
Integrating Source Code Search into Git Client for
Effective Retrieving of Change History

Miwa Sasaki, Shinsuke Matsumoto, and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan

{m-sasaki, shinsuke, kusumoto}@ist.osaka-u.ac.jp

Abstract—In order to achieve effective development man-
agement, it is important to manipulate and understand the
change histories of source code in a repository. Although general
version control systems provide change history manipulation,
these systems are restricted to line-based and textual operations
such as grep and diff. As such, these systems cannot follow the
syntax/semantics of the source code. While various studies have
examined querying and searching source codes, these methods
cannot follow historical changes. The key concept of this paper
is the integration of a source code search technique into Git
commands that manipulate historical data in a repository. This
paper presents MJgit, a prototype tool for achieving the above
goal. In order to evaluate the proposed tool, we conducted a
performance experiment using actual software repositories.

Index Terms—Code change history, source code search, MJgit,
Git, abstract syntax tree

I. INTRODUCTION

In previous decades, version control systems, such as Git
and SVN, have been widely used for most software develop-
ment projects [1]. In order to achieve effective development
management, it is important to manipulate and understand the
change histories of source code in a repository [2]. The change
history helps to answer why the code was changed [3], when
the bug was introduced [4], and who should be assigned to
the bug [5].

Although current version control systems generally support
history manipulation, these systems are restricted to line-
based and textual operations, such as grep and diff [6]. These
operations have been designed as general-purpose utilities,
which provide powerful pattern matching based on regular
expressions [7]. However, because of their general versatility,
the operations are not specialized to follow syntax/semantics
of source code.

In many programming languages, a single source code
file is composed of not only execution statements, but also
various types of accompanying information (e.g., comments,
annotations, and copyrights). Some of this information is
described by natural language. Imagine that a developer looks
for if statements using line-based operations to check for bug
propagation [8] caused by code clones [9]. Then, the developer
may encounter several unnecessary lines in which “if” occurs
within comments.

In order to solve this problem, various studies related to
searching and querying source code have been conducted [10]–
[18]. These approaches can handle a given query by traversing
an abstract syntax tree and/or a control flow graph. Thus,

these approaches are advantageous for finding parts of source
code (e.g., methods and statements) using syntax/semantic
information beyond textual representation.

However, the advantage is available only for source code at
a specific revision. In other words, these approaches cannot
track historical changes. Few studies have considered fine-
grained source code search from software repositories [19],
[20]. The focus of these studies has been scalability for
analyzing numerous software repositories. Although Historage
[21] provides fine-grained change analysis of source code, it
requires significant re-construction of an existing repository. In
contrast, our focus is retrieving a change history from his/her
original repository by querying a specific syntax/semantic
information beyond textual representation.

The key concept of this paper is the integration of a
source code search capability into several Git commands that
manipulate historical data (e.g., diff, log, and blame). We
believe that the integration may be highly valuable because
code searching provides fine-grained filtering capabilities, and
the Git command complements filtering by meta-information
(e.g., who, when, and why). The concrete example of the
combination is follows.

$ git log --method=x --author=miwa
$ git log --method=x --since=2018-01-01
$ git log --method=x --grep='fix for'
$ git diff --method=x revA..revB

The method option is a proposed (and simplified) query.
Git supports author, since, and grep queries by default.
Each query is aimed at who, when and why. In all cases, we
can confirm code evolution together with a focus on method
x while specifying meta-information.

The goal of this study is to provide effective retrieving of
change history from a software repository by realizing the
above concept. In this paper, we present MJgit, a prototype tool
for achieving the above goal. The proposed tool can narrow
the change history of Java files based on a specified method
name or variable name. MJgit is backward compatible with
the standard Git command because MJgit behaves the same
when extended query is not specified. In order to evaluate
MJgit, we conducted a performance experiment using actual
software repositories.

rev.2 -

rev.1 -

rev.3 -
(HEAD)

x() y()
method

Initial state

Change declaration order

Modify x()

x()

Existing approach 1:
$ git diff r1..r3

Proposed approach:
$ mjgit diff r1..r3 --method=x

method
modification

(a) Attempt to understand the change history of method x

rev.4 -

rev.5 -
(HEAD)

