
Fast and Precise Token-Based
Code Clone Detection

January 2016

Hiroaki Murakami

Fast and Precise Token-Based
Code Clone Detection

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2016

Hiroaki Murakami

Abstract

Recently, code clones (hereafter, clones) have received much attention from many
researchers in the field of software engineering. Clones are code fragments that
are identical or similar to other code fragments in the source code, and they are
generated for various reasons, such as copy-and-paste operations. It has been said
that the presence of clones makes software maintenance more difficult. This is be-
cause, if developers modify a code fragment, they have to check each of its clones
and verify whether they need to make the same modification to the clone. On the
other hand, reusing code fragments by copy-and-paste operations has some advan-
tages; for example, developers can easily implement functions that are similar to
an existing function.

To detect clones automatically, various clone detectors have previously been
developed. Because clone definitions are neither generic nor strict, researchers in-
dividually make their own definitions of clones and develop clone detectors based
on their individual definitions. Some research studies compare the accuracies or
performances of clone detectors. From experimental results, we found that existing
clone detectors need improvements with respect to two problems: (1) the detection
time is too long, and (2) the detection accuracies are not sufficient. The reason
why the detection time is too long is the use of graph-based detection techniques.
Graph-based detection techniques transform source code to graph representations,
and their isomorphic sub-graphs are regarded as clones. Comparing isomorphic
sub-graphs requires much time. Next, the detection accuracies need improvement
for two reasons. The first reason is the use of module-based detection techniques.
Module-based detection techniques regard similar modules (e.g., blocks or meth-
ods) as clones. However, these techniques cannot detect clones that are partially
duplicated in modules. The second reason is the presence of repeated instructions.
Repeated instructions include repeating case entries in a switch statement, re-
peating similar method invocations, and so on. Token-based detection techniques,
which are also used, detect common sub-sequences of tokens in source code as
clones. These techniques detect clones in a short time, but yield many uninterest-
ing clones (clones that developers do not need to investigate) from the repeated

instructions. Many uninteresting clones are factors of decreasing detection accura-
cies.

In this dissertation, we propose two detection techniques that improve the ex-
isting problems. The first technique folds every repeated instruction in the source
code, and then it detects clones by token-based techniques. The folding opera-
tion prevents many of the uninteresting clones detected by token-based techniques.
The second one uses the Smith-Waterman algorithm for detecting clones. This
detection technique resolves existing problems because it does not use graphs for
detecting clones, and it detects statement-based clones that are more fine-grained
than modules. We conducted experiments by using Bellon’s benchmark and con-
firmed that the proposed detection techniques succeed in improving the existing
problems.

In addition, we propose a technique for visualizing clones that are detected by
the proposed detection techniques. Some clones have negative impacts on software
maintenance. For example, if developers modify a code fragment, they have to
check whether the clones need the same modification. In this case, developers
often use tools that take a code fragment as input and take its clones as output.
However, when developers use such existing tools, they have to open a number of
source files and move the scroll bar up or down to browse all detected clones. To
reduce the cost of browsing detected clones, we propose a visualization technique
so that developers can analyze the detected clones in a single view without moving
the scroll bar. Moreover, we combine the proposed clone detection techniques and
the visualization technique. We conduct experiments with student participants to
investigate the effectiveness of the combined techniques. In the experiment, we
compared the proposed tool with the existing tool from the perspective of time for
checking clones and usability. As a result, we confirmed that the proposed tool was
superior to the existing tool in both measures.

List of Publications

[1-1] Hiroaki Murakami, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki and Shinji
Kusumoto, “Folding Repeated Instructions for Improving Token-Based Code
Clone Detection”, in Proceedings of the 12th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2012), pp.64
–73, September, 2012.

[1-2] Hiroaki Murakami, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki and Shinji
Kusumoto, “Implementation and Evaluation of Code Clone Detection Method
Designed for Information of Repetition in Source Code”, IPSJ Journal, Vol.54,
No.2, pp.845–856, February, 2013.

[1-3] Hiroaki Murakami, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki and Shinji
Kusumoto, “Gapped Code Clone Detection with Lightweight Source Code
Analysis”, in Proceedings of the 21st IEEE International Conference on Pro-
gram Comprehension (ICPC 2013), pp.93–102, May, 2013.

[1-4] Hiroaki Murakami, Keisuke Hotta, Yoshiki Higo, Hiroshi Igaki and Shinji
Kusumoto, “Gapped Code Clone Detection Using the Smith-Waterman Al-
gorithm”, IPSJ Journal, Vol.55, No.2, pp.981–993, February, 2014.

[1-5] Hiroaki Murakami, Yoshiki Higo and Shinji Kusumoto, “A Dataset of Clone
References with Gaps”, in Proceedings of the 11th Working Conference on
Mining Software Repositories (MSR 2014), pp.412–415, May, 2014.

[1-6] Hiroaki Murakami, Yoshiki Higo and Shinji Kusumoto, “Making Correct
Clone Set with Locations of Gapped Lines”, IEICE Journal, Vol.J97-D, No.9,
pp.1537–1540, September, 2014.

[1-7] Hiroaki Murakami, Yoshiki Higo and Shinji Kusumoto, “ClonePacker: A
Tool for Clone Set Visualization”, in Proceedings of the 22nd IEEE Inter-
national Conference on Software Analysis, Evolution, and Reengineering
(SANER 2015), pp.474-478, March, 2015.

i

Acknowledgements

During this work, I have been fortunate to have received assistance from many peo-
ple. This work could not have been possible without their valuable contributions.

First, I wish to express my deepest gratitude to my supervisor Professor Shinji
Kusumoto for his continuous supports, encouragement and guidance of the work.
I also thank him for providing me an opportunity to do this work. Without his
supports, this work would not have been possible.

I would like to thank Proessors Katsuro Inoue and Kenichi Hagihara, for their
insightful comments and encouragement regarding this dissertation. I would also
like to acknowledge the guidance of Professors Toshimitsu Masuzawa and Yasushi
Yagi.

I thank greatly professors and staffs in my laboratory. I am grateful to Asso-
ciate Professor Yoshiki Higo and Keisuke Hotta at Fujitsu Ltd. for their adequate
guidances, valuable suggestions and discussions throughout this work. I appreci-
ate Associate Professors Kozo Okano at Shinshu University and Hiroshi Igaki at
Osaka Institute of Technology. When they were members of my laboratory, they
provided me helpful comments and suggestions. I would also like to thank office
workers in my laboratory, Tomoko Kamiya, Kaori Fujino, Ritsuko Hama and Yumi
Nakano for continual supports and heartful kindnesses.

I also thank greatly student members in my laboratory. I truly feel grateful
to seniors, Kazuki Kobayashi, Yuko Muto, Yui Sasaki, Yoshihiro Nagase, Ken-
taro Hanada and Kazuki Yoshioka. I had a very pleasurable time with them. I am
deeply grateful to my friends, Tomoya Ishihara, Shuhei Kimura, Yukihiro Sasaki,
Hiroaki Shimba and Jiachen Yang for their constant encouragements. Their sup-
ports and cares helped me to overcome many difficulties. I thank greatly juniors,
Ayaka Imazato, Takafumi Ohta, Hiroyuki Kirinuki, Noa Kusunoki, Yuya Fujita,
Takamasa Mizoro, Shota Egawa, Akio Ohtani, Ryotaro Kou, Naoto Ogura, Yusuke
Sabi, Sohichi Sumi, Yuki Huruta, Yusuke Yuki, Haruki Yokoyama, Kento Shimon-
aka, Hiroki Nakajima, Yuto Yamada and Masahiro Yamamoto.

I express my warm thanks to professors and members in Inoue laboratory.
I thank greatly Associate Professor Makoto Matsushita and Assistant Professor

iii

Takashi Ishio. Their technical advices and comments enriched my dissertation. I
also thank greatly Eunjong Choi, Yu Kashima, Tetsuya Kanda, Umekawa Kohichi,
Yuya Onizuka, Akira Goto, Yuki Yamanaka and Hiroki Wakisaka. When I visit
Inoue laboratory, I feel happy to talk with them.

I would like to express our sincere thanks towards researchers on software engi-
neering. Associate Professor Yasutaka Kamei at Kyushu University and Assistant
Professor Shinpei Hayashi at Tokyo Institute of Technology and Associate Profes-
sor Norihiro Yoshida at Nagoya University and Assistant Professor Hideki Hata
at Nara Institute of Science and Technology provided me valuable comments and
technical advices.

Finally, I would like to thank my family and all of my friends in the Department
of Computer Science at Osaka University. I could complete this work because I am
encouraged by them at all times.

iv

Contents

1 Introduction 1
1.1 Background . 1
1.2 Overview of Research . 3
1.3 Overview of Dissertation . 5

2 Preliminaries 7
2.1 Definition . 7
2.2 Causes of Creation . 7
2.3 Types of Clones . 8
2.4 Clone Detection Techniques . 10
2.5 Bellon’s Benchmark for Comparing Clone Detectors 15
2.6 Clone Visualization Techniques 18

3 Pre-Processing of Clone Detection for Reducing Uninteresting Clones 21
3.1 Background . 21
3.2 Research Motivation . 23
3.3 Clone Detection with Folding Repeated Instructions 25
3.4 Implementation . 29
3.5 Overview of Investigation . 30
3.6 Experiment A . 31
3.7 Experiment B . 34
3.8 Conclusion . 39

4 Clone Detection Using Smith-Waterman Algorithm 41
4.1 Background . 41
4.2 Smith-Waterman Algorithm . 43
4.3 Proposed Technique . 46
4.4 Experimental Design . 51
4.5 Preliminary Experiment . 52

v

4.6 Experiment A . 52
4.7 Experiment B . 55
4.8 Threats to Validity . 58

4.8.1 Clone References . 58
4.8.2 Code Normalization . 59
4.8.3 Three Parameters in Smith-Waterman Algorithm 59

4.9 Discussion . 59
4.10 Conclusion . 60

5 Clone Visualization Using Circle Packing 61
5.1 Introduction . 61
5.2 Circle Packing . 62
5.3 Proposed Technique . 64

5.3.1 Step-1: Detecting Clones 64
5.3.2 Step-2: Visualizing Clone Set 65

5.4 Tool: ClonePacker . 65
5.4.1 Implementation . 65
5.4.2 How to Use ClonePacker 65
5.4.3 Example of Supporting Scenario 66

5.5 Experiment . 67
5.5.1 Evaluation for Clone Analysis Time 67
5.5.2 Evaluation for Usability 69

5.6 Threats to Validity . 70
5.6.1 Configurations of Clone Detection 70
5.6.2 Target Software System 71
5.6.3 Participants . 72
5.6.4 Experimental Methodology 72

5.7 Conclusions . 72

6 Conclusion 73
6.1 Contribution . 73
6.2 Future Work . 75

vi

List of Figures

2.1 Example of Clone Pair and Clone Set 8
2.2 Examples of Type-1 Clones . 9
2.3 Examples of Type-2 Clones . 9
2.4 Examples of Type-3 Clones . 10
2.5 Examples of Type-4 Clones . 10
2.6 Example of Transformation from Source Code into AST 12
2.7 Example of Transformation from Source Code into PDG 13
2.8 Example of Reordered Clones 14
2.9 Examples of Clone References and Clone Candidates for Calculat-

ing ok and good Values . 18
2.10 Example of Scatter Plot in Gemini [83] 19
2.11 Example of Edge Bundle [22] 20
2.12 Example of Tree View in VisCad [3] 20

3.1 Motivating Example, Which Shows That Many Uninteresting Clones
Are Detected from Repeated Instructions 23

3.2 Transformed Source Code in Figure 3.1after Folding Operation . . 24
3.3 Motivating Example, Which Shows that Human Regards Whole

Repeated Instructions as Clones 24
3.4 Overview of Proposed Technique 26
3.5 How Input Source Code is Transformed into Folded Hash Sequence 28
3.6 Example of Transformation with Heuristics 30
3.7 # of Clone Candidates, Precision and Recall in Experiment A . . 32
3.8 Clone Reference Newly Detected by Using Folding Operation . . 33
3.9 Precision and Recall of All Detectors for All Target Software

Systems . 36
3.9 Precision and Recall of All Detectors for All Target Software

Systems . 37
3.9 Precision and Recall of All Detectors for All Target Software

Systems . 38

vii

3.10 Clone Reference Located in Repeated Instructions 39

4.1 Smith-Waterman Algorithm Applied to Two Base Sequences, “GAC-
GACAACT” and “TACACACTCC” 44

4.2 Overview of Proposed Technique 45
4.3 Example of Detection Process Using Proposed Technique 47
4.3 Example of Detection Process Using Proposed Technique 48
4.3 Example of Detection Process Using Proposed Technique 49
4.4 Recall, Precision and F -measure on 3-Tuple of Parameters (match,

mismatch, gap). 51
4.5 Example of Enhanced Clone Reference (Clone Reference No. 1101). 53
4.6 Recall, Precision and F -measure of CDSW Using Both Clone

References . 54
4.7 Recall, Precision and F -measure for Type-3 Clone References 56
4.8 Recall, Precision and F -measure for Type-1, Type-2 and Type-

3 Clone References . 57
4.9 Exection Time of DECKARD, NiCad and CDSW for Target Soft-

ware Systems . 58

5.1 Example of Circle Packing . 62
5.2 Overview of Proposed Technique 63
5.3 Screenshot of ClonePacker . 66
5.4 Modifications in JFreeChart . 67
5.5 Results of Task Completion Time 68

viii

List of Tables

2.1 Target Software Systems . 16
2.2 Target Clone Detectors . 16

3.1 Rate of Self-Overlapping Clones That Became Undetected by Us-
ing Folding Operations . 34

3.2 # of Clone Candidates. Every“ -”Means That Detector Could
not Finish Clone Detection Because of Scalability Issue. 35

5.1 Details of Experimental Tasks 67
5.2 Results of System Usability Scale 71

ix

Chapter 1

Introduction

This chapter provides an introduction to this dissertation.

1.1 Background

Software development consists of the following five phases [12].

