
SBFL-Suitability:
A Software Characteristic for Fault Localization

Yui Sasaki∗†, Yoshiki Higo∗, Shinsuke Matsumoto∗ and Shinji Kusumoto∗
∗Graduate School of Information Science and Technology, Osaka University, Japan

†The Japan Research Institute, Limited, Japan

{s-yui, higo, shinsuke, kusumoto}@ist.osaka-u.ac.jp

Abstract—Spectrum-Based Fault Localization (in short, SBFL)
is one of the popular techniques to localize faulty code fragments
of a given program. SBFL utilizes the information about which
statements are executed by each of the success or failure test
cases. There are various implementation ways for the same
functionality if we use high-level programming languages. The
authors consider that differences in these implementation ways
may affect the efficiency of localizing faults using SBFL. In this
paper, we define a characteristic to what extent a program is
suitable for SBFL as SBFL-Suitability, and we propose a tech-
nique for measuring SBFL-Suitability. The proposed technique
generates many slightly-variant programs from a given program
with Mutation Testing, and then it measures how accurately SBFL
detects the changed program statements in the variant programs.
We conducted an experiment to investigate how SBFL-Suitability
differs depending on the differences in source code structures.
As a result, we found that (1) the fewer statements in the same
nesting level, the higher SBFL-Suitability tends to be, and (2) the
presence of Early Return improves SBFL-Suitability.

Index Terms—Spectrum-Based Fault Localization, Mutation
Testing, Software Quality

I. INTRODUCTION

In software development, debugging is a highly labor-

intensive and costly task [1]. Developers spend almost half

or more their programming time on debbuging [2]. For this

reason, there are a variety of studies on supporting debugging.

Fault Localization is one of the promising techniques that au-

tomatically localize faulty code fragments of a given program.

Recently, Spectrum-Based Fault Localization (in short, SBFL)

has been actively studied [3]. SBFL techniques calculate the

likelihood of a fault (henceforth, suspiciousness) for each

statement in a given faulty program using test results and

the information about which statements are executed by each

test case (henceforth, execution paths). We can efficiently

identify a faulty statement of a faulty program by checking

the statements in the program in the descending order of

their suspiciousness. The applied SBFL technique is presumed

to work the most efficiently for the program if the faulty

statement has the highest suspiciousness. In other words, the

given program and test cases are well suited for SBFL.

Software quality consists of various viewpoints. ISO/IEC

25010 [4] defines the quality model for software products,

which comprises the eight quality characteristics and sub-

characteristics derived from each of them. Maintainability,

which is one of the quality characteristics, includes Analysabil-
ity as one of its sub-characteristics. Analysability indicates the

degree of efficiency of diagnosing the causes of failures or

identifying parts to be modified.

There are various implementation ways in high-level pro-

gramming languages such as C/C++ and Java, and thus de-

velopers choose how to implement the required functionality

according to their preferences or project policies. When an

implementation of a functionality gets changed, the execution

paths of its test cases may vary. This change would lead to

differences in each statement’s suspiciousness and ranking.

Therefore, we believe that source code itself has a charac-

teristic that indicates the efficiency of localizing faults.

In this paper, we define SBFL-Suitability as the efficiency

of localizing faults using SBFL techniques. SBFL-Suitability
can be a part of Maintainability or Analyzability. Considering

SBFL-Suitability as a part of software quality characteristics

allows us to conduct the following activities.

• We can find how reliable the SBFL results are for a given

program. If it is reliable, we can debug the program with

the information on SBFL.

• We can conduct refactoring to a given program from the

viewpoint of improving its SBFL-Suitability.

We also propose a technique for measuring SBFL-Suitability
for a given program. More concretely, firstly, the proposed

technique generates many slightly-variant programs by chang-

ing a target program intentionally with Mutation Testing [5].

The generated programs can be considered as faulty programs.

Secondly, the technique applies SBFL to each of the generated

programs. Finally, the technique calculates SBFL-Suitability
by measuring how accurately SBFL localizes the changed

program statement of each of the generated programs.

