
Flattening Code for Metrics Measurement and Analysis

Yoshiki Higo and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University,

1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

Email:{higo, kusumoto}@ist.osaka-u.ac.jp

Abstract—When we measure code metrics or analyze source
code, code normalization is occasionally performed as a pre-
processing. Code normalization means removing untargeted pro-
gram elements, formatting source code, or transforming source
code with specific rules. Code normalization makes measurement
and analysis results more significant. Existing code normaliza-
tion mainly targets program elements not influencing program
behavior (e.g., code comments and blank lines) or program tokens
(e.g., variable names and literals). In this paper, we propose a new
code normalization technique targeting program structure. Our
proposed technique transforms a complex program statement to
simple ones. We call this transformation flattening. By flattening
code, we can obtain source code including only simple program
statements. As applications of the code flattening, we report how
it changes LOC metric and clone detection results.

I. INTRODUCTION

Program source code is one of the main targets of research

in the field of software engineering. There are various purposes

of the research targeting source code.

Understanding: a purpose is helping to understand source

code. Quantifying size, complexity, and character-

istics of source code is a way to objectively grasp

its status [1]. Dependencies among modules such as

method invocation and class inheritance are worth

being visualized for understanding [2], [3].

Reuse: on research for effective or efficient software reuse,

source code is a main target. Identifying frequently-

reused software components [4] and suggesting in-

structions such as method invocations for half-written

code [5] are active research topics.

Suggestion: pointing out latent issues in source code or

suggesting corrective strategies for them also have

been studied for many years. Various methodologies

have been proposed for identifying fault-prone mod-

ules [6], [7] and suggesting refactorings [8].

Metrics measurement and code clone (in short, clone)

detection are fundamental techniques widely used in research

on program source code. LOC, cyclomatic complexity, and

C&K metrics suite [9] are well-known code metrics. There

are many techniques to detect clones on different granularities

such as file level, method level, and code fragment level [10].

In metrics measurement and clone detection, code normal-

ization is occasionally performed to obtain more significant

result. Herein, code normalization means transforming source

code with specific rules. For example, in measuring LOC,

removing code comments and blank lines and formatting

source code are typical code normalization. In detecting

clones, variables and literals are replaced with special tokens

to absorb their differences. As just described, the targets of

existing code normalization are peripheral program elements

not influencing program behavior and program tokens.

In this paper, we propose a new code normalization tech-

nique, which is targeting program structure. The proposed

technique transforms complex program statements to simple

ones. In other words, source code including both complex and

simple statements is transformed to the one including only

simple statements. We call this transformation flattening. By

flattening source code, the amount of functionality in every

code line becomes homogenized. Thus, LOC values become

more significant. The program structure is also uniformed by

code flattening. Thus, more code fragments having identi-

cal/similar behavior are detected as clones.

In this paper, we also report how LOC value and clone

detection results are changed by code flattening. We confirmed

that there were many source files whose LOC values got

increased greatly and much more clones were detected in

flattened source files than original ones.

The main contributions of this paper are as follows:

• proposing a new code normalization technqiue,

• investigating how LOC and clone detection results are

changed by the proposed technqiue, and

• investigating whether the proposed technique raises cor-

relations between LOC and fault-prone modules or not.

II. RELATED WORK

Code normalization is an often-used technqiue in clone

detection [11], [12], [13], [14], [15], [16], [17]. In clone

detection, variables are replaced with special tokens to ignore

their differences. There are two typical ways for variable

normalization; the first one is replacing all variables with the

same special token; the other is replacing each variable with

a different special token. The latter one is better from the

viewpoint of detecting less false positives.

One way to support source code analysis is transforming

source code to another form. Cordy proposed TXL, which

is a framework to support source code analysis and source

transformation tasks [18]. Maletic proposed srcML, which is

a framework to present source code in the XML form [19].

By presenting source code in the XML form, existing various

tools for XML documents can be applied.

Techniques to remove goto statements [20], [21] are a kind

of structure normalization. Those techniques leverage control

flow graphs. The structure of target source code is transformed

so as not to include goto statements without changing the

structure of the control flow graphs.

2017 IEEE International Conference on Software Maintenance and Evolution

978-1-5386-0992-7/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSME.2017.65

494

Fig. 1. Source code including complex statements

III. RESERCH MOTIVATION

The source code in Figure 1 includes both simple statements

(e.g., the 259th line) and complex statements (e.g., the 269th

line). The authors think, the fact that complex statements are

mixed with simple ones have negative influences on metrics

measurement and source code analysis.

As an example of metrics measurement, we consider mea-

suring LOC. LOC is a metric to present a size of a given source

file. In LOC measurement, blank lines and/or code comments

in the files are ignored to obtain more significant values as a

size metric.

