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Abstract—In software development, debugging is indispensable
to guarantee the reliability. However, debugging is becoming more
difficult because software is becoming larger and more complex.
Thus, techniques for supporting debugging, especially automatic
program repair techniques based on genetic programming dis-
tinguish themselves due to their capability. Genetic programming
produces many modified programs by three operations: selection,
mutation, and crossover. In this research, we focus on crossover
that can bring a large modification at one operation, and
we are conducting research on capable crossover by selecting
several modified programs not randomly but using the guidance
indicating their properties. In this paper, we propose a new
crossover technique based on comparing modified programs’
properties.

I. INTRODUCTION

Debugging is one of the most important processes in
software development since any software requires reliability
and safety. Debugging denotes finding faults, locating bugs,
fixing bugs, and validating repair. However, debugging is hard
work since software becomes larger and more complex, e.g.
Baker [1] reports that debugging occupies half of the software
development. Thus, many techniques supporting debugging
are proposed. Automatic program repair techniques support
locating bugs, fixing bugs, and validating repair automatically.
Those techniques have been attracted.

Recently, automatic program repair techniques based on
genetic programming [2] such as GenProg [3], [4] distinguish
themselves [5]. Genetic programming is a search algorithm re-
sembling a biological evolution. Genetic programming is com-
posed of three operations: selection, mutation, and crossover.
Selection is to pick out several individuals by evaluating their
fitness. Mutation is to generate new individuals by modifying
each individual. Crossover is to generate new individuals by
combining two individuals. GenProg generates many fixed
program candidates as patches through evaluating and mod-
ifying them by regarding programs as biological individuals.

There are other automatic program repair techniques that
do not use genetic programming such as RSRepair [6], PAR
[7], SemFix [8], DirectFix [9], and more [10], [11], [12].
RSRepair generates a fixed program based on random search.
PAR modifies programs with prepared patterns. SemFix and
DirectFix modify programs by semantic analysis.

In recent years, many research studies are conducted on au-
tomatic program repair, but few of them focus on crossover on
techniques using genetic programming. We consider there is
a large room for improvement on crossover because crossover
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Fig. 1. Abstract of GenProg

of existing techniques are mainly conducted by random al-
gorithms. In this research, we focus on crossover which can
bring a large modification in one operation.

We propose a new crossover technique, which selects target
programs by their properties and combines programs using
a couple of strategies. We also implement our technique as a
tool, Marriagent. In the experiments, we compared Marriagent
with GenProg and confirmed that Marriagent outperformed
GenProg in capability to bug fix.

II. PRELIMINARIES

A. Genetic Programming

Genetic programming is a search algorithm resembling
biological evolution. This algorithm aims at a solution by
performing the following three kinds of operations iteratively.



01: void sample(int x) { 01: void sample(int x) {
02: if(x <= 0) { 02: if(x <= 0) {

03: printf("%d\n", x); 03: printf("%d\n", x);
04: } 04: return;

@5: while(x > @) { @s: }  N___—inserted
06: printf("%d\n", x); 06: while(x > 0) {

07: X--; 07: printf("%d\n", x);
08: } 08: X--;

09: return; 09: }

10: } 10: return;

11: 11: }

(a) Original Program (b) Modified Program

Fig. 2. Example of the Modification

Selection This operation evaluates the fitness of each
individual, and then it picks out several survivable
individuals. Fitness is a value which indicates the
closeness to the solutions.

Mutation This operation generates new individuals by
modifying each old individual.

Crossover This operation generates new individuals by
combining two old individuals. Each new individual
has half of both old individuals’ elements.

B. Related Work

GenProg [3] is an automatic program repair technique
based on generic programming. This technique regards fixed
program candidates as individuals, and then populations is a
set of them. GenProg takes a buggy program and test cases
as input, and then it iterates the generations of fixed program
candidates as shown in Fig. 1. If a fixed program candidate
passes all the test cases, it is output as a fixed program.
GenProg executes each operation of genetic programming as
follows.

Selection This operation executes every fixed program
candidate with all the test cases to evaluate its fit-
ness. Then, this operation picks up several programs
having high fitness.

Mutation This operation adds a modification to each
program. A mutation operation is either of inserting
a program statement existing in the program to the
faulty code region, deleting a program statement in
the faulty code region, or replacement, which is a
combination of insertion and deletion.

Crossover This operation swaps half of modifications of
two programs.

In GenProg, each element of the individual is not program’s
statement or token, but a modification. Fig. 2 shows an
example of modification. Fig. 2b is a modified version of the
program shown in Fig. 2a. GenProg regards this modification
such as ”Add the 9th line to behind 3rd line.” Hence, the
original program is an individual having no element. In addi-
tion, modifications are no particular order, altogether those can
change their orders without any effect on program behavior.
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Fig. 3. Flow of Proposed Approach

Several techniques related to GenProg have been proposed.
RSRepair [6] introduces random search instead of genetic pro-
gramming. It generates many fixed program candidates with
only a modification without iterating generations. It is suited
for bugs which can be fixed by only a single modification.