Modify others

Add patch for bug

Existing approach 1:
$ git diff r1..r5

Existing approach 2:
Search relating to method x at r5

Proposed approach:
$ mjgit diff r1..r5 --method=x

rev.2 -

rev.1 -

rev.3 -

x() y() z()
method

Initial state

Bug introduced

Add method invocation

method
method invocation
bug
patch

TO-BE -

(b) Attempt to fix the bug and remove the temporary patch

Fig. 1: Motivating examples

II. MOTIVATING EXAMPLE

First, we introduce motivating examples of our work. Two
examples are illustrated in Figure 1, in which the change
histories of two or three methods are shown vertically.

A. Understanding the Change History of Method x

Figure 1(a) shows the histories of two methods, x and y.
At revision 2, a declaration of method x was moved to the
bottom of the file (i.e., after method y). In addition, method
x was modified at revision 3. Here, a developer is trying to
understand the history of method x.

Existing approach: As a simple method by which to confirm
a history, the git-diff command can be used without any ad-
ditional installations, except for the Git client itself. However,
these text-based commands cannot consider source code struc-
ture or flow. Thus, these commands deliver many unnecessary
results when non-functional and extensive modifications such
as code formatting and method sorting are made. In this case,

method x appears to have been removed and added, although
it was only moved. The essential modification, shown as a
pen, is barely noticeable.

Proposed approach: The key idea is to combine Git com-
mands and code searching for efficient retrieval of the code
change history. This enables the developer to specify syn-
tax/semantic information to a repository. The bottom example
of the figure shows the usage and results of the proposed tool
MJgit. In this case, superficial and non-essential changes can
be filtered by specifying the method name, x.

B. Fixing the Bug and Removing the Temporary Patch

Figure 1(b) illustrates a more practical and complicated
situation. At revision 2, a bug was introduced into method x.
The buggy method additionally invoked method z at revision
3. After some modifications were made at revision 4, a patch
for the bug was applied to method z at revision 5. This patch
is a temporary solution, such as null checking for a parameter
passed from method x. Here, a developer found the bug and
is trying to fix it. In addition, the temporary patch must also
be removed.

Existing approach 1: Using the git-diff command, textual
differences between revisions 1 and 4 can be easily gathered.
Similar to the first example, this command faces an obstacle
caused by unrelated modifications by revision 4. Although
it is generally recommended to keep commits small and
atomic [22], we encounter numerous tangled changes [23].
The developer may need to find the required information
from several such results. In consideration of the source code
structure, we need a more specialized search operation.

Existing approach 2: In such a situation, code search [12]–
[18] and change impact analysis [24]–[26] are well known as
effective approaches. The impact analysis identifies potential
effects of changes by tracing dependencies based on a syntax
tree and/or flow graph. The developer can find methods related
only to method x by applying the methods to revision 5.
However, these techniques have a limitation in that they do
not support historical changes. As such, the result includes
method y, which has not been changed in the timeline. This
information may become “noise” if the method is sufficiently
mature (i.e., receives no attention from the developer).

Proposed approach: Using the proposed tool, the developer
can grasp textual differences related only to method x between
revisions 1 and 5. The bug and its patch will be easily
identified and maintained.

III. PROPOSED TOOL: MJGIT

A. Overview

The purpose of MJgit is to achieve effective retrieval of
code change history by integrating code search capability into
the Git command. An overview of MJgit is shown in Figure 2.
This figure illustrates a case in which the diff command and
a structure-based (i.e., abstract-syntax-tree based) code search
are used. The detailed process flow is as follows:

1. First, a developer executes a diff command in order to
reveal the difference between revisions A and B. The

1. Execute
$ mjgit diff rA..rB

--query

2. Retrieve
rev.A and rev.B

rev.A rev.B

3. Construct AST

diff 4. Search by query

rev.A rev.B

5. Map the hit lines
and omit others

6. Calculate diff

Processing flow of proposed MJgit

git repository

MJgit

developer
source code

Fig. 2: Overview of MJgit

developer also specifies a code search query that is
available only on MJgit.