In using the LOC metric for guessing the amount of

functionality in the source file or for identifying fault-prone

modules, the fact that complex statements are mixed with

simple ones can be a factor that degrades its performance.

For example, it is not easy to know whether a given 50-

line code fragment consisting of complex statements includes

more functionality than another given 100-line code fragment

including only simple statements or not. Moreover, if we

use the metric values (50 and 100), techniques of fault-

prone module identification will regard that the l00-line code

fragment has a greater probability of including faults than the

50-line one1.

As an example of source code analysis, we consider de-

tecting clones from source code. Detected clones are used

to identify code fragments including the same faults or to

be targets of code unification refactoring. Like this, clone

detection techniques are used to detect code fragments having

identical/similar behavior. Token-based and AST-based clone

detection techniques are more often used than other techniques

1Using the LOC metric for guessing the amount of functionality may be
an old-fasioned example. However, the LOC metric is still widely used. For
example, in mining software repositories. the code churn metric is well used.
Code churn is calculated from the LOC of changed code.

Fig. 2. Source code flattened by the proposed technique

such as semantic clone detection or graph-based clone detec-

tion because of their scalability. In token-based techniques,

given source code is transformed to a sequence of tokens and

identical subsequences are detected as clones. In AST-based

techniques, given source code is parsed to generate ASTs.

Sub-trees in the ASTs having identical/similar structures are

detected as clones. Assume that there are two same-behavior

code fragments: one includes some complex statements while

the other consists of only simple statements. In such a case,

existing clone detection techniques cannot detect the two code

fragment as clones.

In this research, we are trying to transform complex struc-

tures in source code to simple ones without changing its

external behavior. The authors call such a transformation

flattening in this research. By flattening source code, complex

statements are gone. Consequently, the amount of functionality

in each line gets homogenized, so that the LOC becomes more

significant values. Besides, same-behavior code fragments get

more similar structures by flattening, which makes it easier

to detect them as clones with clone detection techniques. In

other words, code flattening enables a part of semantic clones

to be detected by syntax-based clone detection techniques.

Figure 2 shows source code flattened by our proposed

technique. Its original version is shown in Figure 1. For

example, the 262nd line in the original code was transformed

to the 286–288th lines. We can see that the postfix expression

and the method invocation one are extracted from the complex

return-statement.

IV. PROPOSED TECHNIQUE: CODE FLATTENING

The proposed technique depends on abstract syntax tree (in

short, AST) implementation. Herein, we explain the proposed

technique with Java Development Tools (in short, JDT). JDT

is a widely-used Java source code analysis tool. It takes a set

of source files and builds ASTs. The tool has a function to

resolve name bindings.

The proposed technique works on ASTs built by JDT. For

each of the target sub-trees in given ASTs, the proposed

technique checks whether it is enough complex to be flattened

or not. If the sub-tree is complex, its portion is removed from

the original position and a new sub-tree including the portion is

generated in a different position. The new sub-tree is a variable

495

Fig. 3. AST transformation of the proposed technique

declaration statement (in short, VDS) and its right-hand code

is the removed sub-tree. A reference to the new variable is

added to the original position where the portion was removed.

The newly introduced variable has a type that is the same as

its right-hand code. This transformation strategy realizes that

the source code can be compiled and executed even after it

has been flattened.

The following AST nodes are targets to check whether they

are complex or not:

• program statements,

• conditional predicates for branchs and loops, and

• initializers and updaters of for-statements.

If the above targets include multiple expressions, such

expressions are extracted as new VDSs. Table I shows a list of

target expressions. The following expressions are not included

in the extraction targets because they are not complex:

• variable reference expression,

• literal expression, and

• null expression.

Figure 3 shows how code is flattened by the proposed

TABLE I
EXTRACTION TARGET JDT NODES

ArrayAccess ArrayCreation
ArrayInitializer CastExpression
ClassInstanceCreation ConstructorInvocation
ExpressionMethodReference InfixExpresssion
InstanceofExpression MethodInvocation
PostfixExpression PrefixExpression
SuperConstructorInvocation SuperMethodInvocation

technique. The upper-left tree is the AST sub-tree for the

261st and 262nd lines of Figure 1. Sub-trees are manupulated

with depth-first search and postorder traversal. In this example,

firstly the node of the postfix expression is regarded that it

increases the complexity of the return statement. Thus, a new

VDS for the postfix expression is added and the sub-tree of

the postfix expression is replaced with a reference to the newly

added variable $24. Then, the node of the method invocation

expression is also regarded that it increases the complexity of

the return-statement. This sub-tree is manipulated in the same

way as the postfix expression.

