
Enhancing Quality of Code Clone Detection with Program Dependency Graph

Yoshiki Higo, and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University

1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
{higo, kusumoto}@ist.osaka-u.ac.jp

Abstract

At present, there are various kinds of code clone
detection techniques. PDG-based detection is suitable to
detect non-contiguous code clones meanwhile other detec-
tion techniques are not suited to detect them. However,
there is a tendency that it cannot detect contiguous code
clones unlike string-based or token-based technique. This
paper proposes two techniques to enhance the PDG-based
detection for practical usage. The software tool, Scorpio
has been developed based on the techniques.

I. Introduction

The existing code clone detection tools can be catego-
rized based on their detection techniques. Major categories
should be line-based, token-based, metrics-based, AST-
based, and PDG-based. Each detection technique has mer-
its and demerits, and there is no technique that is superior
to any other techniques in every way [2].

The advantage of PDG-based detection is that it is
suitable to detect non-contiguous code clones meanwhile
other detection techniques are not good at detecting them
[2]. Non-contiguous code clones are ones whose elements
are not consecutively located on the source code. However,
PDG-based detection has two disadvantages: the first one
is that PDG-based detection tends not to detect contiguous
code clones [2]; the second one is that it is not realistic
to apply PDG-based detection to middle- or large- scale
software systems because it is time-consuming [3], [4].

This paper proposes two techniques to improve the first
disadvantage. The techniques are intended to detect signif-
icant code clones from software systems, and introduce an
implementation of the techniques.

II. Detecting Code Clones using PDGs

The detection process consists of the four steps (, which
are derived from the method of Komondoor et al. [3]):

STEP1: All nodes in PDGs are hashed based on prop-
erties of the PDG node content. Nodes having the same
hash value are classified as an equivalence class.

STEP2: Every pair (r1,r2) of nodes are selected from
every equivalence class, and two isomorphic subgraphs
that include r1 and r2 are identified. Both forward and
backward slices are used to identify isomorphic subgraphs.
The starting points of the slices are (r1, r2), and slicing
is performed in lock step. If the both predecessors or the
both successors are in the same equivalence class, they are
added to the pair of slices. The two slices are isomorphic
subgraphs, which are clone pairs detected in this paper.

STEP3: If a clone pair (s1, s2) is subsumed by another
clone pair (s1′, s2′) (s1 ⊆ s1′ ∩ s2 ⊆ s2′), it is removed
from the set of detected clone pairs.

STEP4: A clone set is generated from clone pairs
sharing the same isomorphic subgraphs. For example, two
clone pairs (s1, s2), (s2, s3) would be merged into a clone
set {s1, s2, s3}.

A. Execution Dependency

We introduce a special dependency, execution depen-
dency (in short, ED), to Program Dependency Graphs
(PDGs). ED is the same as control flow of control flow
graphs. That is, there is an ED between two nodes if
the program element represented by the node may be
executed just after the program element represented by
the other node. The reason why we introduced ED to
PDGs is that PDG-based detection is not suitable to
detect contiguous code clones [2]. The fact is due to
two consecutive statements in the source code often have
neither data dependency nor control one. On the other
hand, string-based and token-based techniques are suitable
to detect contiguous code clones because their detections
are based on textural representation of the source code. To

2009 16th Working Conference on Reverse Engineering

1095-1350/09 $25.00 © 2009 IEEE

DOI 10.1109/WCRE.2009.39

315

2009 16th Working Conference on Reverse Engineering

1095-1350/09 $26.00 © 2009 IEEE

DOI 10.1109/WCRE.2009.39

315

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on December 16, 2009 at 22:43 from IEEE Xplore. Restrictions apply.

