
On an Automatic Function Point Measurement from Source Codes
Shinji Kusumoto, Takuto Edagawa, Yoshiki Higo

*Graduate School of Information Science and Technology, Osaka University
{kusumoto, t-edagw,higo}@ist.osaka-u.ac.jp

Abstract
This paper describes issues of introducing function
point analysis to software organizations and then
proposes a method to automatically extract data and
transaction functions from Web application using
static analysis.
1. Introduction
In global software development projects, it is
important to quantitatively grasp the progress of each
software development block. Size of software is
sometimes used to check the progress of the
development. Function point (FP) [1] is one of the
software size metrics and it has been widely used in
business application software developments. Because
it measures the functional requirements, the measured
size stays constant despite the programming language,
design technology, or development skills involved.
Also, it is available in the early stage of the
development process, for planning design and
development projects. Up to the present, various FP
methods have been proposed. The IFPUG
(International Function Point Users Group) method has
been widely used in software organizations.
 However, several problems still remain. One
of them is benchmarking. If an organization tries to
introduce FP for estimation, it is necessary to collect
the base data. That is, FPs have to be measured from
the past software developed there. Usually, FP is
counted from design specifications. But, during the
development, some functionalities are frequently
added and modified. So, the actual functionalities exist
only in the source code and counting FP from source
code is cost-consuming. Moreover, it is reported that
differences for the same product may occur even in the
same organization since FP measurement involves
judgment on the part of the counter. One of the
promising approach to solve the problems is to
automate the FP measurement.
 This paper describes the conventional
approaches to automate the FP measurement and the
issues. Then, we briefly explain our approach under
industry-university cooperation. In this paper, we
intend to examine the possibility to measure FP from
source code automatically using static analysis: At first,
under several conditions, we propose a measurement

method to count data and transaction functions from
Web application source code.
2. Function Point Analysis
Function point (FP) measures the functionality
provided by software. It can be determined from the
requirements specification, design specification and
program code. Unlike LOC, since FP measures
functionality, it is said to be independent of the
technology and programming language used for the
software implementation. Allan Albrecht first
proposed original function point analysis. The IFPUG
method is a modified-one of the Albrecht’s function
point. In the modification, the evaluation of the
complexity of the software was objectively established
and the rules of the counting procedures were also
described minutely and precisely. In the IFPUG
method, the counting procedure of FP consists of
seven steps[2], Step1: Determine the Type of Function
Point Count, Step2: Identify the Counting Boundary,
Step3: Count Data Function Types, Step4: Count
transaction Function Types, Step5: Determine the
Unadjusted Function Point Count, Step6: Determine
the Value Adjustment Factor and Step7: Calculate the
Final Adjusted Function Point Count.
3. Conventional Approaches
An appropriate method to measure FP from source
codes has been proposed in [3]. The method firstly
transforms source codes to specifications written by
formal notations and then calculates FP based on the
IFPUG method from the specifications. However, to
our knowledge, actual application results have not
been reported. It would be difficult for software
organizations to develop such translators in the actual
software development under several limitations.
 There is another way to estimate the
development effort by using some metrics. In [4], a
new complexity metric, called DataBase Points (called
DBP) has been proposed. DBP is a point calculated
based on items related to database (table, relation,
transaction, form, reports). DBP estimates accurate
effort, even it can apply to only the system using MS-
ACCESS. Since the key idea of our method is also
extraction of tables and transactions, measurement of
DBP is similar to ours. But, the definition of DBP is
not based on FP.

4. Our approach
Considering the automatic FP measurement from
source code, it is not realistic to propose a method that
can be applicable to any software. In this paper, we set
the target application to kinds of Web applications
using SQL database systems. The main steps of FP
measurement are identifications of data and transaction
functions included in the target software. Data function
(DF) is a set of logically meaningful data, and it is
used by transaction functions (TFs). Thus, we consider
DFs as database tables used in the application. On the
other hand, TF is an input-output processing to DFs
and so we regard TF as a set of SQL statements
executed in a screen transition.
 In order to extract DFs and TFs, we introduce
SQL tree. SQL Trees are constructed by analyzing the
source code implementing Actions. An SQL Tree is a
data structure storing SQL statements, and it includes a
branch structure of the source code. The tree is
composed of three types of nodes: ‘Code Node’,
‘Branch Node’ and ‘SQL Call Node’. Code Nodes
correspond with source code range, and Branch Nodes
correspond with conditional branch, and SQL Call
Nodes correspond with SQL calls. Then, using SQL
trees, DFs and TFs are extracted. We regard a DF as a
database table used by target application. These tables
can be extracted by analyzing SQL Trees. After that,
each of DFs is classified into ILF or EIF as follows:
(D1): If its table is accessed by ‘insert’, ‘update’, or
‘delete’, the database state is changed. Therefore, it is
regarded as ILF,
(D2): If RuleD1 is not satisfied, it is regarded as EIF.
 A TF is identified as a set of SQLs which can
be executed simultaneously in the Action. Then, using
the following rules, each of TFs is classified into EI,
EO and EQ.
(1): If the TF has at least one SQL statement which
changes database state, it is regarded as EI,
(2): If RuleT1 is not satisfied, at least one data
obtained from database is converted, it is regarded as
EO,
(3): If both RulesT1 and T2 are not satisfied, it is
regarded as EQ.
5. Measurement Tool
We have developed a FP measurement tool. The target
application is supposed to satisfy the following
conditions:
• a main logic is written by Java,
• uses Struts framework,

• accesses to the database by JDBC or iBATIS .
It is the reason why the application is supposed to be
developed by Struts that the extraction of screen
transition is easy. Because, in Struts, screen transitions
are determinably defined by configuration files. Since
our proposed method doesn’t include the extracting
method of screen transition, it depends on the tool. The
developed tool cannot validate whether or not the
proposed method can apply the application developed
without Struts. However, no matter how the
application is developed by some methodology, the
application has to define correspondence relationship
of a user action and screen transition. Therefore, we
believe that screen transition is able to be extracted
easily. As for a database access method, the present
tool is intended for JDBC or iBATIS. But, since the
information of the called SQL is only needed, we can
easily deal with an application using other access
methods. The tool mainly consists of the parser and the
FP calculator. The parser firstly analyzes source
code(Java file and configuration files) and provides the
information needed to calculate FP. Then, FP
calculator extracts TFs and DFs with the information
obtained by the parser, and calculates FP.
6. Conclusions
 In this paper, we have proposed FP measurement by
focusing screen transitions in Web application and
database accesses. TFs are extracted from screen
transitions as a set of SQLs. DFs are extracted from
SQLs as a database table. In the future, it is necessary
to improve the proposed method and the tool through
continuous case studies/experiments.
Acknowledgment
This work is being conducted as a part of Stage Project,
the Development of Next Generation IT Infrastructure,
supported by Ministry of Education, Culture, Sports,
Science and Technology and Japan Society for the
Promotion of Science, Grant-in-Aid for Scientific
Research (C) (20500033).
References
[1] A. J. Albrecht. Function point analysis. Encyclopedia of
Software Engineering, 1:518–524, 1994.
[2] International Function Point Users Groupg. Function
Point Counting Practices Manual Release 4.2, 2004.
[3] A. April, E. Merlo, and A. Abran. A reverse engineering
approach to evaluate function point rules. In Fourth Working
Conference on Reverse Engineering, 1997.
[4] S. Abiad, R. Haraty, and N. Mansour. Software metrics
for small database applications. In ACM symposium on
Applied computing, volume 2, pages 866–870, 2000.