• Requirement Phase

• Design Phase

• Implementation Phase

• Testing Phase

• Maintenance Phase

It has been said that the maintenance phase is the most expensive phase [7, 64].
For example, according to [2], approximately 80% of the total cost is spent on
software maintenance. Maintenance of software systems is defined as the modifi-
cation of a software product after its delivery in order to correct faults, to improve
the performance or other attributes, or to adapt the software to a modified environ-
ment [26,54]. To modify software products, modifying the source code is unavoid-
able. It has been said that the presence of code clones makes software maintenance
more difficult [35].

Code clones (hereafter, clones) are code fragments that are identical or simi-
lar to other code fragments in the source code. Clones are generated for various
reasons, such as copy-and-paste operations. The reason why clones make soft-
ware maintenance more difficult is that, if developers modify a code fragment, they

1

have to check its clones and verify whether the fragments need the same modifica-
tions [48]. On the other hand, reusing code fragments by copy-and-paste operations
has some advantages; for example, developers can implement functions easily that
are similar to an existing function.

To detect clones automatically, various clone detectors have previously been
developed. Because clone definitions are neither generic nor strict, researchers in-
dividually make their own definitions of clones and develop clone detectors based
on their individual definitions. Some research has compare the accuracies or per-
formances of clone detectors [9, 68], and from the reported experimental results,
we conclude that the existing clone detectors need improvements with respect to
the following two problems.

Detection time is too long
Clone detection techniques are categorized into various types (described in
Chapter 2). The program dependence graph (PDG)-based techniques consti-
tute one category [24, 43]. These techniques transform source code to graph
representations and then regard isomorphic sub-graphs as clones. The ex-
isting PDG-based techniques can detect clones that other techniques cannot
detect, but comparing isomorphic sub-graphs requires much time.

Detection accuracies are not sufficient
Gapped clones are clones with modifications of some statements (e.g., added
or modified statements) after a copy-and-paste operation. To detect gapped
clones, some researchers have proposed techniques that regard similar mod-
ules (e.g., blocks or methods) as clones [53, 65]. However, these techniques
cannot detect clones that are partially duplicated in modules.

Moreover, it is said that the presence of repeated instructions (e.g., repeat-
ing case entries in a switch statement or repeating similar method invo-
cations) is a large factor for decreased accuracies of token-based detection
techniques [25]. Token-based detection techniques constitute another detec-
tion category. These techniques detect common sub-sequences of tokens in
the source code as clones. Although they detects clone in a short time, but
they yield many uninteresting clones (clones that developers do not need to
investigate) from the repeated instructions. Many uninteresting clones are
factors of decreased detection accuracies.

In this dissertation, we propose two fast and precise token-based clone detec-
tion techniques that improve existing techniques with respect to these problems.
In addition, we propose a technique for visualizing clones that are detected by our
proposed detection techniques.

2

Some clones have negative impacts on software maintenance. For example, if
developers modify a code fragment, they have to check whether its clones need the
same modifications. In this case, developers often use tools that take a code frag-
ment as input and take its clones as output. However, when developers use such
existing tools, they have to open a number of source files and move the scroll bar
up or down to browse all detected clones [27]. To reduce the cost of browsing the
detected clones, we propose a visualization technique so that developers can ana-
lyze the detected clones in a single view without moving the scroll bar. Moreover,
we combine the proposed clone detection techniques and the visualization tech-
nique, and then we conduct experiments with student participants to investigate the
performance of the combined techniques.

1.2 Overview of Research

This dissertation describes the results of three studies. The first study is on
the pre-processing of clone detection for reducing uninteresting clones. The sec-
ond one proposes a clone detection technique for decreasing detection time and
increasing detection accuracies. The third one proposes a technique to visualize
clones for reducing the cost of browsing detected clones.

Pre-Processing of Clone Detection for Reducing Uninteresting Clones

As described before, the presence of repeated instructions in the source code
is a large factor for detecting uninteresting clones. In this research, we propose a
technique that folds every repeated instruction, and then it detects clones by token-
based technique. The folding operation prevents many uninteresting clones de-
tected by token-based techniques. We implemented the proposed technique as a
tool, named FRISC. Then, we conducted a quantitative evaluation of FRISC by
using Bellon’s benchmark (described in Chapter 2). In his benchmark, Bellon made
references of clones (called clone references), and compared accuracies among the
clone detectors.

From the results of the evaluation, we confirmed the following:

• The folding operation reduced many uninteresting clones.

• Some clones were newly detected by the folding operation.

• FRISC detected more clone references than any other detectors in most
cases.

3

Clone Detection Using the Smith-Waterman Algorithm

To detect gapped clones (clones with some gapped lines, described in Chapter
2), abstract syntax tree (AST)-based techniques, PDG-based techniques, metric-
based techniques, and text-based techniques that use the longest common sub-
sequence (LCS) algorithm have been proposed. However, each of these techniques
has limitations. For example, the existing AST-based techniques and PDG-based
techniques require much time for detecting clones. The existing metric-based tech-
niques and text-based techniques using the LCS algorithm cannot detect clones if
modules are partially duplicated, because these techniques calculate the similarity
between two modules. To resolve these limitations, we propose a technique for de-
tecting gapped clones by using the Smith-Waterman algorithm. We developed the
proposed technique as a tool, named CDSW. CDSW resolved the existing prob-
lems because CDSW does not use AST or PDG for detecting clones, and CDSW
detects statement-based clones that are more fine-grained than modules.

Moreover, we improved Bellon’s benchmark. Bellon’s clone references do not
have location information of gapped lines in gapped clones. Thus, Bellon’s bench-
mark does not evaluate some gapped clones correctly. To resolve the issue, we
added location information of gapped lines to the clone references. We report
an experiment that compares Bellon’s clone references and our clone references.
Finally, we compare accuracies between CDSW and existing clone detectors by
using the enhanced clone references.

From the results of experiments, we confirmed the following:

• Our clone references can evaluate gapped clones more correctly than Bel-
lon’s clone references.

• CDSW detected clones in a large software system in a short time.

• CDSW was the best of all clone detectors from the viewpoint of F-measure.

Clone Visualization Using Circle Packing

As described before, developers often use tools that take a code fragment as
input and take its clones as output. However, when developers use such existing
tools, they have to open a number of source files and move the scroll bar up or
down to browse all detected clones. To reduce the cost of browsing the detected
clones, we propose a technique for browsing detected clones by using a single view
without moving the scroll bar. The proposed technique was developed as a tool,
named ClonePacker, which uses the circle packing technique for visualization.
We conducted experiments with student participants, who compared ClonePacker
with the existing tool. In the experiments, we evaluated the time taken to report the

4

locations of clones and the usability of the tools. As a result of the experiments,
we confirmed that ClonePacker is better than the existing tools in both location
detection and usability.

1.3 Overview of Dissertation

The rest of this dissertation is organized as follows.
Chapter 2 is an overview of clones. This chapter describes definitions of clones,

some clone detection/visualization techniques, and some related work on clones.
Chapters 3, 4, and 5 discuss the above three studies, i.e., the pre-processing of

clone detection for reducing uninteresting clones, the clone detection technique for
decreasing detection time and increasing detection accuracies, and the technique to
visualize clones for reducing the cost of browsing detected clones.

Chapter 3 describes the pre-processing of clone detection for reducing uninter-
esting clones. In addition, we explain the results of the experiments using Bellon’s
benchmark.

Chapter 4 presents a new clone detection technique using the Smith-Waterman
algorithm. In this chapter, we explain the Smith-Waterman algorithm and how to
find clones from the source code by using the algorithm. Moreover, we describe
the enhanced clone references and how to use them. Finally, this chapter shows a
comparison of the accuracies between CDSW and the existing clone detectors.

Chapter 5 presents a clone visualization technique using the circle packing
technique. It describes circle packing, how to use ClonePacker, and the experi-
ments with the student participants.

Finally, Chapter 6 concludes this dissertation and states future work.

5

Chapter 2

Preliminaries

This chapter provides preliminaries of code clones.

2.1 Definition

Code clones (hereafter, clones) are defined as fragments that are identical or
similar to other code in the source code. This subsection uses Figure 2.1 to explain
two terms used in this dissertation.

The first term is clone pair, which is a pair of code fragments that are identical
or similar to each other. In Figure 2.1, the three code fragments α, β, and γ are
clones. In this case, three pairs of code fragments, (α, β), (α, γ), and (β, γ), are
clone pairs.

The second term is clone set, which is a set of code fragments that are identical
or similar to each other. In Figure 2.1, the set of code fragments (α, β, and γ) is a
clone set.

2.2 Causes of Creation

Clones can be created or introduced in the following situations.

Copy-and-Paste Operations: This is the most prevalent situation in which clones
are created. Reusing code by copy-and-paste operations is a common prac-
tice in software development, because it is quite easy and enables us to de-
velop software faster.

Stylized Processing: Processing that is used frequently (e.g., calculations of in-
come tax, insertions in queues, and access to data structures) may cause
code duplications.

7

clone pair

clone pair

clone
pair

clone set

α

β

γ

Figure 2.1: Example of Clone Pair and Clone Set

Lack of Suitable Functions: Developers may have to write similar processes with
similar algorithms, if they use programming languages that do not have ab-
stract data types or local variables.

Performance Improvement: Developers can introduce code duplication inten-
tionally to improve the performance of software systems in the case that
in-line expansion is not supported.

Automatically Generated Code: Code generation tools automatically create code
based on stylized code. As a result, if we use code generation tools to handle
similar processes, the tools may generate similar code fragments.

Handling Multiple Platforms: Software systems that can handle multiple opera-
tion systems or CPUs tend to include many clones in the process handling of
each platform.

Accident: Different developers may write similar code accidentally. However, it
is rare that the amount of similar code generated accidentally becomes high.

2.3 Types of Clones

Bellon et al. categorized clones into the following three types [9].

Type-1: Identical code fragments except for variations in whitespace, layout, and
comments.

8

int sum(int data[], int n) {
 int result = 0;
 for(int i = 0; i < n; i++) {
 result += data[i];
 }
 return result;
}

(a) Code Fragment 1

int sum(int data[], int n)
{
 int result = 0;
 for(int i = 0; i < n; i++)
 {
 result += data[i];
 }
 return result;
}

(b) Code Fragment 2

Figure 2.2: Examples of Type-1 Clones

int sum(int data[], int n) {
 int result = 0;
 for(int i = 0; i < n; i++) {
 result += data[i];
 }
 return result;
}

(a) Code Fragment 1

int sum(int data[], int n) {
 int total = 0;
 for(int i = 0; i < n; i++) {
 total += data[i];
 }
 return total;
}

(b) Code Fragment 2

Figure 2.3: Examples of Type-2 Clones

Type-2: Syntactically identical fragments except for variations in identifiers, liter-
als, types, whitespace, layout, and comments.

Type-3: Copied fragments with further modifications, such as changed, added, or
removed statements, in addition to variations in identifiers, literals, types,
whitespace, layout, and comments.

Moreover, some research groups have recently suggested an additional type of
clones [40, 68].

Type-4: Code fragments that perform the same computation but are implemented
by different syntactic variants.

Figures 2.2, 2.3, 2.4, and 2.5 give examples of each type of clones. In the
figures, on the left are the original code fragments and one the right are the clones.

The right code fragment in Figure 2.2 is generated by changing formats after a
copy-and-paste operation. Thus, the two code fragments in Figure 2.2 are Type-1

9

int sum(int data[], int n) {
 int result = 0;
 for(int i = 0; i < n; i++) {
 result += data[i];
 }
 return result;
}

(a) Code Fragment 1

int sum(int data[], int n) {
 int result = 0;
 for(int i = 0; i < n; i++) {
 result = result + data[i];
 }
 return result;
}

(b) Code Fragment 2

Figure 2.4: Examples of Type-3 Clones

int sum(int data[], int n) {
 int result = 0;
 for(int i = 0; i < n; i++) {
 result += data[i];
 }
 return result;
}

(a) Code Fragment 1

int sum(int data[], int n) {
 if(n == 1){
 return data[n-1];
 } else {
 return data[n-1]+sum(data, n-1);
 }
}

(b) Code Fragment 2

Figure 2.5: Examples of Type-4 Clones

clones. The differences between the code fragments in Figure 2.3 are the variable
names. This means that the two code fragments in Figure 2.3 are Type-2 clones.
In Figure 2.4, the addition operation is changed. Since a gap appears in the code
fragment, the two code fragments in Figure 2.4 are Type-3 clones. Finally, in
Figure 2.5, the right code fragments are not similar to the left ones. However,
these two code fragments perform the same computation. Therefore, the two code
fragments in Figure 2.5 are Type-4 clones.

2.4 Clone Detection Techniques

Clone detection is an important topic in the research of clones. Many tech-
niques, including those listed below, detect clones automatically. Clone detection
techniques can be categorized into the following categories.

Line-based Techniques
Line-based techniques detect clones by comparing every line of code frag-
ments as a string. They regard multiple consecutive lines that exceed a spec-
ified threshold as clones. Line-based techniques can detect clones quickly as

10

compared with other detection techniques, because they do not require any
pre-processing of the source code. However, they cannot detect clones that
have different coding styles.

The techniques of Johnson [34] and Ducasse [18] are well-known line-based
techniques. Their techniques compare every line of code after removing
whitespaces, tabs, and line breaks. Thus, they detect clones that have differ-
ent coding styles and are language-independent.

Simian is one of the most famous and commonly used line-based clone
detectors [74]. Simian can handle about 20 programming languages (e.g.,
Java, C, and C++) and detect clones very quickly.

Token-based Techniques
First, token-based techniques transform source code into a token sequence.
Then, they detect common sub-sequences of the tokens as clones. Com-
pared to line-based techniques, token-based techniques are robust for code
formatting. The detection speed of token-based techniques is inferior to that
of line-based techniques, but superior to the tree-based or graph-based tech-
niques discussed below.

Kamiya developed a token-based clone detector, named CCFinder [37], that
is well known and has been widely used by many developers. It replaces
user-defined identifiers (e.g., method names or variable names) with specific
tokens. By pre-processing, CCFinder can detect Type-2 clones.

A major version of CCFinder is named CCFinderX [13]. Also, Livieri
developed a distributed version of CCFinder, named D-CCFinder [51], that
was implemented in a system with 80 PC workstations. In [51], a huge
collection of open source software with about 400 million lines was analyzed
with D-CCFinder in about 2 days.

