
Generating Clone References with Less Human Subjectivity

Yusuke Yuki∗, Yoshiki Higo∗, Keisuke Hotta∗ and Shinji Kusumoto∗
∗Graduate School of Information Science and Technology, Osaka University, Japan

Email: {y-yusuke, higo, k-hotta, kusumoto}@ist.osaka-u.ac.jp

Abstract—In evaluating code clone detection tools, a bench-
mark is created to measure their precision and recall. Bench-
marks in previous research have either of the following issues:
the first one is that they depend on the code clone definitions of
benchmark creators; the second one is that they are not code
clones occurring in actual development process. To get rid of
both the two issues, we propose a methodology that creates code
clone references based on code clones occurring in development
process without any human judgements. More concretely, we use
multiple revisions included in the source code repository of target
software to identify merged methods in the past development
process. We regard merged methods as real code clones. The
authors’ benchmark can evaluate detection accuracy of code
clone detection tools more objectivity.

Index Terms—code clone, clone detection tool, evaluating clone
detection tools, benchmark, merging methods

I. INTRODUCTION

A code clone (hereafter, clone) is a code fragment that is
similar or identical to another code fragment in source code.
Copy-and-paste operation in code implementation is the main
reason of clone occurrences [1] [2]. It is said that the presence
of clones makes software maintenance more difficult. For
example, if a code fragment includes a bug, we need to check
its clones too. For such a reason, it is important to understand
how clones are distributed in source code. A variety of clone
detection tools have been developed before now [1] [2]. Thus,
we need to evaluate which clone detection tools have better
detection capabilities than others.

In evaluating clone detection tools, a benchmark (a set
of real clones) is created to measure their precision and re-
call [3] [4] [5]. Precision means a ratio of real clones included
in detected ones. Recall means a ratio of real detected clones
against all the real clones in given source code. Consequently,
the evaluation results depend on benchmarks. If unreal clones
are included in a benchmark, those unreal clones have negative
impacts on measurements of recall and precision. Hereafter,
we call real clones clone references.

There are several research studies that created clone bench-
marks. All of the studies created benchmarks with either of
the following procedures.

Judging with eyes: researchers judged similar code frag-
ments with their eyes one by one [3] [6]. Benchmarks created
with this procedure are probably influenced by subjectivity
of benchmark creators. Clone references in such benchmarks
depend on the clone definitions of benchmark creators, so
that objectivity of precision and recall measurement is not
sufficient. Besides, real clones that were not detected by clone
detection tools are not included in such benchmarks.

Creating artificial clones: researchers extracted some code
fragments randomly from target source code, then, added
certain changes to code fragments, and inserted the changed
code fragments to randomly selected positions of the target
source code [7]. A code fragment and its changed version are
supposed to be reported as clones. In other words, they are
regarded as clone references. An issue of this procedure is
that clone references are not clones occurring in actual devel-
opment process. There were some cases that artificial clone
references had negative effects on accuracy measurement [4].

To get rid of both the two issues, we propose a methodol-
ogy to create clone references based on clones occurring in
development process without any human judgements. More
concretely, we use multiple revisions included in the source
code repository of target software to identify merged methods
in the past development process. Merging methods is a way to
remove duplicated methods. We believe that at least such a pair
of methods merged in the past should be detected as clones.
In other words, merged methods should be clone references.
If we detect merged methods in an automated way, we can
create a large number of clone references not depending on
human subjectivity.

We have developed a tool based on our methodology and
applied it to some open source software. Then, we manually
investigated tool’s results one by one. As a result, we con-
firmed all of the tool’s outputs (19 groups of methods) were
real clones. Our clone references is available at our website1.

The main contribution of this research is as follows.
• We resolved the two issues lying in existing benchmarks.

In other words, we proposed an automated way to create
clone references occurring in actual development process.

• We applied the tool implemented based on the proposed
way to some open source software, and we confirmed that
all the created clone references were real clones.

II. BENCHMARKS IN PREVIOUS RESEARCH

Bellon’s benchmark [3] was created in the following proce-
dure: firstly, clones were detected from Java and C software
with six clone detection tools; then, 2% of detection results
were manually checked whether they were real clones or not
one by one. The authors think that there are two issues in
Bellon’s benchmark.