In this paper, we conducted an experiment to investigate

how the differences in source code structures affect SBFL-
Suitability. As a result, we found that some source code

characteristics, such as a small number of statements at the

same nesting level or the presence of Early Return, improve

SBFL-Suitability.

The main contributions of this paper are the following.

• We introduce a novel software quality characteristic,

SBFL-Suitability.

• We propose a concrete technique for measuring SBFL-
Suitability utilizing Mutation Testing.

• We find that SBFL-Suitability varies with source code

structures.

702

2020 IEEE International Conference on Software Maintenance and Evolution (ICSME)

2576-3148/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSME46990.2020.00076

• We reveal the characteristics of source code structures

that improve SBFL-Suitability.

II. RELATED WORK

SBFL is one of the most popular techniques in the field of

fault localization and it has been actively studied recently [6]–

[8]. SBFL techniques calculate suspiciousness of the program

statements in a program (i.e., the probability that the statement

includes a fault) using the test results and the execution paths

of each test case. The execution paths are information about

which statements in the source code are executed by each

test case. Intuitively, a statement that is executed by many

failed test cases can be considered more likely to contain a

fault. Abreu et al. compared several SBFL techniques, and

they concluded that the Ochiai’s formula [9] was the most

effective one [10].

Mutation Testing [5] is a technique to evaluate given tests

using generated faulty programs, called mutants. A mutant is

generated by applying small changes (e.g., replacement of infix

operators) from the original program that behaves correctly.

The key idea of the mutation testing is to measure to what

extent given tests can identify the mutants as faulty programs.

Note that mutants might not be faulty because the applied

changes might not alter the behavior. There are various tools

for mutation testing [11]–[13]. A recent study reported that

mutation testing was useful for improving the verification of

industry software programs [14].

III. SBFL-Suitability

The authors consider that source code itself has character-

istics of how well it is suited to SBFL. Even if two different

source code have the same functionality and test cases, their

different source code structures may cause differences in the

efficiency of identifying faults using SBFL. In this paper, we

define to what extent a given source code is suitable for SBFL

as SBFL-Suitability.

Herein, we show a concrete example of how SBFL-
Suitability differs depending on source code structures. Fig-

ure 1 shows two Java methods that take two input numbers and

return true if and only if at least one of them is positive. Fig-

ure 1(b) shows the method that a refactoring has been applied

to the method in Figure 1(a). More concretely, the method of

Figure 1(a) returns the value at the end of the method with the

temporary variable result, which is assigned inside of each

if-block, whereas the method of Figure 1(b) directly returns

inside of each if-block. Both of the methods contain the same

fault. Test case 𝑡4 fails because the conditional expression of

𝑠4 in Figure 1(a) and the one of 𝑠′4 in Figure 1(b) behave

incorrectly when the variable b is 0.

Figures 1(a) and 1(b) show test results (P: Passed, F: Failed),

the execution path for each test case, and the suspiciousness1

(labeled as ‘susp’) of each program statement calculated by the

Ochiai’s formula. Suspiciousness takes a value between 0 and

1. Value 1 means the highest likelihood that the fault locates

1The prepared test suite does not execute 𝑠′6 in Figure 1(b), which means
that the suspiciousness is not calculated for 𝑠′6.

t 1 (1,1) t 2 (1,0) t 3 (0,1) t 4 (0,0)

s 1: boolean result = false; 0.50

s 2: if (0 < a) 0.50

s 3: result = true; 0.00

s 4: if (0 <= b) // correct: 0 < b 0.50
s 5: result = true; 0.50
s 6: return result; 0.50

s' 2: if (0 < a) 0.50
s' 3: return true; 0.00

s' 4: if (0 <= b) // correct: 0 < b 0.71

s' 5: return true; 0.71
s' 6: return false; -

test results: P P P F

(a
)

B
ef

or
e

R
ef

ac
to

ri
ng

(b
)

A
ft

er
 R

ef
ac

to
ri

ng

program susp
test case (input: a, b)

Fig. 1. SBFL results compared with different source code structures

at its statement. Those results show that faulty statements 𝑠4
and 𝑠′4 have different suspiciousness.