PAR [7] modifies programs using some fix patterns which
have been prepared manually, e.g. altering method parameters,
adding a null checker, and changing a branch condition. Mod-
ifications by patterns are adaptable to many bugs in general
programs and modified programs have good understandability.

SemFix [8] generates repair constraints using symbolic
execution with test cases, and then it modifies programs so as
to satisfy all the constraints. A remarkable feature of SemFix
is that it does not reuse existent statements but generates a
new statement that does not exist.

DirectFix [9] is an extending technique of SemFix. It can
fix programs having more simplicity and understandability.

SPR [10] generates fixed program by the algorithm named
Staged Program Repair, which is composed of parameterized
transformation schemes, target value search, and condition
synthesis. It efficiently searches for rich search spaces and
then it generates fixed programs correctly.

Prophet [11] learns a probabilistic model from successful
patches written by humans, and it generates fixed programs
and validates them using the model. It has the good ability to
generate successful programs.

A technique proposed by Le, et. al. [12] mines the fix
patterns from the history of many projects and it uses them to
fix. The fixed programs based on the history have good-quality
as compared to the baselines.

C. Feature of Crossover

The techniques shown in Subsection II-B improve selection
or mutation by focusing on their potential. For instance,
RSRepair improved selection, and PAR improved mutation.
On the other hand, crossover also has a large room for
improvement. In this research, we focus on crossover and its
features. By comparing crossover and mutation, crossover has
following features.
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Fig. 4. Comparing Modified Programs

« It can bring a large modification with one operation.
¢ It can remove modifications added in old generations.
« It combines existent modifications.

We considered that crossover was able to generate programs
including required modifications by selecting programs to
make use of above features. However, GenProg often wastes
them: e.g. it may crossover similar programs and generate
programs with little difference. Hence, we propose a new
crossover technique based on comparing modified programs’
properties.

III. PROPOSED TECHNIQUE

In the proposed technique, selection and mutation are the
same as the ones described for GenProg’s algorithm. Fig. 3
shows three steps in crossover of our technique as follows:

Comparing Modified Programs This step compares each
pair of latest modified programs’ properties and sets
values of them.

Selecting Pairs of Modified Programs This step selects
several pairs in order of high value.

Crossover This step generates new modified programs by
crossover selected pairs.

In the reminder of this section, we explain the details of the
algorithm for each step.

A. Comparing Modified Programs

Fig. 4 shows our proposed algorithm, which compares mod-
ified programs’ properties. It is proper to select the programs
having different modifications to bring a large modification.
Thus, the algorithm shown in Fig. 4a evaluates a similarity
between programs. The similarity is calculated by Jaccard
coefficient shown in exp. (1), because it can be calculated very
quickly. Then proposed algorithm calculates a quantitative
value of the similarity shown in exp. (2). The less similarity
indicates the better pair. Its value ranges from O to 1.
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Fig. 5. Crossover Strategy
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e M,, My: a set of modifications in programs a or b.
e AN B: common modifications between A and B.
e AU B: union modifications between A and B.

e |A]: the number of elements in A.

By contrast, it is also proper to select the programs having
the good fitness to generate a good program. Thus, the
algorithm shown in Fig. 4b evaluates whether each program
passes each test case. Then, the proposed technique calculates
the values of test cases shown in exp. (3). That value also
ranges from 0O to 1.

|Ta me| + |Ta @Tb|/3

Val TestC =
alueofTestCases TestCases|

3)

o T,,Ty: a set of booleans whether programs a and b pass
each test case or not.

e AN B: true in common between A and B.

o AED B: true in sole either A and B.

e |A|: the number of elements in A.

It is possible to use both values of similarity and test
cases because those are independent on each other. In the
experiments, we also evaluated a pattern multiplying both of
them, its value also ranges from O to 1.



B. Selecting Pairs of Modified Programs

In this step, the proposed technique selects several program
pairs in the descending order of values calculated in the
last section. The number of conducted crossover is shown
in exp. (4), which is an expected value of the number of
crossover by GenProg. The reason we use it is to prevent too
much increasing of programs by crossover. Besides, the same
program can be chosen more than once such as program “b”
shown in Fig. 3.

| Programs| x Probability
2

NumberO fCrossover = 4)

Programs Modified programs in the latest generation.

Probability The probability of crossover. GenProg sets it
as a configuration option; default value is 0.5.

C. Crossover Strategy

Fig. 5 shows three strategies for swapping modifications,
which are listed as follows.