• Acceptance/rejection decisions depend on Bellon’s sub-
jectivity. If someone else does the same check for the
same clones, decision results will be different.

1http://goo.gl/9Mhwo9



deleted
method

𝑑1𝑟

𝑑2𝑟

𝑑1𝑟+1

𝑑2𝑟+1

𝑎𝑟+2

Rev.𝑟 Rev.𝑟 + 1 Rev.𝑟 + 2

candidate
methods
before
merging

candidate
methods
after
merging

𝑛𝑟
method 𝑛
in revision 𝑟

not changed
method

(a) Pattern1

𝑐𝑟

𝑑𝑟

𝑐𝑟+1

𝑑𝑟+1

𝑐𝑟+2

changed
method

Rev.𝑟 Rev.𝑟 + 1 Rev.𝑟 + 2

𝑛𝑟
method 𝑛
in revision 𝑟

not changed
method

candidate
methods
before
merging

candidate
methods
after
merging

deleted
method

(b) Pattern2

Fig. 1. Two Patterns of Merging Methods

• The benchmark depends on clone detection results. Clone
references in Bellon’s benchmark is limited to clones
detected by detection tools in the year 2002.

Mutation and Injection Framework (in short, MIF) [4] [7]
created clones artificially. MIF can create clone references
without being affected by human subjectivity. However, it has
the following issue.

• Clone references in MIF are not clones occurring in
actual development process. Clone references in MIF are
occasionally clones that are not likely to occur in practice.
For this reason, there are some cases where precision and
recall measurements may not have been able to be done
accurately.

BigCloneBench [5] [6] selected well-known functions such
as bubble-sort or file-copy as its clone reference creation
targets. Firstly, code fragments that might have any of well-
known functions were extracted by using the features of the
well-known functions. Secondly, each of the code fragments
was manually checked whether it really had the function.
Accepted code fragments are clone references in the bench-
mark. In this methodology, clone references can be created
without using clone detection tools. BigCloneBench includes
the following two issues.

• In acceptance/rejection decisions, human subjectivity
probably affected clone reference creation results. If other
researchers did the same work, difference sets of clone
references would have been created.

• Candidates of clone references are limited to well-known
functions appearing in source code.

III. THE AUTHORS’ BENCHMARK

Benchmarks in previous research have either of the fol-
lowing issues: the first one is that they depend on the clone
definitions of benchmark creators; the second one is that they
are not clones occurring in actual development process. In this
study, we propose a new methodology to create benchmarks
which can solve both the issues.

methodx(){

}

function α

methody(){

}

methodz(){

}

Rev.𝑟 + 1 Rev.𝑟 + 2

function α

function α

(a) Merging Clones

methodx(){

}

methody(){

}

methodz(){
if(...){

}else{

}
}

Rev.𝑟 + 1 Rev.𝑟 + 2

function β

function γ

function β

function γ

(b) Not Merging Clones

Fig. 2. A Example of Calculating the Similarity

A. Key idea

Authors in previous research use a single revision of projects
to make their benchmarks. On the other hand, we use multiple
revisions included in the source code repository of target soft-
ware. More concretely, we detect merged methods in the past
development process. Merging is one of refactoring techniques
against clones. We regard merged methods as clone references.
By detecting merged methods automatically, we can acquire
many clone references with less human subjectivity.

B. Abstract of the authors’ benchmark

We define two patterns of merging methods. After detecting
merged methods candidates by using the two patterns, we cal-
culate a similarity between candidate methods before and after
merging and use information of method calling to eliminate
false positives.

Pattern1: in this pattern, developers merge multiple deleted
methods into an added method. An example is shown in Figure
1(a). In Figure 1(a), methods d1 and d2 were deleted between
revisions r + 1 and r + 2. Method a was added between
revisions r + 1 and r + 2. Hence, methods d1 and d2 are
candidate methods before merging and method a is a candidate
method after merging.