Li developed a token-based clone detector, named CP-Miner [50]. First,
lexical and syntax analyses are performed on the source code. User-defined
identifiers are replaced with specific tokens, as in CCFinder. The major
difference between CP-Miner and CCFinder is the detection algorithms.
In CP-Miner, hash values are calculated from every statement, and then a
frequent pattern mining algorithm [1] is applied for detecting clones. In
the frequent pattern mining algorithm, the hash values do not have to be
consecutive. Thus, CP-Miner can detect Type-3 clones.

Tree-based Techniques
In tree-based techniques, source code is transformed into a tree represen-
tation. An abstract syntax tree (AST) is one of the well-known tree repre-

11

if statement

binary operation assignment statement assignment statement

> variable variable variable variable

variable

constant

a integer type 0 x a x

unary operation

-

a

if (a > 0) {
 x = a;
} else {
 x = -a;
}

cond else

lhs rhs lhs rhs

name type value name name name

name

AST transformation

Figure 2.6: Example of Transformation from Source Code into AST

sentations. Figure 2.6 shows an example of an AST transformation. Tree-
based techniques regard common sub-trees as clones, and these techniques
are therefore also robust for code formatting. However, they have the disad-
vantage of requiring more time for detecting clones than do text-based and
token-based techniques.

Baxter developed a tree-based clone detector, named CloneDR [8, 15], that
calculates various metrics based on ASTs, then detects clones by compar-
ing the metrics. Thus, CloneDR detects clones quickly in large software
systems. CloneDR can also handle a lot of programming languages.

Koschke’s technique [45] and Jiang’s technique [33] are also tree-based ap-
proaches. In Koschke’s technique, ASTs are compared with a suffix tree al-
gorithm to increase the detection speed. Jiang’s detector, named DECKARD,
uses a locality-sensitive hashing algorithm [63] to detect clones. With the al-
gorithm, DECKARD can detect Type-3 clones.

12

1: x = 0;
2: y = 0;
3: z = MAX;
4: while (y < z) {
5: y = x + 1;
6: }
7: println(y);

PDG transformation

entry

<1> <3> <2>

<7>

<5>

<4>

Data Dependence Edge

Control Dependence Edge

Figure 2.7: Example of Transformation from Source Code into PDG

Graph-based Techniques
In graph-based techniques, source code is transformed into a graph represen-
tation. A program dependence graph (PDG), which is one of the well-known
graph representations, has data dependence edges and control dependence
edges for each element of source code. Figure 2.7 shows an example of
the transformation from source code into a PDG. Graph-based techniques
regard isomorphic sub-graphs as clones. Because PDGs require a semantic
analysis for their creation, these approaches require much more cost than
do other detection techniques. However, these approaches can detect clones
with some differences that have no impact on the program behavior. Figure
2.8 shows such a clone, which is reordered. Other techniques cannot detect
these clones because they have reordered statements.

13

 fp = lookaheadset + tokensetsize;
 for (I = lookaheas(state) ; I < k ; i++) {
% fp1 = LA + i * tokensetsize;
% fp2 = lookaheadset;
% while (fp2 < fp1)
% *fp2++ |= fp1++;
 }

(a) Code Fragment 1

 fp3 = base + tokensetsize;
 …
 if (rp) {
 while ((j = *rp++) >= 0) {
 …
fp1 = lookaheadset;
fp2 = LA + j * tokensetsize;
while (fp1 < fp2)
*fp1++ |= *fp2++;
 }

(b) Code Fragment 1

Figure 2.8: Example of Reordered Clones

Komondoor proposed the initial graph-based technique [43]. Komondoor’s
technique uses program slicing [85] to find isomorphic sub-graphs.

Krinke’s technique [46] and Higo’s technique [24, 72] are also classified
as graph-based techniques. Both of these techniques are designed to re-
duce detection cost. Krinke’s technique sets the limit of the search range
for finding isomorphic sub-graphs. Higo proposed a technique that aggre-
gates nodes in PDGs under some conditions. Moreover, he introduced a new
dependence edge named “execution dependence edge” for PDGs [24]. By
introducing the execution dependence edge, Higo’s technique successfully
detected clones that other graph-based techniques could not detect.

Other Detection Techniques
First, metric-based techniques are categorized into this category. Metric-
based techniques calculate various metrics for every program module (e.g.,
method, function, and class), then detect clones by comparing the similarity
of the modules based on the metrics. Mayland developed the initial metric-

14

based detector, named CLAN [53], that creates ASTs from source code, then
calculates the metrics obtained from the ASTs. Lanubile’s technique [49]
and Kodhai’s technique [42] are also categorized as metric-based techniques.

Roy developed a clone detector, named NiCad [17,59,65,67], that uses TXL
programming language [16] for clone detection. NiCad has been extended
to other uses, such as the analysis environment VisCad [3], clone genealogy
creator gCad [69, 70], and SimCad [80, 81], which uses simhash [14] for
clone detection.

Some researchers have proposed file-based detection techniques. Ossher’s
technique [61] and Sasaki’s technique [86] are categorized into this category.
File-based detection techniques can detect clones in a short time, because
they compare every file instead of lines or tokens. A disadvantage of these
techniques is that they cannot detect clones that are partially duplicated in
files. Method-based detection techniques have also been studied [30, 32].

Recently, some researchers have proposed techniques that detect clones by
using information other than the source code. Kim proposed a clone detec-
tion technique by comparing the memory states in each method and devel-
oped the proposed technique as a tool, named MeCC [40]. This technique
can detect clones by using the fragment similarities missed by other detec-
tors. Clone detections using Java byte-code have also been studied [38, 71]

Moreover, incremental detection techniques have been proposed [21, 28, 31,
58]. Incremental detections, which are clone detection results in previous
code revisions, are registered, then used for the next clone detection. By
reusing the detection results in previous revisions, the detection costs on the
current revision are reduced.

2.5 Bellon’s Benchmark for Comparing Clone Detectors

Some researchers have conducted comparative experiments of clone detec-
tors [9, 66, 68, 76–78]. Bellon conducted the largest scale experiment [9]. In this
subsection, we describe Bellon’s benchmark.

Bellon’s benchmark is one of the most famous benchmarks in the clone com-
munity. He compared six clone detectors from the perspective of accuracy and
performance. He conducted the comparison in the following steps.

Step-1: Bellon selected eight software systems as target systems, and six clone
detectors as target detectors. Tables 2.1 and 2.2 show the details of the target
systems and the target detectors, respectively.

15

Step-2: He asked the developers of the clone detectors to detect clones from the
target systems. Then the developers sent the location information of the
detected clones to Bellon.

Step-3: 2% of the clones sent from the developers were randomly selected, then
he checked each of them manually to determine whether they were actually
clones.

In the remainder of this dissertation, we use the following terms.

Clone candidates: clones found by clone detectors.

Clone references: clones judged by Bellon manually.

In Bellon’s benchmark, ok and good values are defined. These two values
decide whether each clone candidate matches any clone references. Assume that
C is a clone candidate, R is a clone reference, F1 is one code fragment, and F2 is
the other code fragment; lines(F) means a set of code lines in F . The definition
of the ok value is shown in Eqs. 2.1 and 2.2.

Table 2.1: Target Software Systems
Name Language Lines of Code # of Clone References

netbeans Java 14,360 55
ant Java 34,744 30

jdtcore Java 147,634 1,345
swing Java 204,037 777
weltab C 11,460 275
cook C 70,008 440
snns C 93,867 1,036

postgresql C 201,686 555

Table 2.2: Target Clone Detectors
Developer Clone Detector Detection Technique

Baker Dup [5] token-based technique
Baxter CloneDR [8] AST-based technique

Kamiya CCFinder [37] token-based technique
Merlo CLAN [53] metrics-based technique
Rieger Duploc [18] line-based technique
Krinke Duplix [46] PDG-based technique

16

ok(C,R) = min(max(contain(C.F1, R.F1),

contain(R.F1, C.F1),

max(contain(C.F2, R.F2),

contain(R.F2, C.F2))). (2.1)

contain(F1, F2) =
|lines(F1) ∩ lines(F2)|

|lines(F1)|
. (2.2)

The ok value intuitively means the overlapping ratio of a clone candidate and a
clone reference. The more the ok value increases, the more the overlapping part of
the clone candidate and the clone reference increases. Meanwhile, the good value
is much more restrictive for a candidate-reference match. The definition of a good
value is shown in Eqs. 2.3 and 2.4.

good(C,R) = min(overlap(C.F1, R.F1),

overlap(C.F2, R.F2)). (2.3)

overlap(F1, F2) =
|lines(F1) ∩ lines(F2)|
|lines(F1) ∪ lines(F2)|

. (2.4)

Clone references and clone candidates are matched when ok or good values
are equal to or greater than a threshold. In Bellon’s benchmark, 0.7 is used for the
threshold.

We show examples of calculating the ok value and the good value in Figure
2.9. In the figure, the 80th-86th lines in the left code and the 267th-275th lines in
the right code are clone references. Moreover, the 82nd-85th lines in the left code
and the 269th-272nd lines in the right code are clone candidates. In this case, ok
and good values are calculated as follows.

ok(C,R) = min(max(
4

4
,
4

7
),max(

4

4
,
4

9
))

= min(
4

4
,
4

4
)

= 1.0

good(C,R) = min(
4

7
,
4

9
)

= 0.44

(2.5)

17

80: void write(StorableOutput dw) {
81:
82: dw.writeInt(fDisplayBox.x);
83: dw.writeInt(fDisplayBox.y);
84: dw.writeInt(fDisplayBox.width);
85: dw.writeInt(fDisplayBox.height);
86: }

267: void write(StorableOutput dw) {
268: super.write(dw);
269: dw.writeInt(fDisplayBox.x);
270: dw.writeInt(fDisplayBox.y);
271: dw.writeInt(fDisplayBox.width);
272: dw.writeInt(fDisplayBox.height);
273: writeTasks(dw, fPreTasks);
274: writeTasks(dw, fPostTasks);
275: }

clone candidates clone references

Figure 2.9: Examples of Clone References and Clone Candidates for Calculating
ok and good Values

Then, recall and precision are calculated. Assume that Refs is a set of clone
references, Cands is a set of clone candidates, and DetectedRefs is a set of
clone references whose ok or good values are greater than or equal to the threshold.
Therefore, the definitions of recall and precision are as shown in Eqs. 2.6 and
2.7.

Recall =
|DetectedRefs|

|Refs|
. (2.6)

Precision =
|DetectedRefs|

|Cands|
. (2.7)

Then, Bellon compared recall and precision between the target detectors. The
results in Bellon’s benchmark are summarized as follows.

• Line-based and token-based detection techniques have high recall and low
precision. This means that these techniques detect many clone references,
but yield many false positives.

• Metric-based detection techniques have low recall and high precision. This
means that many of clones detected by these techniques are in clone refer-
ences, even though these techniques miss many clone references.

2.6 Clone Visualization Techniques

Many clone detectors report the location information of detected clones, such
as file names, start lines, and end lines. However, it is sometimes difficult for de-
velopers to analyze clones with only location information. Thus, some researchers
have proposed clone visualization techniques.

18

Figure 2.10: Example of Scatter Plot in Gemini [83]

Ueda developed a clone analysis environment, named Gemini [82, 83], that
uses scatter plots for visualizing clones. Figure 2.10 shows an example of a scatter
plot. Both the vertical and horizontal axes represent tokens of source code. Each
black dot means that the corresponding tokens on the vertical and the horizontal
axes are the same.

Hauptmann proposed a technique that shows clone detection results by using
edge bundles [22]. Figure 2.11 shows an example of a clone detection result by
using edge bundles. The outermost rectangles show directories, and pins pointing
to a rectangle indicate files that exist in the directory. The blue lines connecting
two pins indicate that the two files are clones. The advantage of this technique is
that it associates the clone detection results with a file hierarchy.

Asaduzzaman developed a clone analysis support tool, named VisCad [3], that
uses scatter plots and tree views for visualizing clones. Figure 2.12 shows an ex-
ample of a tree view. The tree view shows the cloning status of directories and files
by using rectangles. Developers can find the modules that have many clones from
all the modules.

19

Figure 2.11: Example of Edge Bundle [22]

Figure 2.12: Example of Tree View in VisCad [3]

20

Chapter 3

Pre-Processing of Clone Detection
for Reducing Uninteresting
Clones

3.1 Background

Many software systems have many clones. In order to detect clones in the
source code automatically, a variety of detection techniques has been proposed in
the past [68]. At present, line-based and token-based detection techniques are often
used because of the following reasons:

• line/token-based detections have high scalability because they neither re-
quire deep source code analysis nor construct complex intermediate struc-
tures for the detection. Consequently, they are used in various contexts of
software developments. Also, they are used for detecting clones from large-
scale software [37, 50], a number of software [44, 51, 73], a number of con-
secutive revisions of software [20, 29, 47, 52];

• implementing line/token-based detection techniques for multiple program-
ming languages is easier than other detection techniques like PDG-based
ones. Popular line/token based tools, CCFinder [37] and Simian [74], can
handle widely-used languages such as C/C++, Java, COBOL.

On the other hand, automatic clone detections by tools inherently produce unin-
teresting clones. Every detection technique has its own unique definition of clones,
and it detects clones based on the definition. However, developers do not need all
clones detected by tools.

21

Bellon, et al. compared recall and precision of six detection tools by using ora-
cle, which is a reference set of clones [9]. As a result, they revealed the followings:

• high recall tools detect many clones which implies that the detection results
of those tools include many uninteresting clones [4, 37];

• high precision tools have low recall [8, 65]. Detecting a small number of
uninteresting clones is their advantage but they miss many clone references.

To summarize the above points, line/token-based detections have high scalabil-
ity, and they can be applied to various contexts of software development. However,
they yield many uninteresting clones. We think that the presence of repeated in-
structions in source code is a large factor of uninteresting clones detection based
on our experiences of clone related research [23]. For example, if we detect clones
from the following example using a token-based approach with a suffix tree or suf-
fix array algorithm, we will obtain a clone pair: one consists of the 1-2 lines code
fragment; the other consists of the 2-3 lines code fragment. Both the code frag-
ments in the clone pair are overlapped with each other. Detecting such a clone pair
is meaningless.