2. MJgit attempts to retrieve both source code revisions.
Then, in the case of the standard diff command, MJgit
calculates textual diff using the longest common subse-
quence algorithm [7]. MJgit behaves the same whether or
not the code query is specified. Thus, MJgit is backward
compatible with the standard Git command. When a code
query is given, MJgit performs the following additional
processing.

3. The tool constructs ASTs from both revisions. Note that
the AST construction is performed only for Java files
which were modified at revision B.

4. The tool searches by the specified query for the con-
structed AST.

5. Statements, hit by the query, are mapped to raw source
code lines, and the other lines are omitted. This mapping
allows the use of a powerful and familiar diff command
for difference calculation between two revisions. Further-
more, although textual representations, including coding
styles, can be included in the result, they are omitted in
AST.

6. Finally, the standard diff algorithm is applied to the
masked code.

B. Code Search Technique

There are several techniques to retrieve a certain program
snippets or statements from a single source code [10], [11],
[26]. In Figure 2, AST-based program slicing is illustrated
as a demonstration. Similarly, many approaches have been
proposed to search a certain source code file from a database
that stores numerous source code files [19], [20]. Both ap-
proaches are similar, but have slightly different purpose and
characteristics. In the proposed MJgit, both approaches can be
applied as a code search component.

C. Extended Git Command

Git supports several methods and commands to manage
a Git repository. The proposed concept can be applied to
retrospective and retrieval commands. Concrete extended com-
mands are listed in Table I. Each of these commands retrieves
logs or source code files from one or more revisions, which
means that the commands support several queries with revision
information, such as since and author. These commands
have good compatibility with code searching. By focusing only
on retrieval commands, the proposed tool has no side effects
on the repository itself.

D. Prototype Implementation

MJgit is implemented as a prototype by extending a Java-
based open-source Git client, jgit1. The tool currently supports
a simple search capability that can specify a method and
a variable name. The code search is enabled by specifying
method and variable parameters. For example, when
--method=x is given, the tool searches x’s declaration
statement and invocation statements. The other statements are
omitted. Furthermore, MJgit supports exec-statement,
comment, annotation, and javadoc parameters, which
can be used to retrieve only the specified type of program
statements. For example, we can reveal the differences of only
execution statements using the exec-statement parame-
ter. When the extended query is not given, the tool has the
same behavior as a standard Git client. If AST cannot be
constructed (i.e., compile errors exist), the specified query is
ignored.

The extended query is available only for git-diff and git-
show commands. Further command extension is an important
subject for future work.

IV. PERFORMANCE EVALUATION

A. Purpose and Experimental Settings

The purpose of the experiment is to show whether the
execution performance of MJgit is practical. The execution
time of the git-diff command with extended query using MJgit
was compared with that of the original jgit. The diff command
was performed for all pairs of adjacent revisions of JUnit4 and
Log4j.

The target projects are summarized in Table II. Both projects
include over 1,000 revisions and continue over 15 years. We
filtered revisions in which no Java files were changed because
the proposed tool does not affect such situations. Similarly, if
a revision includes a compile error, the revision was filtered.

1https://eclipse.org/jgit/

TABLE I: Extended git commands

Name Summary # revs
processed

git-diff shows changes between revisions 2
git-show shows detail of revision 1
git-log shows revision logs ≥1
git-blame shows who last modified ≥1

MJgit supports various combinations of code search queries.
In this experiment, three commands shown in Table III were
compared. They are labeled as jgit , mjmethod, and mjexec-stmt,
respectively. The mjmethod shows differences of method main
only, and the mjexec-stmt shows differences of execution state-
ments only (i.e., comments, annotations, and JavaDoc are
omitted).

B. Results

The experimental results are shown in Figure 3. The x-axis
indicates the execution time, and the three boxplots correspond
to the compared diff commands. A small percent of outliers,
which exceed five seconds, are omitted from the figure.

For the original jgit, all diff commands were accomplished
within two seconds. The median execution time was approxi-
mately 0.8 seconds. This result can be regarded as a baseline.
In both cases in which MJgit were applied to the diff command
(mjmethod and mjexec-stmt), the execution time increased signif-
icantly to 1 to 5 seconds. The average increase of execution
time was 3.1. There is no difference between mjmethod and
mjexec-stmt. In addition, both projects have approximately the
same tendency.