We consider a situation that a developer who does not know

the faulty locations in those methods tries to identify the

faulty statements on the basis of the SBFL results. Then, s/he

checks each of the statements in the descending order of their

suspiciousness. In the case of Figure 1(a), the suspiciousness

of faulty statement 𝑠4 is the highest though there are a total

of five statements with the same highest suspiciousness. Thus,

in the worst case, s/he has to check the five statements to

identify the fault. In contrast, in Figure 1(b), s/he can identify

the fault by only checking at most two statements. Therefore,

the method of Figure 1(b) is more efficient in identifying the

fault than the method of Figure 1(a). Note that this scenario

is not depending on the SBFL formula (i.e., Ochiai) because

their execution paths itself are changed by refactoring.

IV. MEASURING SBFL-Suitability

We propose a technique to measure SBFL-Suitability of a

given program. Our basic idea is to generate multiple faulty

programs from the original program and measure how effi-

ciently SBFL can identify which statement is faulty. To gen-

erate faulty programs, we utilize mutation testing techniques.

The proposed technique measures how accurately SBFL can

localize the faulty statements in each of the generated mutants

while mutation testing essentially measures how accurately a

test suite can identify the generated mutants as faulty.

A. Factors Affecting SBFL-Suitability

SBFL-Suitability depends on not only the source code

structure of a program but also the following two factors: a

test suite and a mutant generator.

As an example, we consider the situation where the test

suite includes only 𝑡3 and 𝑡4 in Figure 1(b). Since the execution

paths for the two test cases are identical, the suspiciousness

calculated from each of the execution paths are the same for at

least statements 𝑠′2, 𝑠′4, and 𝑠′5 that are executed by those test

cases. In the case of the original test suite, statements 𝑠′4 and 𝑠′5
are more likely to be fault than 𝑠′2. In this way, how efficiently

SBFL works varies depending on the given test suite.

The proposed technique uses several mutation operators,

which are transformation rules for generating mutants. This

703

program p mutant m1 mutant mn

…

rScoreT(m1)

1. generating mutants

3. calculating an SBFLScore of p

SBFLScoreT,G(p)

2. applying SBFL
on each mutant

rScoreT(mn)

test suite T

…

mutant generator G

faulty
statement

Fig. 2. Process of the SBFLScore Calculation

paper calls a set of mutation operators as a mutant generator.

SBFL-Suitability depends on a mutant generator.

B. Calculating SBFLScore

We define an indicator of the degree of SBFL-Suitability as

SBFLScore. SBFLScore takes a value between 0 and 1, and the

closer to 1, the higher SBFL-Suitability. Let SBFLScore𝑇 ,𝐺 (𝑝)
be an SBFLScore of a program 𝑝 with a test suite 𝑇 and

a mutant generator 𝐺. Figure 2 shows the process of the

SBFLScore calculation. We calculate an SBFLScore of 𝑝 with

the following three steps:

1) generating multiple mutants from 𝑝,

2) applying SBFL to each mutant and then calculating

suspiciousness ranking of their faulty statements, and

3) calculating an SBFLScore of 𝑝 from the suspiciousness

ranking of each of the generated mutants.

Step 1. Generating Mutants: The proposed technique gen-

erates multiple mutants using a mutant generator 𝐺 for a

program 𝑝. Each mutant has only a single different statement

from the original program. We treat such a statement as a

faulty statement. Note that, at this point, we do not know

whether all of the mutants are faulty or not.

Step 2. Applying SBFL for Each Mutant: For each of the

generated mutants, we apply SBFL using a test suite 𝑇 , and

then, we calculate a suspiciousness for each statement. We

exclude mutants that are identified as non-faulty. Let 𝑀𝐺 (𝑝)
be a set of obtained mutants for a program 𝑝 with a mutant

generator 𝐺. We define the following values for statement 𝑠
included in mutant 𝑚 ∈ 𝑀𝐺 (𝑝):

• susp𝑇 (𝑠): the suspiciousness of 𝑠 when executing 𝑇 ,

• rank𝑇 (𝑠): the rank of susp𝑇 (𝑠), and

• rScore𝑇 (𝑠): the normalized rank𝑇 (𝑠) between 0 and 1.