Figure 4 is another example of flattened code. The left

side is its original code. The conditional predicate of the if-
statement is very complex, so that five VDSs are created to

reduce the complexity of the conditional predicate. Like this,

the proposed technique introduces more VDSs as target sub-

trees are more complex.

In Figure 4, the conditional predicate of the for-statement is

also a target of flattening. In a case of loop condition, a VDS

is added to just before the loop and a substitution statement

is added to the end inside the loop2. Both the VDS and the

substitution statement are required to keep program behavior

after code flattening.

V. EXPERIMENT

We conducted an experiment with our tool3. In this exper-

iment, we investigate how LOC and clone detection results

2In the strict sense, there is no definition of substitution statement in Java
specification. Herein, a substitution statement means an expression statement
including a substitution operator.

3https://github.com/YoshikiHigo/JCodeFlattener/

496

Original source code Flattened source code

(1)

(2)

(1) Many VDS are extracted from a very
complex statement.

(2) A VDS and a substitution statement are
extracted from loop condition.

Fig. 4. An example of code frattening with the implemented tool

LO
C
 In
cr
ea
si
ng
 R
at
e

LOC of the original code at project level

Fig. 5. Results of LOC Increasing Rate calculation on project level

are affected by code flattening. We leveraged the dataset that

we created and published in our previous research [22]. The

dataset is open to the public in our web site4. The dataset

includes two packages. Each package includes source code of

84 or 500 projects. Table II includes more detailed numer-

ical information. The dataset includes neither test cases nor

automatically generated code. They were removed manually.

Figure 5 shows how LOC at project level was changed by

code flattening. The LOC Increasing Rate is calculated with

the following formula. LOCori and LOCf la represent LOC of

the original code and flattened code, respectively.

IncreasingRateLOC = 100∗ LOCf la−LOCori

LOCori

4http://sdl.ist.osaka-u.ac.jp/˜higo/fse2014/

TABLE II
TARGET PROJECTS IN EXPERIMENT A

Package APACHE UCI
projects 84 500
files 66,724 60,548
Total LOC 11,545,556 10,073,635

C
lo
ne
 In
cr
ea
si
ng
 R
at
e

LOC of the original code at project level

Fig. 6. Results of Clone Increasing Rate calculation on project level

As shown in this figure, the dispersion of the LOC Increasing

Rate becomes larger for smaller projects. If original code size

is 25K LOC or less, the code size was increased more than

one-and-a-half times for several projects. On the other hand,

for 100K LOC or larger projects, the LOC Increasing Rate

falls roughly within the range of 20% and 35%. The results

imply that we should not use LOC as an indicator of our

decision makings, especially for small projects.

Figure 6 shows how the number of detected clones is

affected by code flattening. The Clone Increasing Rate is cal-

culated with the following formula. CLONEori and CLONE f la
represent the number of clones detected from the original code

and flattened code, respectively.

IncreasingRateCLONE = 100∗ CLONE f la−CLONEori

CLONEori

As shown in this figure, the Clone Increasing Rate varies more

widely in smaller projects. This is the same tendency as LOC

metric. For 25K or smaller projects, 10 times or more clones

were detected in some cases. On the other hand, for most

of 100K or larger projects, the Clone Increasing Rate is less

than five. The results show that code flattening allows clone

detection tools to detect much more clones.

497

D
et
ec
te
d
as
 c
lo
ne
s

Fig. 7. Newly detected clones by flattening code

Figure 7 shows a pair of clones detected from the flattened

code but not detected from the original code. The 150th and

151st lines were a single statement in the original code. On the

other hand, the 304th and 305th lines are in this form in the

original code. The differences prevent the clones from being

detected by the clone detection tool. By flattening the code,

the differences were removed and the code fragments were

detected as clones, especially for small projects.

Code flattening has a side effect in clone detection. More

trivial clones are detected from flattened code because code

flattening increases the number of tokens, the number of

statements, and the number of AST nodes. In this experiment,

we do not check ratio of trivial clones in the detection results.

VI. CONCLUSION

In this paper, we proposed a code flattening technique,

which dissolves a complex program statement to multiple

simple ones. By flattening code, the amount of functionality

in every line gets homogenized. Thus, values of code metrics

such as LOC become more significant. Besides, more clones

are detected from flattened source code.

The proposed technique has been implemented and it is

open to the public in our web site5. We applied the tool to

584 open source software in total and found that there were

many source files whose LOC became much greater by code

flattening. We found that the code flattening allowed much

more clones to be detected. Furthermore, we found that the

LOC of flattened code was more useful than the one of original

code in the context of fault-prone module identification.