1: unsigned char division mask;
2: unsigned int division offset;
3: unsigned int division size;

The above example is a repetition of consecutive variable declarations. If we
tailor detection to ignore repeated instructions, the clone pair becomes undetected.
We have revealed that there are various kinds of repeated instructions in the source
code, and many clones are detected in them with a token-based approach [23].
Consequently, ignoring repeated instructions prevents many uninteresting clones
from being detected. This chapter proposes a new clone detection technique fo-
cusing on not detecting uninteresting clones in repeated instructions. The contri-
butions of this chapter are as follows:

• this chapter proposes a pre-processing of clone detection producing less un-
interesting clones, and it has been developed as a token-based clone detector,
FRISC;

• we evaluated the proposed technique on multiple open source software sys-
tems, and confirmed that the usefulness of the proposed technique.

22

…
160: switch (evaluationType) {
161: case T_CODE_SNIPPET:
162: buffer.append("Code snippet");
163: break;
164: case T_IMPORT:
165: buffer.append("Import");
166 : break;
167: case T_INTERNAL:
168: buffer.append("Internal problem");
169: break;
170: case T_PACKAGE:
171: buffer.append("Package");
172: break;
173: case T_VARIABLE:
174: buffer.append("Global variable");
175: break;
176: }
…

EvaluationResult.java

…
235: switch(matchMode){
236: case EXACT_MATCH :
237: buffer.append("exact match, ");
238: break;
239: case PREFIX_MATCH :
240: buffer.append("prefix match, ");
241: break;
242: case PATTERN_MATCH :
243: buffer.append("pattern match, ");
244: break;
245: }
…

FieldReferencePattern.java

clone

clone pair relationship

Figure 3.1: Motivating Example, Which Shows That Many Uninteresting Clones
Are Detected from Repeated Instructions

3.2 Research Motivation

Figure 3.1 shows actual clones detected from repeated instructions. In the left-
side source file, there are five case entries and three case entries exist in the
right-side one. If we detect clones with using line/token-based detection tools, we
will obtain six clone pairs. Every detected clone is a hatching part in Figure 3.1.
As shown in this example, many clones are detected from repeated instructions.

Clones in repeated instructions have the following characteristics:

1. both the clones forming a clone pair are overlapped with each other. There
is no reason to detect such a clone pair because both the clones forming it
point almost the same locations of the source code;

2. both the clones forming a clone pair overlap with both the clones forming
another clone pair. We need not both the clone pairs because they point
almost the same locations of the source code.

Detecting all clones having the above characteristics enlarges detection results,
so that we become unaware of clones in other parts of the target system.

The proposed technique can resolve the problem. Intuitively, the proposed
technique firstly folds repeated instructions, and then it detects clones. By the

23

…
 switch (evaluationType) {
 case T_CODE_SNIPPET:
 buffer.append("Code snippet");
 break;
 }
…

EvaluationResult.java

…
 switch(matchMode){
 case EXACT_MATCH :
 buffer.append("exact match, ");
 break;
 }
…

FieldReferencePattern.java

clone clone pair relationship

5-folding 3-folding

Figure 3.2: Transformed Source Code in Figure 3.1 after Folding Operation

…
73: zoomout = ui_xCreateButtonItem("zoomout",
 framewidget,zoomin,donebutton);
74: n = 0;
75: XtSetArg(args[n], XtNx, 0); n++;
76: XtSetArg(args[n], XtNy, 0); n++;
77: XtSetArg(args[n], XtNwidth, 210); n++;
78: XtSetArg(args[n], XtNheight, 25); n++;
79: XtSetArg(args[n], XtNinternalHeight, 1); n++;
80: XtSetArg(args[n], XtNinternalWidth , 1); n++;
81: XtSetArg(args[n], XtNborderWidth, 0); n++;
82: XtSetArg(args[n], XtNhorizDistance, 30); n++;
83: XtSetArg(args[n], XtNfromHoriz, setbutton); n++;
84: XtSetArg(args[n], XtNleft , XtChainLeft); n++;
85: XtSetArg(args[n], XtNright , XtChainLeft); n++;
86: XtSetArg(args[n], XtNtop , XtChainTop); n++;
87: XtSetArg(args[n], XtNbottom, XtChainTop);n++;
88: scale = XtCreateManagedWidget("Label",
 formWidgetClass,framewidget,args,n);
89: n = 0;
…

…
178: XtAddCallback(button,XtNcallback, (XtCallbackProc) ui_guiQuit,
179: (XtPointer) ui_infoBox);
180: n=0;
181: XtSetArg(args[n], XtNborderWidth, 1);n++;
182: XtSetArg(args[n], XtNleft , XtChainLeft);n++;
183: XtSetArg(args[n], XtNright , XtChainLeft);n++;
184: XtSetArg(args[n], XtNtop , XtChainTop);n++;
185: XtSetArg(args[n], XtNbottom, XtChainTop);n++;
186: XtSetArg(args[n], XtNfromVert,button);n++;
187: form = XtCreateManagedWidget("form",
 formWidgetClass, ui_infoBox, args, n);
188: ui_message = ui_xCreateLabelItem("manMsg", form,
189 63*ui_labelFontWidth, NULL, NULL);
…

clone

clone pair relationship

ui_displwght.c ui_main.c

Figure 3.3: Motivating Example, Which Shows that Human Regards Whole Re-
peated Instructions as Clones

folding operation, the source code in Figure 3.1 is transformed to the source code
in Figure 3.2. Consequently, the proposed technique detects only a single clone
pair: one is a clone from the 161th line to the 175th line of the left-side source file;
the other is a clone from the 236th line to the 244th line of the right-side source
file. The proposed technique identifies the two switch statements as duplicated
code without detecting clones having the characteristics 1 and 2.

Also, Figure 3.3 shows an example of clone references judged manually in the
Bellon’s experiment [9]. As shown in this figure, humans prefer clones covering a
whole of the repeated instructions rather than ones covering a part of them. In other
words, human does not care the differences of the number of repetitions between

24

the code fragments.
Herein, we define the following research question in order to confirm that the

proposed technique detects fewer uninteresting clones, and it detects more prefer-
able clones.

RQ1: Does folding repeated instructions improve precision and recall of de-
tection results?

Currently, there is a variety of detection tools. In order to show the usefulness
of the proposed technique by comparing them, we define the following research
question.

RQ2: Does clone detection with folding repeated instructions have higher ac-
curacy than existing tools?

3.3 Clone Detection with Folding Repeated Instructions

The proposed technique consists of the following five steps.

STEP1: Lexical Analysis and Normalization

STEP2: Generating Statement Hash

STEP3: Folding Repeated Instructions

STEP4: Detecting Identical Hash Sequences

STEP5: Mapping Identical Subsequences to Source Code

The proposed technique takes the followings as its inputs:

• source code;

• maximum elements length (the number of statements);

• minimum clone length (the number of tokens).

The proposed technique outputs a list of detected clone pairs. Figure 3.4 shows
an overview of the proposed technique. The remainder of this section explains
every of the steps in detail.

STEP1: Lexical Analysis and Normalization

In STEP1, all the target source files are transformed into token sequences.
User-defined identifiers are replaced with special tokens to detect similar code frag-
ments as clones even if they include different variables.

25

5 30

maximum
elements length
(# of statements)

minimum token length
(# of tokens)

source files

clone pairs

STEP5: Mapping identical subsequences to source code

STEP4: Detecting identical hash subsequences

STEP3: Folding repeated instructions

STEP2: Generating statement hash

STEP1: Lexical analysis and normalization

Figure 3.4: Overview of Proposed Technique

STEP2: Generating Statement Hash

In STEP2, a hash value is generated from every statement in the token se-
quences. Herein, we define a statement as every subsequence between semicolon
(“;”), opening brace (“{”), and closing brace (“}”). STEP2 transforms token se-
quences into hash sequences. Note that every hash has a weight, which means the
number of tokens included in its statement.

STEP3: Folding Repeated Instructions

STEP3 is the core of the proposed clone detection technique. Firstly, repeated
subsequences are identified. Every of the identified repeated subsequences is di-
vided into the first repeated elements and its subsequent repeated elements. Then,
the subsequent repeated elements are removed from the hash sequences. The
weights of deleted elements are added to the weights of their first repeated ele-

26

Algorithm 3.1 Folding Repeated Hash Sequence
Require: seq,max elmt length(≥ 1)
Ensure: folded seq
1: seq len← length(seq)
2: for i = 0 to max elmt length do
3: left← 0
4: loop
5: flg ← true; index← left; tmpleft← left; count← 0;
6: while count ≤ i and index < seq len do
7: if isStatementEnd(seq[index]) then
8: if flg then
9: k ← index+ 1; flg ← false

10: end if
11: count← count+ 1
12: end if
13: index← index+ 1
14: end while
15: if index > seq len then
16: break
17: end if
18: tmp← seq[left..index− 1]
19: count← 0; left← index
20: while count ≤ i and index < seq len do
21: if isStatementEnd(seq[index]) then
22: count← count+ 1
23: end if
24: index← index+ 1
25: end while
26: if index > seq len then
27: break
28: end if
29: tmp2← seq[left..index− 1]
30: if tmp = tmp2 then
31: seq ← seq[0..left− 1] + seq[index..seq len]
32: seq len← length(seq); left← tmpleft
33: else
34: left← k
35: end if
36: end loop
37: end for
38: return seq

ments. Algorithm 3.1 shows the algorithm used for folding repeated subsequences.
In the algorithm, seq is a hash sequence, and max elmt length is a maximum el-
ements length. As a result of the algorithm application, all the repeated subse-
quences whose elements length is equal to or less than the threshold (the max-

27

sw
it

ch

(
 $

)

{
 c

as
e

$

 :
 $

 .
 $

 (
 $

)
 ;

b
re

ak
 ;

ca
se

 $
 :

 $
 .

 $
 (

 $
)

 ;
b

re
ak

 ;
ca

se
 $

 :
 $

 .
 $

 (
 $

)
 ;

 b
re

ak
 ;

 }

1
0

2

0

3
0

2

0

3
0

2

0

3
0

4

9

1

9

1

9

1

1
0

 2

0

3
0

 2

0

3
0

 2

0

3
0

4

9

1

9

1

9

1

re
p

ea
te

d
 s

eq
u

en
ce

s

fi
rs

t
el

em
en

t
su

b
se

q
u

en
t

el
em

en
ts

1
0

2

0

3
0

4

2
7

3

N
o

rm
al

iz
at

io
n

Id
en

ti
fy

in
g

st
at

em
e

n
ts

B
u

ild
in

g
st

at
em

e
n

t
st

ri
n

gs

G
e

n
e

ra
ti

n
g

h
as

h
e

s

Id
en

ti
fy

in
g

re
p

ea
te

d

se
q

u
en

ce
s

Fo
ld

in
g

re
p

et
it

io
n

s

sw
it

ch
($

)
 c

as
e$

:$
.$

($
)

 b
re

ak

ca
se

$
:$

.$
($

)
 b

re
ak

ca

se
$

:$
.$

($
)

 b
re

ak

4

9

1

9

1

9

1

w
ei

gh
t

st
at

em
en

t
st

at
em

en
t

st
at

em
en

t
st

at
em

en
t

st
at

em
en

t
st

at
em

en
t

st
at

em
en

t

sw
it

ch

(
 $

)

{
 c

as
e

$

 :
 $

 .
 $

 (
 $

)
 ;

b
re

ak
 ;

ca
se

 $
 :

 $
 .

 $
 (

 $
)

 ;
b

re
ak

 ;
ca

se
 $

 :
 $

 .
 $

 (
 $

)
 ;

 b
re

ak
 ;

 }

sw
it

ch

(
 m

at
ch

M
o

d
e

)

{
 c

as
e

 E
X

A
C

T_
M

AT
C

H
 :

b

u
ff

er

.
 a

p
p

e
n

d

(
 "

ex
ac

t
m

at
ch

, “

)
 ;

b
re

ak
 ;

 c
as

e
 P

R
EF

IX
_M

AT
C

H
 :

b

u
ff

er

.
 a

p
p

e
n

d

(
 "

p
re

fi
x

m
at

ch
, “

)

 ;

b
re

ak
 ;

ca

se

PA
TT

ER
N

_M
A

TC
H

 :
 b

u
ff

er
 .

 a
p

p
e

n
d

 (
 "

p
at

te
rn

 m
at

ch
, “

)

 ;
 b

re
ak

 ;
 }

Fi
gu

re
3.

5:
H

ow
In

pu
tS

ou
rc

e
C

od
e

is
Tr

an
sf

or
m

ed
in

to
Fo

ld
ed

H
as

h
Se

qu
en

ce

28

imum elements length) are folded. Figure 3.5 shows how input source code is
transformed into folded hash sequences. Why we use the threshold is that, if el-
ements of repetitions are large, users might not want to treat them as repetitions.
Using the threshold realizes more configurable clone detections.

STEP4: Detecting Identical Hash Subsequences

Identical subsequences are detected from the folded hash sequences. If the sum
of weights in an identical subsequence is smaller than the minimum token length,
it is discarded.

STEP5: Mapping Identical Subsequences to Source Code

Identified subsequences detected in STEP4 are converted to location informa-
tion in the source code (file name, start line, end line), which are clone pairs.

3.4 Implementation

We have developed a software tool, FRISC (Folding Repeated Instructions in
Source Code), based on the proposed technique. Currently, FRISC can handle Java
and C. However, FRISC performs only lexical analysis as a language-dependent
processing, so that it is not difficult to extend FRISC to other programming lan-
guages.