We use Ochiai’s formula, known to be effective, to calculate

suspiciousness. susp𝑇 (𝑠) is calculated by the Ochiai’s formula

as follows:

susp𝑇 (𝑠) = fail𝑇 (𝑠)√
totalFail𝑇 ∗ (fail𝑇 (𝑠) + pass𝑇 (𝑠))

where fail𝑇 (𝑠) is the number of failed test cases that cover 𝑠,
pass𝑇 (𝑠) is the number of passed test cases that cover 𝑠, and

totalFail𝑇 is the total number of failed test cases.

Next, we calculate rank𝑇 (𝑠), which indicates the number

of statements whose suspiciousness is equal to or greater

than susp𝑇 (𝑠). For example, if there are two statements with

suspiciousness 1.0 and one statement with 0.9, both statements

with 1.0 are in the second place, and the statement with 0.9

is in the third place.

A rank of suspiciousness has different worthiness depending

on the total number of statements. For example, the 10th place

out of 100 statements is more valuable than the 10th place out

of 10 statements. Thus, we normalize a rank of suspiciousness

to a range between 0 and 1. A normalized rank rScore𝑇 (𝑠)
indicates how high it appears in the total number of statements

and is calculated as follows:

rScore𝑇 (𝑠) = 1 −
rank𝑇 (𝑠) − 1

totalStatements𝑇 − 1
where totalStatements𝑇 is the number of statements executed

by a test suite 𝑇 . The value 1 is the most valuable.

Let rScore𝑇 (𝑚) be the normalized rank of the faulty state-

ment in mutant 𝑚. rScore𝑇 (𝑚) is unique for each mutant

because each mutant contains only a single faulty statement.

Let 𝑠𝑚fault be the faulty statement in a mutant 𝑚. rScore𝑇 (𝑚)
is the unique normalized rank of statement 𝑠𝑚fault as follows:

rScore𝑇 (𝑚) = rScore𝑇 (𝑠𝑚fault)

Step 3. Calculating SBFLScore: SBFLScore is the average

value of the normalized rank of each mutant’s faulty statement

generated from 𝑝. We define it by the following formula.

SBFLScore𝑇 ,𝐺 (𝑝) =
1

|𝑀𝐺 (𝑝) |

∑

𝑚∈𝑀𝐺 (𝑝)

rScore𝑇 (𝑚)

V. EXPERIMENT

We implemented a tool based on the proposed technique

for Java. We conducted an experiment to investigate how the

differences in source code structures affect SBFL-Suitability.

A. Experimental Settings

We used PIT [15], an open-source mutation testing tool,

as a reference for mutation operators. PIT has published the

transformation rules of mutation operators, and it defines

groups of operators on its web site. We selected all of the

eleven mutation operators included in group ‘DEFAULTS’.

We implemented a new mutant generator tool for source code

that supports these operators because PIT (and other existing

mutation testing tools) generate bytecode mutants instead of

source code ones. Table I shows the target mutation operators.

In this paper, we focus on refactoring for a difference

in source code structures. Table II shows the five types of

refactoring. We selected2 refactorings classified as ‘Sympli-
fying Conditional Expression’ [16]. The reason is that the

execution path of each test case is changed because statements

in conditional blocks are changed by these refactorings, which

might affect their suspiciousness. We manually and thought-

fully created target programs by reference to program sample

of each refactoring pattern [16] as many mutation operators

2We excluded refactorings across multiple Java methods because we apply
SBFL and then calculated a ranking of the statements for each method.

704

could be applied as possible. We also manually created test

cases with satisfying the condition coverage for all the mutants

generated from each program.

B. Results and Discussion

We applied our tool to the prepared programs. Note that

in all target programs, the generated mutants failed at least

one or more test cases; in other words, they were faulty.

Table II shows the results of the SBFLScore measurement.

SBFLScore was decreased by the refactoring in Cases 1–3

whereas SBFLScore was increased in Cases 4 and 5. Due to

space limitations, we discuss only Cases 1 and 5.