Pattern2: in this pattern, developers merge multiple deleted
methods into an existing method. An example is shown in
Figure 1(b). In Figure 1(b), method d was deleted between



𝑥𝑟+1

𝑦𝑟+1

𝑧𝑟+2

callers

method
calling

Rev.𝑟 + 1 Rev.𝑟 + 2

𝑛𝑟

𝑝𝑟+1

𝑞𝑟+1

𝑝𝑟+2

𝑞𝑟+2

method 𝑛
in revision 𝑟

(a) Merging Clones

𝑥𝑟+1

𝑦𝑟+1

𝑧𝑟+2

callers

method
calling

Rev.𝑟 + 1 Rev.𝑟 + 2

𝑛𝑟

𝑝𝑟+1

𝑞𝑟+1

𝑟𝑟+2

𝑠𝑟+2

method 𝑛
in revision 𝑟

(b) Not Merging Clones

Fig. 3. A Example of Using Method Calling

revisions r + 1 and r + 2. Method c was changed between
revisions r+1 and r+2. Hence, methods d and c in revision
r + 1 are candidate methods before merging and method c
in revision r + 2 is a candidate method after merging. We
target a changed method because a method is changed to add
parameters or branch conditions when merging.

After detecting merged methods candidates by using the two
patterns, we calculate a similarity between candidate methods
before and after merging and use information of method
calling. The reason we calculate the similarity is that methods
having the same function are merged when merging duplicated
methods. An example is shown in Figure 2. In Figure 2(a),
methods x and y in revision r + 1 had the same function
α. Subsequently, method z in revision r + 2 had the same
function α. This case represents merging clones. In Figure
2(b), methods x and y in revision r+1 had different functions
β or γ. Subsequently, method z had both functions β and γ in
revision r+2. This case does not represent merging clones. For
this reason, we calculate the similarity. If there are multiple
candidate methods before merging which are greater than or
equal to the threshold, we regard them as true positives. We
calculate the similarity between different revisions, which is
different from calculating the similarity in detecting clones.

The reason we use information of method calling is that
methods calling deleted methods call an added method instead
of the deleted methods when merging clones. An example is
shown in Figure 3. In Figure 3(a), method x in revision r+1
was called by method p and method y in revision r+ 1 was
called by method q. Subsequently, method z in revision r+2
was called by methods p and q. This case represents merging
clones. In Figure 3(b), method x in revision r+1 was called
by method p and method y in revision r + 1 was called by
method q. Subsequently, method z in revision r+2 was called
by methods r and s. This case does not represent merging
clones. For this reason, we use information of method calling.
If multiple candidate methods before merging share at least the
same method calling with a candidate method after merging,
we regard them as true positives.

C. Steps of making the authors’ benchmark

We explain steps of making benchmarks with the proposed
methodology. The input is the source code repository of target
software. The output is information of merged methods.
STEP1: we detect deleted, added and changed methods be-
tween every pair of consecutive revisions
STEP2: we relate candidate methods before merging to can-
didate methods after merging by using the two patterns.
STEP3: we calculate the similarity between candidate meth-
ods before and after merging
STEP4: we detect merged methods by using information of
method calling.

We execute the above steps for all revisions of the repository
automatically with our prototype tool. In this paper, detailed
explanations are omitted due to space limitations.

IV. CHARACTERISTICS OF THE AUTHORS’ BENCHMARK

A. How to use the authors’ benchmark

We use not a single revision but multiple revisions to make
the authors’ benchmark, and so researchers evaluating clone
detection tools need to execute the detection tools against all
Java source files in the revisions where clone references exist.

B. Usability of the authors’ benchmark

By using the authors’ benchmark, researchers can evaluate
detection tools better objectivity than ones created by existing
methodologies because this benchmark does not depend on
our subjectivity to judge whether it is clone or not and clone
references are clones occurring in actual development process.

C. Limitations of the authors’ benchmark

We explain limitations of the authors’ benchmark in the
following three points.