FRISC supports multi-thread processings. All the steps of the proposed tech-
nique except STEP5 are processed in parallel. In STEP1, 2, and 3, every thread
takes a source file and outputs its hash sequence one-by-one. This processing is
performed for all the target source files. In STEP4, every thread detects identical
hash subsequences from a different pair of hash sequences generated in STEP3.
Of course, identical hash subsequences within a hash sequence are also detected.
Current implementation does not perform STEP5 in parallel because it is relatively
a lightweight processing. Hence, the detection speed of FRISC can be shortened
with multi-thread processing drastically. FRISC accepts the number of threads as
its command line option. FRISC uses some heuristics for identifying more signif-
icant clones. Currently, they are as follows:

Shrinking user-defined identifiers connected with “.”: By shrinking those
identifiers, we can detect clones even if the number of them are different. Fig-
ure 3.6 shows a transformation how such identifiers are shrunken.

Removing import and package statements: We do not think that clones in
import and package statements are useful, and so they are removed in STEP1.

29

System out println “abcde” . . () ;

$ $ $ $. . () ;

$ $ () ;

Normalization

Heuristics

Figure 3.6: Example of Transformation with Heuristics

3.5 Overview of Investigation

We have conducted an investigation to answer the two research questions de-
scribed in Section 3.2. The investigation consists of two experiments.

Experiment A: clones are detected by FRISC with two settings: one is with the
folding operation; the other is without it. Then, recall and precision of the
two detections are calculated and compared.

Experiment B: clones are detected by FRISC and multiple other tools. Then,
recall and precision of all the detection results are calculated and compared.

In order to calculate recall and precision, we need correct clones. Herein we
use Bellon’s clone references in [60] as a reference set (a set of clones to be de-
tected). Bellon’s experiment is described in Chapter 2 in detail.

This experiment has a limitation on recall and precision. The clone references
used in the experiments are not all the real clones included in the target systems.
Consequently, absolute values of recall and precision are meaningless. Recall and
precision can be used only for relatively comparing detection results. Moreover,
we have to pay a special attention to precision. A low value of precision does
not directly indicate that the detection result includes many false positives. A low
value means that there are many clone candidates not matching any of the clone
references; however, nobody knows whether they are truly false positives or not.

The remainder of this section summarizes the two experiments for investigating
the RQs. The details of each experiment are described in Section 3.6 and 3.7,
respectively.

30

Summary of Experiment A

The precision with folding repeated instructions is averagely higher than the
one without it by 29.8%. On the other hand, the folding averagely decreased recall
by 2.9%. The degree of precision increasing is about 10 times of the degree of
recall decreasing.

Summary of Experiment B

FRISC detected more clone references than any of the comparison tools in
most cases. Especially, for five out of the eight systems, both the precision and
recall of FRISC are greater than those of CCFinder, which is one of the most
widely-used detection tools. Still, the precision of FRISC is lower than those of
CloneDR [8] and CLAN [53] for all the target systems.

3.6 Experiment A

The purpose of Experiment A is to reveal how the number of clone candidates,
precision, and recall are changed by folding repeated instructions. In this experi-
ment, we used the following thresholds.

Maximum elements length: 5 is for detection with the folding operation, and 0
is for detection without it.

Minimum clone length: 30

Figure 3.7(a) shows the number of clone candidates. The folding decreases
the number of clone candidates for almost all the target software. Especially, for
jdtcore, which is the software where most clone candidates were detected, the
number of clone candidates dropped by about 54%. We browsed the source code
of jdtcore, and found that it includes a large number of consecutive if-else
statements, consecutive case entries in switch statements, and consecutive catch
statements. The folding prevented clones from being detected from those repeti-
tions in the source code.

Average decreasing rate of clone candidates was about 32%, and we found
that, in the case of cook, the number of clone candidates was slightly increased.
Figure 3.8 shows a clone reference newly detected by using the folding operation.
If we do not use the folding operation, the code fragment from the 28th line to the
31st line of the left-side source file is a clone of the code fragment from the 118th
line to the 121st line of the right-side source file. However, the length of the code
fragment is 26 tokens, which is less than the minimum token length, 30. Hence, the

31

0

10000

20000

30000

40000

50000

netbeans ant jdtcore swing weltab cook snns postgresql

with folding without folding

(a) # of Clone Candidates

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

netbeans ant jdtcore swing weltab cook snns postgresql

with folding without folding

(b) Precision

0

0.2

0.4

0.6

0.8

1

netbeans ant jdtcore swing weltab cook snns postgresql

with folding without folding

(c) Recall

Figure 3.7: # of Clone Candidates, Precision and Recall in Experiment A

32

…
25: void
26: fatal_intl_open(fn)
27: const char *fn; {
28: sub_context_ty *scp;
29: scp = sub_context_new();
30: sub_errno_set(scp);
31: sub_var_set(scp, "File_Name", "%s", fn);
32: fatal_intl(scp, i18n("open $filename: $errno"));
33: /* NOTREACHED */ }
34: void
35: error_intl_open(fn)
36: const char *fn; {
…

…
115: const char *fn;
116: int mode; {
117: if (chmod(fn, mode)) {
118: sub_context_ty *scp;
119: scp = sub_context_new();
120: sub_errno_set(scp);
121: sub_var_set(scp, "File_Name", "%s", fn);
122: sub_var_set(scp, "Number", "0%o", mode);
123: fatal_intl(scp, i18n("chmod $filename $mode: $errno"));
124: /* NOTREACHED */ } }
125: /*
126: * NAME
…

(a) open.c (b) command.c

clone clone pair relationship

Figure 3.8: Clone Reference Newly Detected by Using Folding Operation

clone pair was discarded. On the other hand, when we used the folding operation,
the code fragment from the 28th line to the 32nd line of the left-side source file was
a clone of the code fragment from the 118th line to the 123rd line of the right-side
source file. The code fragments are greater than the minimum token length, so that
the clone pair was output. In cook, there are those clone pairs, so that the number
of clone references with the folding operation is greater than the number of clone
references without it. We expect that there are such clone pairs in the other target
systems too.

Figure 3.7(b) shows the precision of the detections with and without the fold-
ing. For all of the software, precision was improved. We confirmed the followings:

• in the best case, precision increased by 53.8%,

• even in the worst case, precision increased by 2.6%,

• averagely, precision increased by 29.8%.

Figure 3.7(c) shows recall of the detections with and without the folding. The
changes of recall varied from the target software, unlike precision. For system
cook, recall was improved by the folding. More clone references were detected
with the folding operation. Also, for two systems, swing and weltab, recall
remained unchanged. However, for the other five systems, recall was decreased.
Averagely, recall dropped by 2.9%.

We investigated clones that were detected without the folding but not detected
with the folding to know why they became undetected. Table 3.1 shows the pro-
portion of self-overlapping clones that became undetected. It is easy to remove

33

self-overlapping clones even if the folding operation is not applied. For example,
after detecting clones, checking whether locations of code fragments of a clone
pair is overlapped or not is a simple way. The proportions of self-overlapping
clones are very different from software systems, which means that checking the
self-overlapping as a post processing of clone detection is not enough to reduce
uninteresting clones.

Consequently we answer RQ1 as follows: using the folding operation de-
creased the number of clone candidates by about 32% averagely. The decreasing
caused the improvement of precision, averagely 29.8%. However, it also caused
missing some clone references. The average of decreasing recall is 2.9%. We can
conclude that the folding is a useful approach to prevent uninteresting clones from
being detected meanwhile it misses some clone references.

3.7 Experiment B

The purpose of Experiment B is to reveal whether FRISC detects clones more
precisely than existing tools or not. In this experiment, we chose the additional
clone detector NiCad to Bellon’s experiment.

Table 3.2 shows the number of clone candidates detected by the tools. The
number of clone candidates considerably varies from tool to tool. Also, we can see
that line/token-based tools found many more clone candidates than the other tools.

Figure 3.9 shows precision and recall of all the tools on all the target systems.
The recall of FRISC is the best in all the tools for five out of the eight systems.
FRISC could detect most clone references for the systems. For two of the remain-
ing systems, ant and snns, FRISC placed the second position. In the worst case,
cook, FRISC placed the third position.

Table 3.1: Rate of Self-Overlapping Clones That Became Undetected by Using
Folding Operations

Software Name Self-Overlapping
netbeans 75.2%

ant 15.1%
jdtcore 43.8%
swing 37.8%
weltab 52.7%
cook 89.1%
snns 75.5%

postgresql 79.5%

34

In order to reveal what kinds of clone references detected by the comparison
tools were not detected by FRISC, we extracted all of those clone references from
all the target systems. Then, we randomly selected 100 instances from them, and
we browsed their source code. As a result, they were categorized as follows (the
numbers in parentheses mean the number of clone pairs falling into the category):

A(71): clone references including some gaps;

B(17): clone references being less than 30 tokens;

C(11): clone references locating in repeated instructions;

D(1): clone references including unmatched modifiers.

In token-based detections, identical subsequences are detected as clones. Gapped
(Type-3) clones are not detected by naive token-based detections. Consequently, it
is quite natural that 71 clone references falling into category A were not detected
by FRISC. However, if we adopt some techniques like Roy et al. [65] or Juergens
et al. [35] to detect such clone references, FRISC may detect some of those clone
references.

Clone references falling into category B are smaller than 30 tokens. In Bellon’s
experiment, the minimum threshold of clone references is six lines, which is not a
token-based threshold but a line-based one. However, FRISC takes a token-based
threshold. In this experiment, FRISC took 30 tokens as the minimum clone length.
Consequently, some clone references were not detected by FRISC.

Figure 3.10 shows an example of a clone reference falling into category C.
There are six case entries in a switch statement. The former three entries form
a clone of the latter three entries. The proposed technique folds the six case
entries into a single entry, so that no clone pair is detected. However, it is possible

Table 3.2: # of Clone Candidates. Every“ -”Means That Detector Could not
Finish Clone Detection Because of Scalability Issue.

Software Name FRISC Dup CloneDR CCFinder CLAN Duploc Duplix Nicad
netbeans 1,696 344 33 5,552 80 223 - 24

ant 2,106 245 42 950 88 162 - 19
jdtcore 21,494 22,589 3,593 26,049 10,111 710 - 1,142
swing 20,606 7,220 3,766 21,421 2,809 - - 1,804
weltab 1,969 2,742 186 3,898 101 1,754 1,201 160
cook 7,222 8,593 1,438 2,964 449 8,706 2,135 159
snns 11,940 8,978 1,434 18,961 318 5,212 12,181 352

postgresql 15,362 12,965 1,452 21,383 930 - - 352

35

0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CloneDR CLAN FRISC CCFinder Dup Duploc Nicad

recall precision

(a) netbeans

recall precision

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.2

0.4

0.6

0.8

1

CloneDR CLAN FRISC CCFinder Dup Duploc Nicad

(b) ant

recall precision

0

0.02

0.04

0.06

0.08

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CloneDR CLAN FRISC CCFinder Dup Duploc Nicad

(c) jdtcore

Figure 3.9: Precision and Recall of All Detectors for All Target Software Sys-
tems

36

recall precision

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.2

0.4

0.6

0.8

1

CloneDR CLAN FRISC CCFinder Dup Nicad

(d) swing

recall precision

0

0.1

0.2

0.3

0.4

0.5

0

0.2

0.4

0.6

0.8

1

CloneDR CLAN FRISC CCFinder Dup Duploc Duplix Nicad

(e) weltab

recall precision

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

CloneDR CLAN FRISC CCFinder Dup Duplix Duploc Nicad

(f) cook

Figure 3.9: Precision and Recall of All Detectors for All Target Software Sys-
tems

37

recall precision

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0

0.2

0.4

0.6

0.8

1

CloneDR CLAN FRISC CCFinder Dup Duploc Duplix Nicad

(g) snns

recall precision

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

CloneDR CLAN FRISC CCFinder Dup Nicad

(h) postgresql

Figure 3.9: Precision and Recall of All Detectors for All Target Software Sys-
tems

to detect such a clone pair with the proposed technique. If the sum of weights of a
folded sequence is more than twice of the minimum token length, there is a clone
pair in it.

A clone reference was not detected because there is an unmatched modifier in
it (category D): a clone has “final” modifier in a method declaration; the corre-
spondent does not have. Currently, FRISC does not normalize modifiers. How-
ever, it is not difficult to remove modifiers so as to detect such a clone reference.

The result shows that precision of the proposed technique is not so high as the
other token-based tools. However, we must notice that clone references used in
this experiment is not all the real clones in the systems. A low precision using the
clone references does not directly mean that its detection result includes many false
positives.

38

…
637: switch (ks.getKeyCode()) {
638: case KeyEvent.VK_B:
639: boldButton.doClick();
640: e.consume();
641: break;
642: case KeyEvent.VK_I:
643: italicButton.doClick();
644: e.consume();
645: break;
646: case KeyEvent.VK_U:
647: underlineButton.doClick();
648: e.consume();
649: break;
650: case KeyEvent.VK_C:
651: codeButton.doClick();
652: e.consume();
653: break;
654: case KeyEvent.VK_P:
655: preButton.doClick();
656: e.consume();
657: break;
658: case KeyEvent.VK_L:
659: linkButton.doClick();
660: e.consume();
661: break; } } }
…

clone clone pair relationship

Figure 3.10: Clone Reference Located in Repeated Instructions

We answer RQ2 as follows: the proposed technique could detect more clone
references than any of the other detection tools used for comparison in most cases.
However, it detects many clone candidates as well as other token-based detection
tools. Therefore, it may detects many uninteresting clones.

3.8 Conclusion

In this chapter, we proposed a new token-based clone detection technique. The
proposed technique folds repeated instructions for preventing uninteresting clones
from being detected. There are some techniques that perform filtering after de-
tecting clones for removing uninteresting clones [23, 44]. On the other hand, the
proposed technique performs folding operations for the same purpose. The pro-
posed technique has two advantages. One is that the proposed technique does not
have cost for detecting uninteresting clones. The other is that the proposed tech-
nique can find clones that the traditional token-based techniques cannot detect. The

39

proposed technique was developed as an actual tool, FRISC. We applied FRISC
to eight open source software systems, and we confirmed the followings:

• the folding operation reduces uninteresting clones;

• there are some clone references newly detected by the folding operation;

• FRISC detects more clone references than any other comparison tools used
in Bellon’s benchmark in most cases; and still,

• FRISC detects uninteresting clones as well as other token-based clone de-
tectors.

In the future, we are going to investigate where tools detect uninteresting clones.
We expect that most uninteresting clones are detected from limited kinds of code
patterns. If we can ignore clones detected from those code patterns, uninteresting
clones are drastically decreased.