Figures 3 and 4 shows the programs of Cases 1 and 5. In

both figures, (a) and (b) show the code fragments before and

after refactoring, respectively. We describe a pair of statements

with the same subscript number before and after refactoring

such 𝑠2 and 𝑠′2 in Figure 3 as 〈𝑠2, 𝑠
′
2〉. Such a pair denotes that

they have a correspondence relation between before and after

refactoring. For example in Figure 3, 𝑠′2 has not been changed

from 𝑠2 through the refactoring whereas 𝑠′1𝑎 and 𝑠′1𝑏 have

been split from 𝑠1 through the refactoring. These relations are

described as 〈𝑠2, 𝑠
′
2〉, 〈𝑠1, 𝑠

′
1𝑎〉, and 〈𝑠1, 𝑠

′
1𝑏〉. Figures 3 and

4 also show rScore of each statement included in each of

the generated mutants. Each rScore is also represented by a

horizontal bar chart whose range is from 0 to 1. rScore of the

faulty statement in each mutant is shown in bold. For example,

𝑚1 in Figure 3(a) is the mutant where mutation operator NC

has been applied to statement 𝑠1, and its rScore is 0.67.

In the following description, we focus on a pair of mutants

with the same subscript number before and after refactoring,

such as 𝑚1 and 𝑚′
1. We describe such a pair as 〈𝑚1, 𝑚

′
1〉. Such

a pair of mutants denotes that they have been generated by

applying the same mutation operators to corresponding state-

ments between before and after the refactoring (e.g., 〈𝑠1, 𝑠
′
1𝑎〉).

By comparing rScore of each pair of mutants, we investigate

how different the ease of localizing the corresponding faulty

statement between before and after the refactoring.

1) Case 1: ‘Decompose Conditional’ is a refactoring that

extracts conditional expressions to meaningfully named meth-

ods. We prepared the target program whose conditional expres-

sions were extracted to variables instead of methods because

our technique measures SBFL-Suitability for each method.

TABLE I
MUTATION OPERATORS

Mutation operator
Transformation example

Before After
(CB) Conditional Boundary a < b a <= b

(INC) Increments n++ n--
(INV) Invert Negatives -n n
(MA) Math a + b a - b
(NC) Negate Conditionals a < b a >= b
(VM) Void Method Calls method(); ;
(PR) Primitive Returns return 5; return 0;
(ER) Empty Returns return "str"; return "";
(FR) False Returns return true; return false;
(TR) True Returns return false; return true;
(NR) Null Returns return object; return null;

mutant: m 1 m 2 m 3 m 4 m 5 m 6 m 7

mutation operator: NC CB INC NC CB INC PR

s 1: if (0 < n) 0.67 0.50 0.50 0.50 0.25 0.25 0.75

s 2: n--; 0.33 1.00 1.00 0.00 0.00 0.00 0.25

s 3: else if (n < 0) 0.00 0.00 0.00 1.00 0.75 0.75 0.00

s 4: n++; - 0.00 0.00 0.25 0.75 1.00 0.25
s 5: return n; 0.67 0.50 0.50 0.50 0.25 0.25 0.75

mutant: m '1 m '2 m '3 m '4 m '5 m '6 m '7
mutation operator: NC CB INC NC CB INC PR

s' 1a : boolean f1 = (0 < n); 0.40 0.33 0.33 0.33 0.17 0.17 0.50

s' 3a : boolean f2 = (n < 0); 0.40 0.33 0.33 0.33 0.17 0.17 0.50

s' 1b : if (f1) 0.40 0.33 0.33 0.33 0.17 0.17 0.50

s' 2 : n--; 0.20 1.00 1.00 0.00 0.00 0.00 0.17

s' 3b : else if (f2) 0.00 0.00 0.00 1.00 0.83 0.83 0.00

s' 4 : n++; - 0.00 0.00 0.17 0.83 1.00 0.17
s' 5 : return n; 0.40 0.33 0.33 0.33 0.17 0.17 0.50

rScore

(a) Before Refactoring (SBFLScore =0.81)

rScore

(b) After Refactoring (SBFLScore =0.53)

