
tests tend to examine the behavior of relatively lower-layer classes that throw
exceptions. Since lower-layer classes generally invoke a smaller number of state-
ments than higher-layer classes, the number of statements executed in excep-
tional behavior tests tends to be smaller than in non-exceptional behavior tests.

Table 7: rEPass and rTop-5
Real faults Arti�cial faults

Math Chart Lang Jsoup JacksonCore Codec Math Chart Lang Jsoup JacksonCore Codec

rEPass = 0 0.19 0.45 0.64 0.29 0.19 0.00 0.40 0.49 0.88 0.63 0.12 0.85

0 < rEPass < 1 0.37 0.00 0.21 0.00 0.00 0.38 0.25 0.58 0.39 0.30 0.43 0.48
rEPass = 1 � � � � � � � � � � � �



Therefore, it can be inferred that failing tests tend to execute fewer statements
when rEFail = 1.

As discussed earlier, SBFL considers statements executed in failing tests
as potential fault candidates. Consequently, the shorter the execution paths of
failing tests, the higher the accuracy achieved by SBFL. Thus, the result of RQ1
can be attributed to the smaller number of statements executed in exceptional
behavior tests.� �
Answer for RQ2: When all failing tests are exceptional behavior tests, the
number of program statements executed in failing tests tends to be small.
We think this fact gives better SBFL results when rEFail=1, because the
number of candidates for faulty locations is relatively small.� �

5.3 RQ3: Do custom exceptional behavior tests and standard/third
party exceptional behavior ones have di�erent e�ects on SBFL?

In this RQ, we focus on the ratio of CETests and STETests in failing tests. The
ratio of CETests in failing tests is denoted as rCEFail, and the ratio of STETests
is denoted as rSTEFail. As in RQ1, we categorize the faults based on rCEFail

and rSTEFail. Due to space constraints, we do not show the distribution of
Rank as it is in RQ1. Instead, we utilize the mean of Rank, which is denoted as
ave(Rank), for our discussions.

Table 9 shows the results of rTop-5 and ave(Rank). The left side of the table
shows rTop-5 and the right side shows ave(Rank). rTop5-All and ave(Rank)-All
are rTop-5 and ave(Rank) obtained from the entire set of subjects.

First, we focus on the real faults in the upper part of Table 9. The col-
umn rTop5-All indicates that rTop-5 with rCEFail = 1 is almost the same as
rCEFail = 0 and 0 < rCEFail < 1. In addition, the column ave(Rank)-All in-
dicates that the faults with rCEFail = 1 yield the worst ave(Rank) compared
to the ones in the other categories. On the contrary, faults with rSTEFail = 1
achieve better rTop-5 and Rank than the others. Therefore, for real faults, SBFL
is particularly accurate when rSTEFail = 1. Next, we focus on the arti�cial
faults in the lower part of Table 9. From rTop5-All and ave(Rank)-All, rTop-5 is
0.21 and ave(Rank) is 4.98 better when rSTEFail = 1 than when rCEFail = 1.
For both real and arti�cial faults, we can conclude that rSTEFail = 1 achieves
better rTop-5 and ave(Rank) than those with rCEFail = 1.

Table 8: rEFail and the number of statements executed in failing tests.
Real faults Arti�cial faults

Math Chart Lang Jsoup JacksonCore Codec Math Chart Lang Jsoup JacksonCore Codec

rEFail = 0 252 73 62 477 328 89 327 74 87 400 292 109
0 < rEFail < 1 290 � 32 134 373 � 685 � 97 14 1582 159

rEFail = 1 112 � 39 � 16 � 150 � 8 17 � 3



The reason why rTop-5 and Rank with rSTEFail = 1 is better than rCEFail =
1 lies in shorter execution paths of failing tests. As previously described in Sec-
tion 5.2, the accuracy of SBFL tends to be high when failing tests have shorter
execution paths. Speci�cally, for rSTEFail = 1, the length of the execution paths
of failing tests is 47.40, whereas, for rCEFail = 1, it is signi�cantly longer, at
168.33.