40

Chapter 4

Clone Detection Using
Smith-Waterman Algorithm

4.1 Background

Recently, clones have received much attention. It has been said that the pres-
ence of clones makes software maintenance more difficult [19]. This is because
if developers modify a code fragment, it is necessary to check its correspondents
and verify whether they need the same modifications simultaneously or not. On
the other hand, reusing code fragments by copy-and-paste operations has some ad-
vantages. One of them is that programmers can implement functions easily that is
similar to existing one.

Moreover, recently many studies have investigated the premise of “the pres-
ence of clones makes software maintenance more difficult” quantitatively. Those
studies used different detection tools on different experimental targets with differ-
ent environments. Thus, there is no general result about the harmfulness of clones.
However, to summarise this point then it is said “not all clones make software
maintenance more difficult” [36]. Consequently, removing or not generating all
clones are inappropriate from the perspective of efficient software development or
maintenance. It is important to minimize the risk of clones with low cost.

From a viewpoint of program comprehension, analysis of clones plays an im-
portant role. Refactoring and removing some clones can improve readability, main-
tainability and manageability of software systems [19].

Developers often make some changes to code fragments after cloning to ad-
just the code fragments to the destination of the cloning [41]. Moreover, cloned
fragments often evolve differently from the original fragments [20]. These facts
indicate that there often exists some gaps between the original code fragments and

41

pasted fragments. In order to detect clones appropriately, it is necessary to detect
clones even if they include some gaps. In other words, detecting Type-3 clones is
required for better understanding of clones and software systems.

As described in Chapter 2, a number of techniques detecting clones have been
proposed before now. In those detection techniques, text-based techniques using
the LCS algorithm, AST-based techniques, PDG-based techniques and metric-
based technique can detect Type-3 clones. However, each of them has limita-
tions as described previously. In order to resolve those limitations, we propose
a clone detection technique using the Smith-Waterman algorithm [75]. The pro-
posed technique detects not only Type-1 and Type-2 but also Type-3 clones in a
shorter time frame than the AST-based or PDG-based techniques. The reason is
that the proposed technique does not use any intermediate representations such
as ASTs or PDGs. Furthermore, the proposed technique detects clones that the
metric-based or the LCS-based techniques cannot detect because these techniques
perform coarse-grained detections such as method-based or block-based. On the
other hand, the proposed technique performs a fine-grained detection that identifies
statement-based clones.

We implemented the proposed technique and evaluated it by using Bellon’s
benchmark [9]. However, Bellon’s benchmark has a limitation that the Type-3
clone references does not have the information about where gaps are. Bellon’s
clone references represent clones with only the information about where they start
and where they end. We do not consider that gapped parts of clones should be
regarded as clones. Thus, Bellon’s benchmark is likely to evaluate Type-3 clones
incorrectly when it is used as-is. Therefore, we remade the clone references with
the information about where gaps are. Moreover, we compared the result by using
Bellon’s clone references with that by using the enhanced clone references. Finally,
the proposed technique was compared with the existing techniques by using the
enhanced clone references.

Consequently, the contributions of this chapter are as following:

• We tailored the Smith-Waterman algorithm to clone detection. First, al-
though the original Smith-Waterman algorithm identifies only one pair of
similar subsequences from two sequences, the tailored Smith-Waterman al-
gorithm can identify multiple pairs of them. Second, the tailored the Smith-
Waterman algorithm can detect clones with consideration for the size of them
or gapped code fragments.

• Using the information about where gaps are improved the accuracy of the
evaluation of recall, precision and F -measure compared to using only the
information about where clones start and they end.

42

• We confirmed that the proposed technique had higher F -measure than the
existing techniques.

The rest of this chapter is organized as follows: Section 4.2 introduces the
concept of the Smith-Waterman algorithm. We provide an overall summary of the
proposed technique in Section 4.3. Section 4.4 describes the overview of investi-
gation, then Section 4.5, Section 4.6 and Section 4.7 report the evaluations of the
proposed technique in detail. Section 4.8 describes threats to validity. Section 4.9
discusses the experimental result or previous techniques. Section 4.10 summarizes
this chapter and refers to the future work.

4.2 Smith-Waterman Algorithm

The Smith-Waterman algorithm [75] is an algorithm for identifying similar
alignments between two base sequences. This algorithm has an advantage that it
can identify similar alignments even if they include some gaps. Figure 4.1 shows
an example of the behavior of the Smith-Waterman algorithm applied to two base
sequences, “GACGACAACT” and “TACACACTCC”. The Smith-Waterman algo-
rithm consists of the following five steps.

Step A (creating a table): A (N + 2) × (M + 2) table is created, where N
is the length of one sequence ⟨a1, a2, · · · , aN ⟩ and M is the length of the other
sequence ⟨b1, b2, · · · , bM ⟩.

Step B (initializing the table): The top row and leftmost column of the table
are filled with two base sequences as headers. The second row and column are
initialized to zero.

Step C (calculating scores of all cells in the table): Scores of all the remain-
ing cells are calculated by using the following formula.

vi,j(2 ≤ i, 2 ≤ j) = max


vi−1,j−1 + s(ai, bj),
vi−1,j + gap,
vi,j−1 + gap,
0.

(4.1)

s(ai, bj) =

{
match (ai = bj),
mismatch (ai ̸= bj).

(4.2)

where vi,j is the value of ci,j ; ci,j is the cell located at the ith row and the jth col-
umn; s(ai, bj) is a similarity of matching ai with bj ; ai is the ith value of one se-
quence and bj is the jth value of the other sequence. Note that match, mismatch
and gap indicate score parameters.

43

-
G

A

C

G

A

C

A

A

C

T

-
0

0
0

0
0

0
0

0
0

0
0

T
0

A

0

C

0

A

0

C

0

A

0

C

0

T
0

C

0

C

0

-
G

A

C

G

A

C

A

A

C

T

- T A

C

A

C

A

C
 T C

C

G

A

C

G

A

C

A

A

C

T

T
A

C

A

C

A

C

T

C

C

B
as

e
al

ig
n

m
en

t
1

:

B
as

e
al

ig
n

m
en

t
2

:

St
e

p
 A

 :

cr
ea

ti
n

g
a

ta
b

le

St
e

p
 B

 :

in
it

ia
liz

in
g

th
e

ta
b

le

St
e

p
 C

 :
 c

al
cu

la
ti

n
g

sc
o

re
s

o
f

al
l c

el
ls

 in
 t

h
e

ta
b

le

-
G

A

C

G

A

C

A

A

C

T

-
0

0

0
0

0
0

0
0

0
0

0

T
0

0

0
0

0
0

0
0

0
0

1

A

0
0

1

0
0

1
0

1
1

0
0

C

0
0

0

2
1

0
2

1
0

2
1

A

0
0

1

1
1

2
1

3
2

1
0

C

0
0

0

2
1

1
3

2
2

3
2

A

0
0

1

1
0

2
2

4
3

2
1

C

0
0

0

2
1

1
3

3
3

4
3

T
0

0

0
1

1
0

2
2

2
3

5

C

0
0

0

1
0

0
1

1
1

3
4

C

0
0

0

1
0

0
1

0
0

2
3

G

A

C

G

A

C

A

A

C

T

T
A

C

A

C

A

C

T

C

C

Si
m

ila
r

al
ig

n
m

en
ts

B
as

e
al

ig
n

m
en

t
1

:

B
as

e
al

ig
n

m
en

t
2

:

St
e

p
 D

 :

tr
ac

eb
ac

k
o

f
th

e
ta

b
le

St
e

p
 E

 :

id
en

ti
fy

in
g

si
m

ila
r

al
ig

n
m

en
ts

-
G

A

C

G

A

C

A

A

C

T

-
0

0

0
0

0
0

0
0

0
0

0

T
0

0

0
0

0
0

0
0

0
0

1

A

0

0
1

0
0

1
0

1
1

0
0

C

0

0
0

2
1

0
2

1
0

2
1

A

0

0
1

1
1

2
1

3
2

1
0

C

0

0
0

2
1

1
3

2
2

3
2

A

0

0
1

1
0

2
2

4
3

2
1

C

0

0
0

2
1

1
3

3
3

4
3

T
0

0

0
1

1
0

2
2

2
3

5

C

0

0
0

1
0

0
1

1
1

3
4

C

0

0
0

1
0

0
1

0
0

2
3

0 1 2 3 4 5 6 7 8 9 1
0

1
1

0

1

2

3
 4 5

6

7

8

9

1
0

1
1

0 1 2 3 4 5 6 7 8 9 10

1
1

0
1

2

3

4
5

6
7

8

9

1
0

1

1

0

1

2

3

4
 5 6 7

8

9

10

11

0

1

2
3

4
5

6

7

8

9

1
0

1
1

0
1

2
3

4

5

6

7
8

9

10

1
1

0

1

2

3

4
5

6
7

8

9

1

0

11

Fi
gu

re
4.

1:
Sm

ith
-W

at
er

m
an

A
lg

or
ith

m
A

pp
lie

d
to

Tw
o

B
as

e
Se

qu
en

ce
s,

“G
A

C
G

A
C

A
A

C
T

”
an

d
“T

A
C

A
C

A
C

T
C

C
”

44

30

minimal
clone length
(# of tokens)

0.5

maximal gap rate
(ratio of gapped tokens
in the detected tokens)

source files

Step 1: Performing lexical analysis and normalization

clone pairs

Step 2: Calculating hash values for every statement

Step 3: Identifying similar hash sequences

Step 5: Mapping identical subsequences to the source code

Step 4: Identifying gapped tokens

(2, -2, -1)

score parameters
(match,mismatch,gap)

Figure 4.2: Overview of Proposed Technique

Match, mismatch and gap can be set all kinds of values freely. In Figure 4.1,
parameters (match, mismatch, gap) are set (1, -1, -1) for ease of explanation.

While calculating values of each cell in the table, a pointer from the cell that
is used for calculating vi,j to the cell ci,j is created. For example, in Figure 4.1,
v9,11(= 5) is calculated by adding v8,10(= 4) and s(v0,11, v9,0)(= 1). In this case,
a pointer from c8,10 to c9,11 is created because v9,11 is calculated with the value of
c8,10.

Step D (traceback of the table): Traceback means the moving operation from
ci,j to ci−1,j , ci,j−1 or ci−1,j−1 using the pointer created in Step C. Tracing the
pointer reversely represents traceback. Traceback begins at the cell whose score is
maximum in the table. This continues until cell values decreased to zero.

Step E (identifying similar alignments): The array elements pointed by the
traceback path are identified as similar local alignments.

In Figure 4.1, the hatched cells with numbers represent the traceback path.
The array elements pointed by the traceback path are regarded as similar local
alignments, hence two alignments “ACGACAACT” and “ACACACT” are detected
as similar alignments.

45

4.3 Proposed Technique

The proposed technique takes the followings as its input:

• source files,

• minimal clone length (number of tokens),

• maximal gap rate (ratio of gapped tokens in the detected tokens).

• score parameters match, mismatch and gap

In this chapter, score parameters (match, mismatch and gap) were decided
by a preliminary experiment. Section 4.5 reports how to decide these parameters.

The proposed technique outputs a list of detected clone pairs. The proposed
technique consists of the following five steps.

Step 1: Performing Lexical Analysis and Normalization
Step 2: Calculating Hash Values for Every Statement
Step 3: Identifying Similar Hash Sequences
Step 4: Identifying Gapped Tokens
Step 5: Mapping Identical Subsequences to Source Code
Figure 4.2 shows an overview of the proposed technique. Figure 4.3 shows an

example of detection process using the proposed technique. The remainder of this
section explains each step in detail.

Step 1: Performing Lexical Analysis and Normalization

All the target source files are transformed into token sequences. User-defined
identifiers are replaced with specific tokens to detect not only identical code frag-
ments but also similar ones as clones even if they include different variables. All
modifiers are deleted for the same reason.

Step 2: Calculating Hash Values for Every Statement

A hash value is generated for every statement in the token sequences. Herein,
we define a statement as every subsequence between semicolon (“;”), opening
brace (“{”), and closing brace (“}”). Note that every hash has the number of tokens
included in its statement.

46

30: if(flg){
31: for(int i = 0; i < token.length; i++){
32: buffer.append(token[i]);}
33: String result = buffer.toString();
34: }else{
35: for(int j = 0; j < token.length; j++){
36: buffer.append(token[j]);
37: if(j % 2 == 0){buffer.append(",");}}
38: String result = buffer.toString();
39: }
40: return result;

52: StringBuffer buffer = new StringBuffer();
53: for(int i = 0; i < token.length; i++){
54: buffer.append(token[i]);}
55: buffer.append(getComma());
56: String result = buffer.toString();
57: System.out.println(result);

...
...

...
...