Fig. 3. Case 1: Decompose Conditional

SBFLScore was decreased by the refactoring. rScore of the

faulty statements were the same for 〈𝑚3, 𝑚
′
3〉 and 〈𝑚6, 𝑚

′
6〉

whereas they were decreased for the others. For example,

rScore of the faulty statements in 〈𝑚1, 𝑚
′
1〉 were the highest

in each mutant. There were two statements with the same

highest rScore in 𝑚1 (i.e., 𝑠1 and 𝑠5) whereas there were four

statements in 𝑚′
1 (i.e., 𝑠′1𝑎, 𝑠′3𝑎, 𝑠′1𝑏 and 𝑠′5). Those statements

are at the nesting level 1. We checked the calculation process

of rScore, and then we found that susp of all of the statements

were 1.00. This observation implies that the increase in the

number of the same nesting level leads to the decrease of

rScore; as a result, SBFL-Suitability gets worsened.

The fewer statements at the same nesting level, the higher

SBFL-Suitability tends to be.

2) Case 5: ‘Replace Nested Conditional with Guard
Clauses’ is a refactoring that returns early from a method by

checking conditions that are satisfied not to execute the main

process of the method. The refactoring is effective to prevent

the source code from being deeply nested. To simplify the

experiment, we prepared the target program where a return

statement has been inserted in each conditional block. Such a

coding style is called ‘Early Return’ [17].

SBFLScore was increased by the refactoring. rScore of

TABLE II
TARGET REFACTORINGS

Case Refactoring pattern
SBFLScore

Before After
Case 1 Decompose Conditional 0.81 0.53
Case 2 Consolidate Conditional Expression 0.95 0.72
Case 3 Consolidate Duplicate Conditional Fragments 0.69 0.53
Case 4 Remove Control Flag 0.61 0.67
Case 5 Replace Nested Conditional with Guard Clauses 0.83 0.95

705

mutant: m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8

mutation operator: NC CB INV NC CB INV INV PR

s 1: int result = 0; 0.67 0.50 0.50 0.33 0.33 0.33 0.33 0.67
s 2: if (x > 0) 0.67 0.50 0.50 0.33 0.33 0.33 0.33 0.67
s 3: result = -10; 0.50 1.00 1.00 0.00 0.00 0.00 0.00 0.17
s 4: else if (y > 0) 0.33 0.00 0.00 1.00 0.83 0.83 0.83 0.50
s 5: result = -20; 0.00 0.00 0.00 0.83 1.00 1.00 0.00 0.00

else
s 6: result = -30; 0.17 0.00 0.00 0.17 0.00 0.00 1.00 0.33
s 7: return result; 0.67 0.50 0.50 0.33 0.33 0.33 0.33 0.67

mutant: m '1 m '2 m '3 m '4 m '5 m '6 m '7 m '8 m '9 m '10

mutation operator: NC CB INV NC CB INV INV PR PR PR

s' 2: if (x > 0) 1.00 0.75 0.75 0.50 0.50 0.50 0.50 0.50 0.75 0.50

s' 3: return -10; 0.75 1.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

s' 4: if (y > 0) 0.50 0.00 0.00 1.00 0.75 0.75 0.75 0.75 0.00 0.75

s' 5: return -20; 0.00 0.00 0.00 0.75 1.00 1.00 0.00 0.00 0.00 1.00
s '6 : return -30; 0.25 0.00 0.00 0.25 0.00 0.00 1.00 1.00 0.00 0.00

rScore

rScore

(b) After Refactoring (SBFLScore =0.95)

(a) Before Refactoring (SBFLScore =0.83)

Fig. 4. Case 5: Replace Nested Conditional with Guard Clauses

the faulty statements were the same or increased after the

refactoring except for 〈𝑚5, 𝑚
′
5〉. 𝑠1, 𝑠2, and 𝑠7 were at the

nesting level 1 and these rScore were always the same in each

mutant. In contrast, 𝑠′2, 𝑠′4, and 𝑠′6 were also at the nesting

level 1 while these rScore were different from each other. The

reason was that the number of test cases that executed those

statements was different due to the inserted return statements.