First, clone references in this study are limited to merged
clones. Merged clones are only a small part of clones to be
detected. However, clone detection tools detect other kind of
clones than merged clones. Thus, for each of the detected
clones which are not included in clone references, researchers
cannot judge whether it is another kind of clones or a false
positive. Also, clone references in this study are a part of real



TABLE I
OVERVIEW OF TARGET SOFTWARE AND RESULTS

Software Target directory Start revision(date) End revision(date) # of target revisions # of detected methods
Ant /ant/core/trunk/main r267549(2000/01/13) r1240680(2012/02/05) 6,022 7

ArgoUML /trunk/src r1(1998/01/27) r19893(2012/07/10) 3,925 10
jEdit /jEdit/trunk r3791(2001/09/02) r22016(2012/08/17) 5,168 2

clones in target projects, so it is difficult to measure precision
with the authors’ benchmark.

Second, the granularity of clone references is limited to
the method-level. We suffered from finding a large number
of clones. However, there is a case where a part of a method
is merged. As future work, we are going to extend the authors’
benchmark to handle other granularities of clones.

Third, the number of clone references in our benchmark is
small. Evaluation results of detection tools with our benchmark
may lack generality. However, we assigned the priority to
reduce false positives. We can extend the current definition
of clone references by detecting other refactorings on clones
in the source code repository of target software.

V. EVALUTION

A. Setup

We have implemented a software tool based on the proposed
methodology. Currently, targets of our implemented tool are
limited to software systems managed by using Subversion
and written in Java. We specified 50 tokens and 6 lines as
thresholds of minimum clone length, which means that every
clone must have at least 50 tokens and at least 6 lines.
We specified 70% as the threshold of a similarity between
candidate methods before and after merging. Those are one of
often-used thresholds in clone detection [3] [5].

In this experiment, we selected Ant, ArgoUML, and jEdit
as the targets. Table I shows an overview of target systems.
We selected them because they are popular and successful
systems. The number of target revisions represent the number
of revisions where source code was added, deleted or changed.
The number of detected methods represents the number of
groups of merged methods.

B. Results

Nineteen groups of merged methods were detected, and we
manually checked all of the source code one by one. As a
result, we found that all the detected methods were merged
methods.

C. Threats to validity

Evaluation methodology: in this experiment, we manually
investigated whether detected methods were clones or not.
However, investigation results may not be entirely correct
because the authors are not developers of the target systems.

Target systems: in this experiment, we targeted only three
systems. If we had selected other systems, the results might
have been different from this experiment.

Thresholds: in this experiment, we used thresholds (50
tokens, 6 lines, and 70% similarity) which generally used
in detecting clone, and so we reduced our subjectivities as

much as possible. We should explore other numerical values
as thresholds.

VI. CONCLUSION

In this paper, we proposed a new methodology to cre-
ate clone benchmarks. The methodology leverages multiple
revisions in a source code repository and detects merged
methods in the past development. Detected merged methods
are regarded as clone references. Benchmarks created with our
methodology have the following benefits.

• The benchmarks have better objectivity than ones created
by existing methodologies.

• Clone references in the benchmarks are clones occurring
in actual development process.

We have implemented a software tool based on the proposed
methodology and applied it to several open source software.
Nineteen groups of merged methods were detected, and we
manually checked all of the source code one by one. As a
result, we found that all the detected methods were actual
duplicated methods.

The benchmark is useful to evaluate detection accuracy of
clone detection tools.

In the future, we are going to conduct more experiments
to other large software systems. We are also going to extend
the methodology to handle more fine-grained clones such as
block-level. Finally, we are going to evaluate many of the
state-of-the-art detection tools with benchmarks created by our
extended methodology.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber 25220003.

REFERENCES

[1] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[2] D. Rattan, R. Bhatia, and M. Singh, “Software clone detection: A
systematic review,” Information and Software Technology, vol. 55, no. 7,
pp. 1165–1199, 2013.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Comparison
and evaluation of clone detection tools,” Software Engineering, IEEE
Transactions on, vol. 33, no. 9, pp. 577–591, 2007.

[4] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection tools,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution, 2014, pp. 321–330.

[5] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
bigclonebench,” in 2015 IEEE International Conference on Software
Maintenance and Evolution, 2015, pp. 131–140.

[6] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution, 2014, pp. 476–480.

[7] J. Svajlenko, C. K. Roy, and J. R. Cordy, “A mutation analysis based
benchmarking framework for clone detectors,” in the 7th International
Workshop on Software Clones, 2013, pp. 8–9.