(a) Sample Source Files

if (flg) {

for (int i = 0 ; i < token length . ; i + +) {

buffer . append (token [i]) ; }

String result = buffer . toString () ;

else } {

for (int j = 0 ; j < token length . ; j + +) {

buffer . append (token [j]) ; }

if (j % 2 = = 0) { buffer . append (“,”) ; } }

String result = buffer . toString () ;

}

return result ;

StringBuffer

for (int i = 0 ; i < token length . ; i + +) {

buffer . append (token [i]) ; }

String result = buffer . toString () ;

buffer = new StringBuffer () ;

buffer . append (getComma()) ;

System . out . println (result) ;

(b) Lexical Analysis

if ($) {

for ($ $ = $; $ < $ $. ; $ + +) {

$. $ ($ [$]) ; }

$ $ = $. $ () ;

else } {

for ($ $ = $; $ < $ $. ; $ + +) {

$. $ ($ [$]) ; }

if ($ % $ = = $) { $. $ ($) ; } }

$ $ = $. $ () ;

}

return $;

$

for ($ $ = $; $ < $ $. ; $ + +) {

$. $ ($ [$]) ; }

$ $ = $. $ () ;

$ = new $ () ;

$. $ ($()) ;

$. $. $ ($) ;

(c) Normalization

if($) {

for($$=$; $<$.$; $++) {

$.$($[$]) ; }

$$=$.$() ;

else } {

if($%$==$) { $.$($) ; } }

}

return$;

$$=new$() ;

$.$($()) ;

$.$.$($) ;

for($$=$; $<$.$; $++) {

$.$($[$]) ; }

$$=$.$() ;

for($$=$; $<$.$; $++) {

$.$($[$]) ; }

$$=$.$() ;

(d) Identifying Statements

Figure 4.3: Example of Detection Process Using Proposed Technique

47

0(4) {

10(6) ; 20(5) ; 30(4) {

40(9) ; }

50(8) ;

60(1) } {

60(9) { 70(6) ; } }

}

80(2) ;

90(7) ;

95(8) ;

100(8) ;

10(6) ; 20(5) ; 30(4) {

40(9) ; }

50(8) ;

10(6) ; 20(5) ; 30(4) {

40(9) ; }

50(8) ;

(e) Calculating Hash Values

0 10 20 30 40 50 60 10 20 30 40 60 70 50 80

4 6 5 4 9 8 1 6 5 4 9 9 6 8 2

90 10 20 30 40 95 50 100

7 6 5 4 9 8 8 8

Hash sequence1

of tokens sequence1

Hash sequence2

of tokens sequence2

(f) Generating Hash Sequences

- 90 10 20 30 40 95 50 100

- 0 0 0 0 0 0 0 0 0

0 0

10 0

20 0

30 0

40 0

50 0

60 0

10 0

20 0

30 0

40 0

60 0

70 0

50 0

80 0

(g) Creating Table

- 90 10 20 30 40 95 50 100

- 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10 0 0 1 0 0 0 0 0 0

20 0 0 0 2 1 0 0 0 0

30 0 0 0 1 3 2 1 0 0

40 0 0 0 0 2 4 3 2 1

50 0 0 0 0 1 3 3 4 3

60 0 0 0 0 0 2 2 3 2

10 0 0 1 0 0 1 1 2 1

20 0 0 0 2 0 0 0 1 0

30 0 0 0 1 3 2 1 0 0

40 0 0 0 0 2 4 3 2 1

60 0 0 0 0 1 3 3 2 1

70 0 0 0 0 0 2 2 1 0

50 0 0 0 0 0 1 1 3 0

80 0 0 0 0 0 0 0 0 0

(h) Calculating Scores

Figure 4.3: Example of Detection Process Using Proposed Technique

48

- 90 10 20 30 40 95 50 100

- 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10 0 0 1 0 0 0 0 0 0

20 0 0 0 2 1 0 0 0 0

30 0 0 0 1 3 2 1 0 0

40 0 0 0 0 2 4 3 2 1

50 0 0 0 0 1 3 3 4 3

60 0 0 0 0 0 2 2 3 2

10 0 0 1 0 0 1 1 2 1

20 0 0 0 2 0 0 0 1 0

30 0 0 0 1 3 2 1 0 0

40 0 0 0 0 2 4 3 2 1

60 0 0 0 0 1 3 3 2 1

70 0 0 0 0 0 2 2 1 0

50 0 0 0 0 0 1 1 3 0

80 0 0 0 0 0 0 0 0 0

(i) Traceback

0 10 20 30 40 50 60 10 20 30 40 60 70 50 80

90 10 20 30 40 95 50 100

Hash sequence1

Hash sequence2

Similar hash sequences

(j) Identifying Similar Hash Sequences

buffer append . (“,”)

getComma) (

gapped tokens

if (j % 2 = = 0)

buffer append . ()

(k) Identifying Gapped Tokens

 clone clone pair relationship

gapped tokens

30: if(flg){
31: for(int i = 0; i < tokens.length; i++){
32: buffer.append(tokens[i]);}
33: String result = buffer.toString();
34: }else{
35: for(int j = 0; j < tokens.length; j++){
36: buffer.append(tokens[j]);
37: if(j % 2 == 0){buffer.append(",");}}
38: String result = buffer.toString();
39: }
40: return result;

52: StringBuffer buffer = new StringBuffer();
53: for(int i = 0; i < tokens.length; i++){
54: buffer.append(tokens[i]);}
55: buffer.append(getComma());
56: String result = buffer.toString();
57: System.out.println(result);

...
...

...
...

(l) Detected Clones

Figure 4.3: Example of Detection Process Using Proposed Technique

49

Step 3: Identifying Similar Hash Sequences

Similar hash sequences are identified from hash sequences generated in Step 2
by using the Smith-Waterman algorithm. Herein, we make following changes to
Step D described in section 4.2 to tailor the algorithm for clone detection.

• Traceback begins at multiple cells in order to detect two or more clone pairs
between two source files. In particular, cells are searched from the lower
right to the upper left and cells ci,j that have the following characteristics are
selected as start cells of traceback.

– vi,j > 0

– vi,0 = v0,j

Moreover, assume that a traceback starts at ci,j and ends at ck,l (k ≤ i, l ≤ j),
the cells included in the following set S will be out of scope from all the
traceback following the current traceback.

S = {cm,n | k ≤ m ≤ i ∧ l ≤ n ≤ j} (4.3)

The purpose of reducing the scope of traceback is in order not to detect
redundant clones.

• The number of tokens and gaps are counted during traceback in order to
detect clones whose token length is greater than the minimal clone length
and the ratio of gapped tokens in the detected tokens is less than the maximal
gap rate.

While traceback is being performed, gapped statements can be identified. Then,
token sequences consisting of gapped statements are obtained. They are used in
Step 4.

Step 4: Identifying Gapped Tokens

The LCS algorithm is applied to every pair of token sequences included in
gapped statements identified in Step 3. The purpose of LCS application is identi-
fying token-level gaps.

Step 5: Mapping Identical Subsequences to Source Code

The identical subsequences detected in Steps 3 and 4 are mapped to the source
code (the file path, the start-line, the end-line and the gapped lines), which are clone

50

0

0.1

0.2

0.3

0.4

0.5

0.6

4
,-
1
,-
1

4
,-
2
,-
1

1
,-
4
,-
4

1
,-
4
,-
3

1
,-
2
,-
3

1
,-
2
,-
2

2
,-
3
,-
4

3
,-
2
,-
2

1
,-
4
,-
1

3
,-
3
,-
2

3
,-
1
,-
2

3
,-
2
,-
1

2
,-
1
,-
3

4
,-
3
,-
4

3
,-
4
,-
4

2
,-
2
,-
4

4
,-
2
,-
4

4
,-
2
,-
2

2
,-
2
,-
2

3
,-
4
,-
3

2
,-
3
,-
1

2
,-
2
,-
1

Recall Precision F-measure

Figure 4.4: Recall, Precision and F -measure on 3-Tuple of Parameters (match,
mismatch, gap).

pairs. Note that the gapped line represents the line that contains the gapped tokens.
This representation can make sense because the location information of clones are
represented by line numbers.

4.4 Experimental Design

We have developed a software tool, CDSW based on the proposed technique
described in Section 4.3. Then, we conducted a preliminary experiment to re-
veal what combinations of parameters (match, mismatch, gap) in the Smith-
Waterman algorithm are appropriate for clone detection. Moreover, we conducted
two experiments to answer the following three research questions for confirming
the effectiveness of the proposed technique.

RQ 1: Does evaluating recall and precision with gap information have higher
accuracy than without it?

RQ 2: Does the proposed technique have higher accuracy than existing techniques?

RQ 3: Can the proposed technique finish detecting clones from large-scale soft-
ware systems?

Experiment A investigates RQ1 and Experiment B investigates RQ2 and RQ3,
respectively. In order to calculate accuracy, reference clones are necessary. In
this chapter, we used Bellon’s dataset for the experiments as well as Chapter 3.
The details of each Experiment are described in Section 4.5, Section 4.6 and 4.7,
respectively.

51

4.5 Preliminary Experiment

The purpose of Preliminary Experiment is to obtain the appropriate parameters
(match, mismatch, gap) for each of target software systems when we use the
Smith-Waterman algorithm. In this experiment, we investigated following ranges
of parameters.

match = {x ⊂ Z | 1 ≤ x ≤ 4} (4.4)

mismatch = {y ⊂ Z | − 4 ≤ y ≤ −1} (4.5)

gap = {z ⊂ Z | − 4 ≤ z ≤ −1} (4.6)

where Z represents the set of integers.
We calculated recall, precision and F -measure for each of target software

systems on 64 (= 4 × 4 × 4) cases. Then, we evaluated the median of recall,
precision and F -measure for eight target software systems. Figure 4.4 shows
the recall, precision and F -measure on 3-tuples (match, mismatch, gap) in
ascending order by F -measure. F -measure is the harmonic mean of recall
and precision. Thus, high F -measure means both recall and precision are
reasonably high.

From Figure 4.4, it was revealed that F -measure was the maximum when
(match, mismatch, gap) is (2, -2, -1) or (4, -4, -2). Each of the parameters in
(4, -4, -2) is twice from each of that in (2, -2, -1). Therefore, these two tuples of
parameters produced same results in the Smith-Waterman algorithm.

In addition, recall tended to be high when match was high. The reason was
that high match makes the number of clone candidates large, and many clone
references are likely to be contained in clone candidates. Meanwhile, precision
tended to be high when mismatch and gap were low. The reason was that low
mismatch and gap make the number of clone candidates small, and clone candi-
dates were likely to contain some clone references relatively.

Accordingly, we used (match, mismatch, gap) = (2, -2, -1) in the following
Experiment A and Experiment B.

4.6 Experiment A

The purpose of Experiment A is to reveal how recall, precision and F -measure
are changed by our defined formula. In Bellon’s benchmark [9], in order to deter-
mine whether a candidate matches a reference, ok value and good value are used.
However, these formulae do not consider the gapped fragments included in clones.
Therefore, we remade the clone references with information of gapped lines and

52

355: final public void astore_1() {
356: countLabels = 0;
357: stackDepth--;
358: if (maxLocals <= 1) {
359: maxLocals = 2; }
360: try {
361: position++;
362: bCodeStream[classFileOffset++] = OPC_astore_1;
363: } catch (IndexOutOfBoundsException e) {
364: resizeByteArray(OPC_astore_1); } }

393: final public void baload() {
394: countLabels = 0;
395: stackDepth--;
396: try {
397: position++;
398: bCodeStream[classFileOffset++] = OPC_baload;
399: } catch (IndexOutOfBoundsException e) {
400: resizeByteArray(OPC_baload); } }

src/internal/compiler/codegen/CodeStream.java 355 364 src/internal/compiler/codegen/CodeStream.java 393 400 3 358,359 -

gapped lines …

…

…

…

 clonetype gapset2
 toline1 toline2 gapset1
filename1 fromline1 filename2 fromline2

Figure 4.5: Example of Enhanced Clone Reference (Clone Reference No. 1101).

made it public on the website1. Furthermore, we put the file format of our clone
references on the same website.

Figure 4.5 shows an example of our clone references. In Figure 4.5, the source
file in the left has gapped lines 358-359. On the other hand, right one has no gapped
lines.

If recall, precision and F -measure are calculated by using the clone refer-
ences with the information of gapped lines, these values probably would be more
precise. In the case of Bellon’s clone references, some Type-3 clones contain
gapped lines because Bellon’s clone references have only the information about
where clones start and where they end. Meanwhile, in the case of our clone refer-
ences, all the clones do not contain gapped lines. In other words, our clone refer-
ences consist of true clones. Thus, evaluations using our clone references enable
us to obtain true recall, precision and F -measure.

We calculated recall, precision and F -measure using Bellon’s and our clone
references. Figure 4.6(a), (b) and (c) shows recall, precision and F -measure
of CDSW using both the clone references, respectively. For all of the software,
recall, precision and F -measure were improved. In the best case, recall in-
creased by 4.1 %, precision increased by 3.7 % and F -measure increased by 3.8
%. In the worst case, recall increased by 0.49 %, precision increased by 0.42 %
and F -measure increased by 0.43 %.

Consequently we answer RQ 1 as follows: Calculating recall and precision
using not only the information about where clones start and where they end but also
the information about where the gaps are could evaluate clones more precisely.

1http://sdl.ist.osaka-u.ac.jp/˜h-murakm/2014_clone_references_
with_gaps/

53

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

netbeans ant jdtcore swing weltab cook snns postgresql

Bellon's clone references Our clone references

(a) Recall

0

0.05

0.1

0.15

0.2

0.25

netbeans ant jdtcore swing weltab cook snns postgresql

Bellon's clone references Our clone references

(b) Precision

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

netbeans ant jdtcore swing weltab cook snns postgresql

Bellon's clone references Our clone references

(c) F -measure

Figure 4.6: Recall, Precision and F -measure of CDSW Using Both Clone
References

54

4.7 Experiment B

One purpose of Experiment B is to reveal whether CDSW detects clones more
accurately than existing clone detectors or not. The other purpose is to reveal that
CDSW detects clones in practical time. In this experiment, we chose the addi-
tional clone detector NiCad and DECKARD to Bellon’s experiment. We calcu-
lated recall and precision of all the clone detectors by using our clone reference
with information of gapped lines. In section 4.3, we described that CDSW outputs
gapped lines in clones. However, if we use the outputs directly in this experiment,
we could not make fair comparisons between CDSW and other clone detectors
because they do not output gapped lines in clones. Therefore, we only use the
information about where clones start and where they end.

Figure 4.7(a) shows recall of all the clone detectors for only the Type-3 clone
references. The median of CCFinder is the best in all the clone detectors, and
that of Dup is the next. Coming third is CDSW. Figure 4.7(b) shows the case of
precision. CLAN gets the first position, and CDSW gets the second. Figure 4.7(c)
shows the case of F -measure. CDSW ranked first in this case, far surpassing all
other clone detectors. To summarize above results, CDSW is not the best in the
both case of recall and precision. However, in the case of F -measure, CDSW is
the best in all the clone detectors. In other words, CDSW a achieves good balance
of recall and precision for the Type-3 clone references.

Figure 4.8(a) shows recall of all the clone detectors for Type-1, Type-2 and
Type-3 clone references. The median of CDSW is the fifth position behind CCFinder,
Dup, Duploc and DECKARD. Figure 4.8(b) shows the case of precision. CDSW
is the best, and that of CLAN is the next by a mere touch. Figure 4.8(c) shows the
case of F -measure. CDSW ranked first as is the case with only the Type-3 clone
references. In short, CDSW achieves a good balance of recall and precision for
not only the Type-3 clone references but also the Type-1 and Type-2 clone refer-
ences.