The next step of our research is developing methodologies

of refactorings for flattened code because small-size clones

are ocassionaly generated by code flattening. By merging such

5https://github.com/YoshikiHigo/JCodeFlattener/

small-size clones, source code will get more suited for metrics

measurement and clone detection.

We are also going to compare clone detection results on flat-

tened code with semantic clone detection results and program-

dependence-graph-based clone detection results. We consider

code flattening enables syntax-based detecton techniques to

detect a part of semantic clones and graph-based clones.

ACKNOWLEDGMENT

This work was supported by MEXT/JSPS KAKENHI

25220003 and 17H01725.

REFERENCES

[1] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, Third Edition, 3rd ed. Boston, MA, USA: PWS
Publishing Co., 2014.

[2] R. Koschke, “Software Visualization in Software Maintenance, Reverse
Engineering, and Re-engineering: A Research Survey,” Journal of Soft-
ware Maintenance, vol. 15, no. 2, pp. 87–109, 2003.

[3] M.-A. D. Storey, D. Čubranić, and D. M. German, “On the Use of
Visualization to Support Awareness of Human Activities in Software
Development: A Survey and a Framework,” in Proc. of SOFTVIS, 2005,
pp. 193–202.

[4] M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API Patterns As Partial
Orders from Source Code: From Usage Scenarios to Specifications,” in
Proc. of ESEC/FSE, 2007, pp. 25–34.

[5] V. Raychev, M. Vechev, and E. Yahav, “Code Completion with Statistical
Language Models,” in Proc. of PLDI, 2014, pp. 419–428.

[6] C. Catal and B. Diri, “A Systematic Review of Software Fault Prediction
Studies,” Expert Systems with Applications, vol. 36, no. 4, pp. 7346–
7354, 2009.

[7] V. B. Livshits and M. S. Lam, “Finding Security Vulnerabilities in Java
Applications with Static Analysis,” in Proc. of USENIX, 2005, pp. 18–
18.

[8] T. Mens and T. Tourwé, “A Survey of Software Refactoring,” IEEE
Transactions on Software Engineering, vol. 30, no. 2, 2004.

[9] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE TSE, vol. 20, no. 6, pp. 476–493, 1994.

[10] D. Rattan, R. Bhatia, and M. Singh, “Software Clone Detection: A
Systematic Review,” Information and Software Technology, vol. 55,
no. 7, pp. 1165–1199, 2013.

[11] H. A. Basit, S. J. Puglisi, W. F. Smyth, A. Turpin, and S. Jarzabek,
“Efficient Token Based Clone Detection with Flexible Tokenization,” in
Proc. of ESEC/FSE, 2007, pp. 513–516.

[12] S. Ducasse, O. Nierstrasz, and M. Rieger, “On the effectiveness of clone
detection by string matching: Research articles,” Journal of Software
Maintenance and Evolution, vol. 18, no. 1, pp. 37–58, 2006.

[13] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “ndex-based
Code Clone Detection: Incremental, Distributed, Scalable,” in Proc. of
ICSM, 2010, pp. 1–9.

[14] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in Proc. of ICSE, 2009, pp. 485–495.

[15] E. Juergens, F. Deissenboeck, and B. Hummel, “CloneDetective – A
Workbench for Clone Detection Research,” in Proc. of ICSE, 2009, pp.
603–606.

[16] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Folding
Repeated Instructions for Improving Token-Based Code Clone Detec-
tion,” in Proc. of SCAM, 2012, pp. 64–73.

[17] C. K. Roy and J. R. Cordy, “NICAD: Accurate Detection of Near-Miss
Intentional Clones Using Flexible Pretty-Printing and Code Normaliza-
tion,” in Proc. of ICPC, 2008, pp. 172–181.

[18] J. R. Cordy, “The TXL Source Transformation Language,” Science of
Computer Programming, vol. 61, no. 3, pp. 190–210, 2006.

[19] J. I. Maletic, M. L. Collard, and A. Marcus, “Source Code Files As
Structured Documents,” in Proc. of IWPC, 2002, pp. 289–292.

[20] Z. Ammarguellat, “A Control-Flow Normalization Algorithm and Its
Complexity,” IEEE TSE, vol. 18, no. 3, pp. 237–251, 1992.

[21] F. Zhang and E. H. D’Hollander, “Using Hammock Graphs to Structure
Programs,” IEEE TSE, vol. 30, no. 4, pp. 231–245, 2004.

[22] Y. Higo and S. Kusumoto, “How Should We Measure Functional
Sameness from Program Source Code? An Exploratory Study on Java
Methods,” in Proc. of FSE, 2014, pp. 294–305.

498