This observation implies that applying Early Return reduces

the number of statements with the same suspiciousness; as a

result, SBFL-Suitability is improved.

The presence of Early Return improves SBFL-Suitability.

VI. THREATS TO VALIDITY

Our experiment selected the five types of refactorings listed

in Table II. The target programs were simple, which were

manually created as examples of the refactoring patterns. If

we conduct experiments with other types of refactorings or

real programs, we may obtain different results and discover

new characteristics of source code structures.

SBFLScore depends on a test suite and a mutant generator,

as mentioned in Section IV. We selected the eleven mutation

operators listed in the Table I as the mutant generator. If we

use more mutation operators, we may obtain different results.

We also created manually test suites that satisfied the condition

coverage of each of the programs and their mutants. There are

test cases that take the same execution path when executing

the test for each mutant. It is possible that such test cases

affect the results of our experiment.

VII. CONCLUSION

In this paper, we considered that source code has character-

istics of how well it is suited to SBFL, and then we defined

the characteristic as SBFL-Suitability. Besides, we proposed

a technique to measure SBFL-Suitability utilizing mutation

testing techniques. We applied the proposed technique to

several refactoring situations, and observed the difference of

SBFL-Suitability between before and after the refactoring.

As a result, we found the characteristics of the source code

structures that improve SBFL-Suitability.

In the future, we are going to conduct experiments for real

and large-scale programs to generalize our proposed technique.

Besides, we are going to propose a technique to convert

source code structures to improve SBFL-Suitability of a given

program. If we convert source code structures to a higher

degree of SBFL-Suitability before applying SBFL, we can

identify faulty location more efficiently.

ACKNOWLEDGMENT

This study has been supported by Grants-in-Aid for Sci-

entific Research (B) (18H03222), Scientific Research (B)

(20H04166) from the Japan Society for the Promotion of

Science.

REFERENCES

[1] B. Hailpern and P. Santhanam, “Software debugging, testing, and
verification,” IBM Systems Journal, vol. 41, no. 1, pp. 4–12, 2002.

[2] T. Britton, L. Jeng, G. Carver, and P. Cheak, “Reversible debugging
software“quantify the time and cost saved using reversible debuggers”,”
2013.

[3] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE TSE, vol. 42, no. 8, pp. 707–740,
2016.

[4] ISO/IEC 25010:2011, Systems and software engineering― Systems and
software Quality Requirements and Evaluation (SQuaRE)― System and
software quality models, Std., 2011.

[5] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE TSE, vol. 37, no. 5, pp. 649–678, 2011.

[6] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test infor-
mation to assist fault localization,” in Proc. ICSE, 2002, pp. 467–477.

[7] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in Proc.
DSN, 2002, pp. 595–604.

[8] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight defect localization
for Java,” in Proc. ECOOP, 2005, pp. 528–550.

[9] A. da Silva Meyer, A. A. F. Garcia, A. P. de Souza, and C. L.
de Souza Jr., “Comparison of similarity coefficients used for cluster
analysis with dominant markers in maize (zea mays l),” Genetics and
Molecular Biology, vol. 27, no. 1, pp. 83–91, 2004.

[10] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proc. TAIC PART, 2007, pp.
89–98.

[11] Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava: A mutation system for
Java,” in Proc. ICSE, 2006, pp. 827–830.

[12] R. Just, “The major mutation framework: Efficient and scalable mutation
analysis for Java,” in Proc. ISSTA, 2014, pp. 433–436.

[13] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque, “PIT:
A practical mutation testing tool for Java (demo),” in Proc. ISSTA, 2016,
pp. 449–452.

[14] R. Ramler, T. Wetzlmaier, and C. Klammer, “An empirical study on the
application of mutation testing for a safety-critical industrial software
system,” in Proc. SAC, 2017, pp. 1401–1408.

[15] H. Coles. PIT. [Online]. Available: https://pitest.org/
[16] M. Fowler, Refactoring: Improving the Design of Existing Code.

Addison-Wesley, 1999.
[17] D. Boswell and T. Foucher, The Art of Readable Code: Simple and

Practical Techniques for Writing Better Code. O’Reilly Media, 2011.

706