In order to determine the reason for the performance
degradation, we examined the relationship between the rate
of increase of the execution time and the number of Java files.
The results are shown in Figure 4. Each plot in the figure
represents a single revision. The x-axis shows the number of
java files committed in the revision, and the y-axis indicates
the performance reduction rate.

The correlation coefficients were 0.57 and 0.77 for mjmethod
and mjexec-stmt, which are significant. In other words, the
execution performance is reduced by increasing the number
of Java files.

C. Discussion

The performance of MJgit is considered to be practical
because, in most cases, the git-diff command was executed
within 4 seconds. However, performance improvement is an
important challenge for MJgit. Although the git-diff command
considers only two revisions, the git-log command considers
one or more revisions. The performance may be drastically
decreased for the git-log command, which is commonly used
and convenient to grasp code evolution.

TABLE II: Summary of target projects

JUnit4 Log4j
Since Dec. 2000 Nov. 2000
total revisions 1,801 3,274
compared pairs of revisions 900 1,891
Java files at latest revision 443 309

TABLE III: Compared three commands

Label Actual executed command
jgit $ jgit diff A..B
mjmethod $ mjgit diff A..B --method=main
mjexec-stmt $ mjgit diff A..B --exec-statement

5

sec

4

3

2

1

0

ex
ec

u
ti

o
n

 t
im

e

jgit mj
method

mj
exec-stmt

(a) JUnit4

5

sec

4

3

2

1

0

ex
ec

u
ti

o
n

 t
im

e

jgit mj
method

mj
exec-stmt

(b) Log4j

Fig. 3: Execution times for compared three commands

100

80

60

40

20

0

0 5 10 15 20
performance reduction rate

java

r=0.57

(a) JUnit4

100

80

60

40

20

0

0 5 10 15 20
performance reduction rate

java

r=0.77

(b) Log4j

Fig. 4: Relationship between performance reduction rate and
number of java files

Since there is no difference between the mjmethod and
mjexec-stmt, a dominant factor of the performance reduction
is not code searching, but rather AST construction. In order
to achieve the improvement, the concept of tree versioning
[27]–[29] can be applied. Tree-structured representations (e.g.,
AST) can be stored in a version control repository. By using
these technique, the performance reduction caused by AST
construction may be solved.

V. CONCLUSION

In this paper, we proposed MJgit to achieve effective
retrieval of code change history by integrating code search
into the Git command. Based on the experimental results,
the execution performance of MJgit is practical in most cases
involving small commits.

The current MJgit has a limited capability for code search.
In the future, we intend to introduce advanced search queries
which allows efficient retrieval of code evolution. Extending
other Git commands, especially the Git log command, is also
an important challenge. Furthermore, we need to evaluate the
effectiveness of change history retrieval by conducting semi-
structured interview or controlled experiment with practition-
ers.

ACKNOWLEDGMENT

This work was supported by JSPS/MEXT KAKENHI Grant
Number JP25220003 and JP26730155.

REFERENCES

[1] B. D. Alwis and J. Sillito, “Why are software projects moving from
centralized to decentralized version control systems?” in Proc. Workshop
on Cooperative and Human Aspects on Software Engineering, 2009, pp.
36–39.

[2] X. Sun, B. Li, H. Leung, B. Li, and Y. Li, “MSR4SM: Using topic mod-
els to effectively mining software repositories for software maintenance
tasks,” Information and Software Technology, vol. 66, pp. 1–12, 2015.

[3] S. Rastkar and G. C. Murphy, “Why did this code change?” in Proc.
International Conference on Software Engineering, 2013, pp. 1193–
1196.

[4] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead, “Automatic
identification of bug-introducing changes,” in Proc. International Con-
ference on Automated Software Engineering, 2006, pp. 81–90.

[5] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proc. International Conference on Software Engineering, 2006, pp. 361–
370.

[6] B. W. Kernighan and J. R. Mashey, “The unix programming environ-
ment,” Software: Practice and Experience, vol. 9, no. 1, pp. 1–15, 1979.

[7] J. W. Hunt and T. G. Szymanski, “A fast algorithm for computing longest
common subsequences,” Communicaitons of the ACM, vol. 20, no. 5,
pp. 350–353, 1977.