We now discuss why the execution paths of CETests are longer than that of
STETests. One of the reasons developers create custom exceptions is to handle
exceptions related to business logic or work�ow. In order to raise a custom
exception, it is necessary to invoke a program that implements the business logic
or work�ow, replicating the situation where the custom exception occurs. On the
other hand, standard/third-party exceptions may occur more frequently during
program developments and can even occur from simple actions, such as improper
method calls or referring null objects. Therefore, we think that reproducing the
situation where custom exceptions occur is more complex than standard/third-
party exceptions. Exceptional behavior tests reproduce a situation where an
exception occurs to verify that the intended exceptions are appropriately thrown.
Therefore, the complexity of reproducing situations leads CETests to achieve a
higher number of program statements being executed.� �
Answer for RQ3: When all failing tests are STETests, SBFL tends to be
more accurate than when all failing tests are CETests. Therefore, CETests
and STETests have di�erent e�ects on SBFL.� �

6 Threats to Validity

As evaluation metrics, we used Rank and rTop-N based on Top-N. Top-N is widely
used in previous studies [10, 12] Other evaluation metrics may yields di�erent
results. In addition, we used real and arti�cial faults as benchmarks. For the real
faults, we used only six Defects4J projects. For arti�cial faults, we used faults
generated from the six projects used as real faults. Our analysis is based on

Table 9: rCEFail/ rSTEFail and rTop-5, ave(Rank)
Real faults rTop-5 ave(Rank)

Math Chart Lang Jsoup JacksonCore Codec rTop5-All Math Chart Lang Jsoup JacksonCore Codec ave(Rank)-All

rCEFail = 0 0.33 0.38 0.40 0.27 0.13 0.23 0.31 63.97 16.12 19.24 78.93 109.8 25.88 55.37
0 < rCEFail < 1 0.00 � � � 0.50 � 0.33 45.50 � � � 13.25 � 24.00

rCEFail = 1 0.33 � � � � � 0.33 86.50 � � � � � 86.50

rSTEFail = 0 0.30 0.38 0.35 0.29 0.13 0.23 0.29 70.58 16.12 19.00 79.79 104.5 25.88 59.51
0 < rSTEFail < 1 0.00 � 0.50 0.00 � � 0.25 45.50 � 11.75 67.00 � � 34.00

rSTEFail = 1 0.67 � 0.67 � 1.00 � 0.70 6.08 � 25.83 � 1.00 � 11.50

Arti�cial faults rTop-5 ave(Rank)

Math Chart Lang Jsoup JacksonCore Codec rTop5-All Math Chart Lang Jsoup JacksonCore Codec ave(Rank)-All

rCEFail = 0 0.23 0.52 0.39 0.51 0.26 0.53 0.49 38.88 9.23 16.75 33.08 32.24 29.38 23.42
0 < rCEFail < 1 0.37 � � � 0.13 0.39 0.36 42.92 � � � 16.17 62.96 51.99

rCEFail = 1 0.54 � � � � 1.00 0.59 11.28 � � � � 1.50 10.33

rSTEFail = 0 0.27 0.52 0.49 0.51 0.26 0.48 0.52 38.62 9.23 27.36 33.35 32.65 41.07 29.76
0 < rSTEFail < 1 0.39 � 0.34 0.00 0.13 0.85 0.34 9.25 � 11.74 7.00 15.75 3.23 11.67

rSTEFail = 1 0.50 � 1.00 0.00 � � 0.80 11.50 � 2.43 13.50 � � 5.35



projects as the unit of analysis, and six projects is a very small number. Larger
scale experiments may yield di�erent results.

7 Related Works

Francisco et al. surveyed Java projects to assess the prevalence of exceptional
behavior tests [3]. Their results showed that approximately 60.91% of projects
have at least one test method that examines the behavior of exceptions, and the
percentage of exceptional behavior tests is less than 10% in 76.02% of projects.
This study also revealed a tendency among developers to prioritize testing for
custom exceptions over standard/third-party exceptions. They reported that
more focus should be placed on creating exceptional behavior tests. We think
the results of our research motivate developers to make exceptional behavior
tests.

8 Conclusion

We examined the impact of exceptional behavior tests on SBFL. Our experiments
revealed that SBFL was able to localize faulty code elements more accurately
when all failing tests were exceptional behavior tests than when failing tests
did not include any exceptional behavior tests. Therefore, we concluded that
exceptional behavior tests matter on SBFL. In addition, we examined whether
the ratio of CETests or STETests in the failing tests a�ects SBFL, and found
that SBFL was particularly accurate when all failing tests were STETests. The
results of our study enable developers to make a preliminary assessment of the
reliability of SBFL, which is expected to improve the e�ciency of debugging.

SBFL is also a technique used in Automated Program Repair (APR) [5] [13]
[19]. Previous research have shown that fault localization techniques a�ect the
e�ectiveness of APR [15]. Therefore, future research includes an investigation of
the e�ect of exceptional behavior tests on APR.
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