++ 1: int a = 1;
:

++ 3: int b = a + 5;
:

++ 5: int c = a * 10;
:
:

-- 11: int d = 3;
:

-- 13: int e = d + 5;
:

-- 15: int f = d * 10;
:

(a) Source code

int a = 0; <1>

int b = a + 5; <3>

data depencency

…

int c = a * 10; <5>

int d = 3; <11>

int e = d + 5; <13>

…

int f = d * 10; <15>

int a = 0; <1>

int b = a + 5; <3>

data depencency

…

int c = a * 10; <5>

int d = 3; <11>

int e = d + 5; <13>

…

int f = d * 10; <15>

(b) Program Dependency Graph

Fig. 1. Example of isomorphic graphs that
cannot be identified by backward slice

overcome the weakness of PDG-based detection, we use
ED. ED makes it possible to detect consecutive statements
as code clones even if they have neither data dependency
nor control one.

B. Backward and Forward Slices are used

We use both forward slice and backward one meanwhile
previous approaches either of them [3], [4]. That is because
some kinds of isomorphic subgraphs identified by forward
slice cannot be identified by backward slice and vice versa.
Figures 1 and 2 are simple examples of such situations. In
the both figures, there are three program elements in each
code clone. In Figure 1, a variable is referenced twice in
each code clone, so that there are two data dependencies,
for example, “<1>→ <3>” and “<1>→ <5>” are in code
clone<1,3,5>. In this instance, backward slice cannot
detect the three elements code clones meanwhile forward
slices from statements<1> and <11> can detect them.

III. Implementation

We developed a software tool, Scorpio [1]. The tool
implements multi-threads processing to effectively use the
resource of multi-cores CPU. The tool has many options to
specify what kinds of duplicate code are detected as code
clones. For example, minimum size of detected code clones
can be configured. The size is specified as the number
of node consisting of a code clone. Seven should be an
appropriate value from our experience. Also, Parameteri-
zation can be variously configured. For example, we can
configure how used variables, invoked methods, and literals
are parameterized respectively. The parameterization has
three level: in level 0, the tokens are used as they are; in
level 1, the tokens are replaced with their type names; in
level 2, all the tokens are replaced with the same special
token.

++ 1: int a = 2;
:

++ 3: short b = 3;
:

++ 5: int c = a * b;
:
:

-- 11: int d = 4;
:

-- 13: short e = 5;
:

-- 15: int f = d + e;
:

(a) Source code

int a = 2; <1>

data depencency

…

int c = a * b; <5>
…

short b = 3; <3>

int d = 4; <11>

int f = d * e; <15>

short e = 5; <13>

int a = 2; <1>

data depencency

…

int c = a * b; <5>
…

short b = 3; <3>

int d = 4; <11>

int f = d * e; <15>

short e = 5; <13>

(b) Program Dependency Graph

Fig. 2. Example of isomorphic graphs that
cannot be identified by forward slice

IV. Conclusion

In this paper, we proposed two techniques for enhancing
the quality of code clone detection using program depen-
dency graph. Besides, we are going to use interprocedural
PDGs for detecting code clones. Using interprocedural
PDGs is more time-consuming; however more interesting
and more beneficial code clones will be detected because
functionalities straddling two or more methods are identi-
cal will be detected as a single clone set.

Acknowledgement

This work is being conducted as a part of Stage Project,
the Development of Next Generation IT Infrastructure,
supported by Ministry of Education, Culture, Sports, Sci-
ence and Technology. It has been performed under Grant-
in-Aid for Scientific Research (C)(20500033) supported by
the Japan Society for the Promotion of Science.

References

[1] Scorpio. http://www-sdl.ist.osaka-u.ac.jp/∼higo/cgi-bin/
moin.cgi/scorpio-e/.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo.
Comparison and Evaluation of Clone Detection Tools. IEEE
Transactions on Software Engineering, 31(10):804–818, Oct
2007.

[3] R. Komondoor and S. Horwitz. Semantics-preserving proce-
dure extraction. In Proc. of the 27th ACM SIGPLAN-SIGACT
on Principles of Programming Languages, pages 155–169,
Jan 2000.

[4] J. Krinke. Identifying Similar Code with Program Depen-
dence Graphs. In Proc. of the 8th Working Conference on
Reverse Engineering, pages 301–309, Oct 2001.

316316

Authorized licensed use limited to: OSAKA UNIVERSITY. Downloaded on December 16, 2009 at 22:43 from IEEE Xplore. Restrictions apply.