[8] M. Mondal, C. K. Roy, and K. A. Schneider, “Bug propagation through
code cloning: An empirical study,” in Proc. International Conference on
Software Maintenance and Evolution, 2017, pp. 227–237.

[9] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165–1199, 2013.

[10] M. Weiser, “Program slicing,” in Proc. International Conference on
Software Engineering, 1981, pp. 439–449.

[11] D. Binkley and M. Harman, “A large-scale empirical study of forward
and backward static slice size and context sensitivity,” in Proc. Interna-
tional Conference on Software Maintenance, 2003, pp. 44–53.

[12] S. Paul and A. Prakash, “A framework for source code search using
program patterns,” Transactions on Software Engineering, vol. 20, no. 6,
pp. 463–475, 1994.

[13] R. G. Urma and A. Mycroft, “Source-code queries with graph databases
– with application to programming language usage and evolution,”
Science of Computer Programming, vol. 97, no. Part 1, pp. 127–134,
2015.

[14] C. D. Roover, C. Noguera, A. Kellens, and V. Jonckers, “The SOUL
tool suite for querying programs in symbiosis with eclipse,” in Proc.
International Conference on Principles and Practice of Programming
in Java, 2011, pp. 71–80.

[15] O. de Moor, M. Verbaere, E. Hajiyev, P. Avgustinov, T. Ekman,
N. Ongkingco, D. Sereni, and J. Tibble, “Keynote address: .QL for

source code analysis,” in Proc. International Working Conference on
Source Code Analysis and Manipulation, 2007, pp. 3–16.

[16] T. Cohen, J. Gil, and I. Maman, “JTL: The java tools language,” in Proc.
International Conference on Object-oriented Programming Systems,
Languages, and Applications, 2006, pp. 89–108.

[17] K. D. Volder, “Jquery: A generic code browser with a declarative
configuration language,” in Proc. International Symposium on Practical
Aspects of Declarative Languages, 2006, pp. 88–102.

[18] M. Kimmig, M. Monperrus, and M. Mezini, “Querying source code
with natural language,” in Proc. International Conference on Automated
Software Engineering, 2011, pp. 376–379.

[19] S. Bajracharya, J. Ossher, and C. Lopes, “Sourcerer: An infrastructure
for large-scale collection and analysis of open-source code,” Science of
Computer Programming, vol. 79, pp. 241–259, 2014.

[20] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proc. International Conference on Software Engineering, 2013, pp.
422–431.

[21] H. Hata, O. Mizuno, and T. Kikuno, “Historage: Fine-grained version
control system for java,” in Proc. International Workshop on Principles
of Software Evolution and the annual ERCIM Workshop on Software
Evolution, 2011, pp. 96–100.

[22] M. Meyer, “Continuous integration and its tools,” IEEE Software,
vol. 31, no. 3, pp. 14–16, 2014.

[23] K. Herzig and A. Zeller, “The impact of tangled code changes,” in Proc.
Working Conference on Mining Software Repositories, 2013, pp. 121–
130.

[24] R. S. Arnold, Software Change Impact Analysis. IEEE Computer
Society Press, 1996.

[25] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: A tool
for change impact analysis of java programs,” in Proc. International
Conference on Object-oriented Programming, Systems, Languages, and
Applications, 2004, pp. 432–448.

[26] M. Acharya and B. Robinson, “Practical change impact analysis based
on static program slicing for industrial software systems,” in Proc.
International Conference on Software Engineering, 2011, pp. 746–755.

[27] T. N. Nguyen, E. V. Munson, and J. T. Boyland, “The molhado hypertext
versioning system,” in Proc. Conference on Hypertext and Hypermedia,
2004, pp. 185–194.

[28] T. T. Nguyen, H. A. Nguyen, N. H. Pham, and T. N. Nguyen, “Operation-
based, fine-grained version control model for tree-based representation,”
in Proc. International Conference on Fundamental Approaches to Soft-
ware Engineering, 2010, pp. 74–90.

[29] D. Asenov, B. Guenat, P. Müller, and M. Otth, “Precise version control
of trees with line-based version control systems,” in Proc. International
Conference on Fundamental Approaches to Software Engineering, 2017,
pp. 152–169.