One Point this crossover splits sets of modifications at
center and swaps the latter halves.

Uniform This crossover swaps each modification on the
same indices with 50% probability. If the surplus
modifications exist, those are transfered with 50%
probability.

Random This crossover combines all modifications and
distribute them to programs randomly. The generated
programs have the same number of modifications.

GenProg uses one point crossover, which suffers from
hitchhiking [13]., which is an issue that adjoining elements
cannot be divided into different next-generation programs. In
Fig. 5, if element al is suitable and a2 is harmful, it is
necessary to divide them to generate a fixed program. Uniform
crossover and random crossover can divide them, but one
point crossover cannot. Thus, GenProg is not good at dividing
adjoining elements.

IV. EXPERIMENTS

We implemented the technique as a tool, Marriagent, which
is and extension of GenProg. We compared Marriagent and
GenProg by investigating rates of success and their runtime to
fix.

TABLE I
SUBJECT PROGRAMS

Version H LOC ‘ Fault(s) ‘ Description for Fault
version 9 173 1 | Assignment statement
version 43 175 1 Control statement
. Assignment statement

version 44 175 2
and Control statement

A. Subject Programs

We use the subject program tcas, which is a traffic colli-
sion avoidance system, from Software-artifact Infrastructure
Repository (SIR) [14]. The versions we used are shown in
Table 1. Version 9 has a fault on assignment statement, which
is easy to fix. Version 43 has a fault on control statement,
which is hard to fix. Version 44 has two faults on assignment
statement and control statement, which cannot be fixed by one
modification.

B. Experimental Setup

We executed GenProg and Marriagent on the subject pro-
grams 50 times, and then we recorded the number of success
within 15 minutes and runtime to fix. In this experiment, we
defined fix as generating the program which passes all test
cases, but do not consider its validity in the real world.

Note that some executions fixed programs by initial muta-
tion, which mean no crossover was performed. Hence, we also
recorded the results excluded such execution because it does
not show the capability of our proposed technique.

Table II shows the configurations of GenProg and Marria-
gent. The configurations not shown in Table II are default
settings of GenProg. Seeds of random number generation are
set in from 1 to 50 at each execution. Generations are iterated
unlimitedly during 15 minutes. In addition, Table III shows the
unique configurations of Marriagent. Each column is shown in
Subsection III. In the case of Both Uses, Marriagent multiplies
two values of Similarity and Test Cases.

In this experiment, we ran on Ubuntu 14.04 for 64-bit
machine, and with 2.00 GHz Intel (R) Dual-Core CPU and 40

TABLE 11
EXPERIMENTAL SETUP

Column ‘ Value H Column Value

Positive Tests 100 || Negative Tests 9

Populations 10 || Probability of Crossover 0.5

Seeds Variable || Generations Infinity
TABLE III

EXPERIMENTAL SETUP FOR MARRIAGENT

Pattern Comparison Crossover
MarriagentSO Single point
MarriagentSU Similarity Uniform
MarriagentSR Random
MarriagentTO Single point
MarriagentTU Testcases Uniform
MarriagentTR Random
MarriagentBO Single point
MarriagentBU Both Uses Uniform
MarriagentBR Random




GB of memory. Both techniques are build on OCaml 3.12.1
and gcc 4.8.

C. Experimental Results

Table IV shows results of the experiments. In version 44,
some of the patterns could not fix even once. In such cases,
average times in Table IV are expressed as “No Fixed”. De-
scribed in Subsection I'V-B, some executions finished by initial
mutation without crossover, and then the results excluded those
executions are expressed in column Exclude O Gene.

Table IV indicates that Marriagent especially using random
crossover and comparison by test cases outperforms GenProg
in the number of the fix at version 9 and 43. GenProg did not
fix version 44 even once, but Marriagent occasionally fixed by
using some patterns. The pattern using random crossover and
comparison by test cases is the best in all versions.

In version 9, the average runtime of Marriagent was almost
as much as GenProg. By contrast in version 43, the average
runtime of Marriagent is various, some are half of runtime of
GenProg and others are twice as GenProg. In version 44, only
Marriagent fix the bug.

V. DISCUSSION
A. Comparison of Modified Programs

In version 9 and 43, our technique using comparison by
similarity achieved good results. We consider that an idea for
bringing a large modification is suitable.

In the case of using comparison by test cases, our tech-
nique using random crossover is the best, but the others are
producing worse results overall. We consider the reason is
that our technique often selects the same programs more than
once because it compares programs by test cases. Hence, a
new program generated by one point crossover or uniform
crossover tends to be similar to its parents. In contrast, random
crossover can generate a new program which is dissimilar to
its parents frequently.

a1, a2, c1, <2

One Point
|b1, b2, ci, Ql
Ma[al, a2,[ c1, c2]
Mb[bl, b2,[ c1, c2]

[b2, a1, c2, b1

Random " [c1, a2, c2, c1]
X:Swapped X:Not Swapped

Fig. 6. An example of crossover on similar programs

Besides, our technique using comparison by both similarity
and test cases are not good in the number of the fix. Thereby
we consider these properties are unsuited to each other. In
genetic programming, more iterated generations, more similar
individuals tend to be generated. In particular, our technique
using comparison by test cases more generates similar pro-
grams. For this reasons, comparison by similarity is hard to
evaluate programs. However, average times of that pattern are
fast. Then we think it is strong in early generations because
few programs are similar to each other.

From the above, both properties have a merit. However,
a combination of them requires the plan: e.g. using weight,
switching by generations or fitness.

B. Crossover Strategy

Our technique achieved good results by using random
crossover. We consider the reason is that random crossover
can make a large modification even for the similar programs.
An example of crossover for similar programs shown in Fig. 6.
Programs Ma and Mb contain the common modifications c/

TABLE IV
EXPERIMENTAL RESULTS

H Version 9 H Version 43 H Version 44

Approach Fixed Exclude | Average Exclude Fixed  Exclude | Average Exclude Fixed Exclude | Average Exclude

Count 0 Genes | time (s) 0 Gene. Count 0 Genes | time (s) O Gene. Count 0 Gene. | time (s) O Gene.
GenProg 18 13 190.17 251.54 7 4 147.22 234.92 0 0 No Fixed
MarriagentSO 27 22 167.98 199.26 12 9 145.06 183.24 0 0 No Fixed
MarriagentSU 27 22 207.21 248.06 8 5 90.69 128.60 0 0 No Fixed
MarriagentSR 27 22 179.31 213.17 12 9 215.69 278.54 0 0 No Fixed
MarriagentTO 25 20 180.67 218.07 8 5 183.28 276.81 1 1 844.01 844.01
MarriagentTU 22 17 169.98 210.99 8 5 181.82 274.30 0 0 No Fixed
MarriagentTR 34 29 216.29 248.36 18 15 275.89 325.39 3 3 377.42 377.42
MarriagentBO 20 15 159.93 203.18 8 5 266.80 409.93 0 0 No Fixed
MarriagentBU 22 17 172.54 21443 8 5 99.34 141.16 0 0 No Fixed
MarriagentBR 28 23 165.34 194.69 11 8 113.95 145.43 1 1 371.64 371.64




and c2 in latter halves. By using one point crossover, generated
programs are the same as their parents because of swapping the
same modifications. In contrast, by using random crossover,
generated programs can be different from their parents.

Our technique using one point crossover or uniform
crossover is worse than using random crossover. Uniform
crossover is tolerant of hitchhiking as well as random
crossover, but uniform crossover is outperformed by random
crossover in experiments results. Hence, we think hitchhiking
affects the capability of our technique slightly. We consider
the reason is that a program including harmful modifications
is to be deleted in selection because its fitness is low. In other
hand, random crossover has a merit described above, and that
is why the difference appears between random crossover and
uniform crossover.

VI. THREATS TO VALIDITY

We proposed a crossover technique, which compares pro-
grams’ properties. We used Jaccard coefficient to evaluate
similarity because its calculation is light, but we did not check
other measures for programs’ similarity: e.g. Levenshtein
distance. In addition, we used exp. (3) to evaluate test cases,
its values were set by our intuition. Hence, there may be a
better expression using other values: e.g. 1/3 to 1/2 or 1/4.

In experiments, we compared Marriagent and GenProg to
evaluate our technique. GenProg has many configurations: e.g.
probability of mutation, weight to test cases, and compiler
used to evaluate programs. If we set different values to such
populations or limit for generations, a result might differ to
above because our technique depends on the pair of programs.

Besides, we used three versions of tcas, which have various
faults, to subject program in the experiments. However, their
LOC are less than two hundred. If we use the program having
thousands of LOC or more, the result of our technique, espe-
cially using similarity may differ. In addition, our technique is
capable because tcas has 109 test cases. If we use the program
having a few test cases, the result of our technique may differ.
Therefore, we need to evaluate the scalability of our technique
and generalize the results.

VII. CONCLUSION

We propose a crossover technique extending GenProg. Our
technique operates crossover by selecting programs based on
comparison their properties. Our experimental results show
our technique, using comparison by test cases and strategy as
random crossover, generates fixed programs more often than
GenProg.

In the future works, we plan to develop new strategies
in comparison of programs or operating crossover, moreover
combining existing techniques related to selection or mutation.
Besides, we also plan the experiments using more subjects
such as the large software including thousands of LOC to
evaluate scalability and generalize experimental results.
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