We measured the execution time of DECKARD, NiCad and CDSW. The rea-
son why we selected these three clone detectors is that they can detect Type-3
clones and are available now. Figure 4.9 shows the execution time to detect clones
in target software systems. CDSW detect clones in the shortest time in them.
Moreover, we applied CDSW to the latest PostgreSQL (version 9.2.3, 839 files,
930,524 line of code). CDSW could detect clones from the software in 7 minutes
30 seconds. Thus, we confirmed that CDSW is fast clone detector.

Consequently we answer RQ 2 as follows: CDSW is the best in all the clone
detectors used in Bellon’s benchmark in the case of F -measure. Since F -measure
is harmonic average of recall and precision, it would be said that CDSW has
higher accuracy than the existing techniques.

55

●

CloneDR CLAN CCFinder Dup Duploc Duplix NiCad DECKARD CDSW

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Recall

●

CloneDR CLAN CCFinder Dup Duploc Duplix NiCad DECKARD CDSW

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

(b) Precision

●

CloneDR CLAN CCFinder Dup Duploc Duplix NiCad DECKARD CDSW

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

(c) F -measure

Figure 4.7: Recall, Precision and F -measure for Type-3 Clone References

56

●

●

●

CloneDR CLAN CCFinder Dup Duploc Duplix NiCad DECKARD CDSW

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Recall

●

●

●

●

●

●

CloneDR CLAN CCFinder Dup Duploc Duplix NiCad DECKARD CDSW

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

(b) Precision

●

●

●

●

CloneDR CLAN CCFinder Dup Duploc Duplix NiCad DECKARD CDSW

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(c) F -measure

Figure 4.8: Recall, Precision and F -measure for Type-1, Type-2 and Type-3
Clone References

57

DECKARD NiCad CDSW

2049

3133

8245

7620

1325 1453

3146

3966

7 11 54 48 7
78 85 60

0.43 0.95 19.2 24.7 0.6 3.4 9.3 27.5
0

200

400

600

800

1000

1200

1400

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

netbeans ant jdtcore swing weltab cook snns postgresql

(sec.)

Figure 4.9: Exection Time of DECKARD, NiCad and CDSW for Target Software
Systems

Besides, we answer RQ 3 as follows: CDSW could detect clones from large
scale software systems in short time. In particular, it takes about 30 seconds for
200 KLOC software, and about 8 minutes for 1 MLOC software.

4.8 Threats to Validity

4.8.1 Clone References

In these experiments, we compared the accuracy of CDSW and those of other
clone detectors based on Bellon’s clone references. However, they are not iden-
tified from all the clones in target software systems. Therefore, if all the clones
in target software systems are used as clone references, we might obtain different
results. However, it is almost impossible to make clone references from all the
clones in target software systems.

58

4.8.2 Code Normalization

The proposed technique replaces each variable and literal with a specific to-
ken as a normalization. This means that the normalization ignores their types. If
the proposed technique uses more intelligent normalizations, for example, replac-
ing them considering their type names, the number of detected clones should be
changed. Meanwhile, if the proposed technique does not normalize source code, it
cannot detect clones that have differences of variable names or literals.

4.8.3 Three Parameters in Smith-Waterman Algorithm

In this chapter, we investigated appropriate parameters (match, mismatch,
gap), then compared the accuracy of CDSW with that of existing clone detectors.
If these three parameters were calculated by other ways, experimental results would
be changed. For example, changing gap parameter constantly according to the
length of code fragments might be possible.

4.9 Discussion

The Smith-Waterman algorithm is similar to the LCS algorithm. The LCS al-
gorithm identifies global alignment from two sequences. On the other hand, the
Smith-Waterman algorithm identifies local alignment. The largest difference be-
tween these two algorithms is that the Smith-Waterman algorithm uses mismatch
and gap parameters although the LCS algorithm does not use them. In other words,
the Smith-Waterman algorithm can detect clones in consideration for the informa-
tion of their gapped lines. Moreover, the proposed technique makes some changes
to the Smith-Waterman algorithm as described in section 4.3. The changes enable
the Smith-Waterman algorithm to detect one or more similar subsequences from
two sequences. Therefore, the proposed technique can perform a fine-grained de-
tection.

If one sequence is ⟨a1, a2, · · · , an⟩ and the other is ⟨b1, b2, · · · , bm⟩, the naive
Smith-Waterman algorithm requires O(mn) time and O(mn) space. The LCS
algorithm requires the same. Some low complexity strategies of the both algorithm
were proposed [10]. Moreover, implementations of the Smith-Waterman algorithm
on graphics processing units (GPUs) were proposed [39]. If we use GPUs for
implementation of CDSW, the detection time would be reduced.

59

4.10 Conclusion

This chapter proposed a new technique to detect not only Type-1 and Type-
2 but also Type-3 clones by using the Smith-Waterman algorithm. The proposed
technique was developed as a software tool, CDSW. We investigated three parame-
ters (match, mismatch, gap) used in the Smith-Waterman algorithm by conduct-
ing experiments for eight open source software systems. The appropriate tuples of
(match, mismatch, gap) might work well for other software systems.

Furthermore, we remade the clone references used in Bellon’s benchmark by
adding information of gapped lines. CDSW was applied to eight open source
software systems and calculated recall, precision and F -measure by using the
clone references that we remade. The following items are confirmed.

• We tailored the Smith-Waterman algorithm for clone detection.

• The accuracy of clone detection results improved by using not only the infor-
mation about where clones start and where they end but also the information
about where the gaps are.

• CDSW was the best in all the clone detectors used in Bellon’s benchmark
in the case of F -measure. Thus, CDSW achieved good balance of true
positives and false positives.

• CDSW detected clones in short time for large-scale software systems.

As described in section 4.6, in this experiment, the information of gapped lines
that CDSW outputs was not used for accuracy comparison of clone detectors. In
the future, we are going to conduct experiments using the information about where
gaps are. If the information of gapped lines are used for evaluating clones, more
accurate results would be obtained.

60

Chapter 5

Clone Visualization Using Circle
Packing

5.1 Introduction

Recent research has revealed that some clones make software maintenances
more difficult [11]. For example, if developers modify a code fragment for fix-
ing a bug or adding a new function, developers have to check whether its clones
need the same modification or not. In order to find clones of a given code frag-
ment, some researchers have developed tools that took a code fragment as input
and took its clones as output. Libra [27] is one of such tools. Libra receives a
code fragment from a user, and uses CCFinder [37] to detect clones of the input
code fragment. Libra has two views when the user browses the detected clones.
One is a tree view representing all files that are targeted for the clone detection,
and the other is a source code view representing source code that is selected by the
user. The detected clones are highlighted in the source code view. However, we
consider that Libra has an issue. Developers using Libra cannot browse detected
clones efficiently because developers have to open a number of source code and
move up/down a scroll bar for browsing all detected clones. We consider that the
source code of detected clones should be viewable easily. It is necessary to under-
stand detected clones to a certain extent (e.g. which types of clones are detected?)
without browsing source code.

In order to resolve this issue, we developed a clone set visualization tool, named
ClonePacker. ClonePacker uses Circle Packing [62] for visualizing detected
clones. We evaluated ClonePacker by comparing with Libra through an experi-
ment with participants. In the experiment, the participants reported the locations
of clones by using ClonePacker and Libra, then we compared the reporting time

61

a-1

b-1

A

C

B

c-1
c-2

Root A

a-2

b-2

b-3

c-1-1
c-1-2

c-2-1

c-2-2

B

C c-1

c-2

a-1

a-2

b-1

b-2

b-3

c-1-1

c-1-2

c-2-1

c-2-2 Root

Figure 5.1: Example of Circle Packing

between the tools. Moreover, we compared ClonePacker with Libra from the per-
spective of their usability by using System Usability Scale [6]. Consequently, the
contributions of this chapter are followings.

• We proposed a technique to visualize detected clones and developed the
proposed technique as a tool, named ClonePacker. Programmers using
ClonePacker can understand detected clones to a certain extent without
browsing source code.

• We confirmed that developers using ClonePacker reported the locations of
clones faster than Libra and the accuracy was unchanged.

• We confirmed that ClonePacker has higher usability than Libra.

The remainder of this chapter is organized as follows: Section 5.2 describes
Circle Packing. Sections 5.3 and 5.4 show the proposed technique and details of
ClonePacker. Section 5.5 reports the evaluations of ClonePacker by comparing
with Libra. Sections 5.6 describe threats to validity. Finally, we conclude this
chapter in Section 5.7.

5.2 Circle Packing

Circle Packing is one of the enclosure diagrams. Figure 5.1 shows an example
of Circle Packing. In the figure, Circle Packing represents three categories A, B
and C. Each of the categories has some elements. For example, category A has two
elements a-1 and a-2 and category C has two sub-categories, c-1 and c-2. Circle

62

a location of
the method

to be modified

parameters of
the clone detection

source files

Step-1:

Detecting
Clones

Step-2:
Visualizing
Clone Set

clones

a html file for
visualizing

the detected clones

locations and types of
the detected clones

Figure 5.2: Overview of Proposed Technique

Packing is useful for representing hierarchical data structures. In Fig. 5.1, it is clear
that elements a-1 and a-2 are in the same category. On the other hand, elements
a-1 and b-1 are in different categories. Furthermore, both of elements c-1-1 and
c-2-1 are in category C, however, they are in different sub-categories, c-1 and c-2.

We use Circle Packing for visualizing detected clones with file hierarchies. In
this chapter, we assume that the innermost circles represent methods, and the cir-
cles covering the innermost circles represent files. Moreover, the circles covering
file circles represent directories. For example, in Fig. 5.1, the outermost circle rep-
resents directory Root. The directory contains two files A and B, and one directory
C. File A has two methods a-1 and a-2. Directory C has two files c-1 and c-2, and
file c-1 has two methods c-1-1 and c-1-2.

There are two characteristics of Circle Packing [79]. One characteristic is that
Circle Packing represents file hierarchies as previously mentioned. Combining
clones with file hierarchies provides beneficial information for developers. For
example, Hauptmann said that some industrial software systems accidentally con-
tained the same files in different directories, and knowing such system parts helps
developers reduce special cases of clones from the analysis [22]. The other char-

63

acteristic is that the area and color of each circle can be used to represent arbitrary
information. In this study, the area is used for representing the size of the method,
and the color is used for representing the type of the clones. Details are describes
in sub-section 5.4.2. Knowing the sizes and types of clones is important in clone
analysis. For example, Mondal said that Type-3 clones should be given a higher
priority than Type-1 and Type-2 clones in clone analysis [55].

5.3 Proposed Technique

Figure 5.2 shows an overview of the proposed technique. The proposed tech-
nique consists of two steps.

Step-1: Detecting Clones

Step-2: Visualizing Clone Set

First, users prepare a set of source files that is targeted for the clone detection (in
short, target source files). Second, users specify a method to be modified (in short,
a target method). Then, the proposed technique detects clones of the target method
from the target source files. Lastly, detected clones are visualized by using Circle
Packing.

The inputs of the proposed technique are followings:

• target source files,

• a file name and a start line of a target method, and

• parameters of the clone detection (minimum token length and the number of
allowed gapped statements).

The outputs are followings:

• file names, start lines, end lines and types of the detected clones, and

• a html file for visualizing the detected clones with Circle Packing.

In the rest of this section, we describe each step.

5.3.1 Step-1: Detecting Clones

The proposed technique detects clones of the target method from the target
source files by considering the input minimum token length and the number of
allowed gapped statements. In this step, the proposed technique uses a version of

64

customized our previous technique [57] to detect method clones1. The technique
can detect all types of clones in a short time. The technique detects clones as a
clone set.

5.3.2 Step-2: Visualizing Clone Set

The proposed technique visualizes the clone set obtained in Step-1. The clone
set is visualized as Circle Packing. Furthermore, locations and types of the detected
clones are also reported.

5.4 Tool: ClonePacker

5.4.1 Implementation

We have implemented the proposed technique as a tool, ClonePacker. ClonePacker
has been developed as an Eclipse plugin. It is downloadable from our website2. We
used JavaScript library D33 for visualizing the clone set. The proposed technique
creates a html file representing the clone set. Then, the proposed technique visual-
izes the clone set by giving the html file to D3.

5.4.2 How to Use ClonePacker

Figure 5.3 shows a screenshot of ClonePacker. First, users select a target
method by setting a caret position on the method. In Figure 5.3, the caret position
exists at 114th line. In this case, method draw (109th - 127th lines) is selected as
the target method. After the users push the button A, ClonePacker finds clones of
the target method.

After ClonePacker finishes detecting clones, the users can see the detection
results. In Figure 5.3, the right view B shows the detected clones with Circle
Packing. The yellow circle represents the target method that the users selected.
The red one is Type-1 clone, the blue one is Type-2 clone and the green one is
Type-3 clone. In this case, one Type-1 clones, two Type-2 clones and one Type-3
clone were detected. The Type-1 clone and one of Type-2 clones locate in the same
directory with the target method and the others locate in different directories. The
size of each innermost circle represents LOC of the method. Location and type of
each clone are showed in the bottom table by clicking each circle. The location of
the clone is represented as a combination of its file path, its method name, its start

1Method clones are methods that have identical or similar methods in source code.
2http://sdl.ist.osaka-u.ac.jp/˜h-murakm/clonepacker/
3http://d3js.org/

65

Figure 5.3: Screenshot of ClonePacker

line and its end line. The users can also browse the source code of the clones at the
bottom view C.

5.4.3 Example of Supporting Scenario

Figure 5.4 shows two code fragments in JFreeChart. The 608th line of Com-
binedDomainXYPlot.java and the 469th line of CombinedDomainCategory-
Plot.java include the same method invocations. One was modified in 04/Dec./2007
and the other was modified in 28/Mar./2008. From the commit log of 28/Mar./2008,
the modification in CombinedDomainCategoryPlot.java was for bug fix. Thus,
the two method invocations must have been modified simultaneously. However, the
developers overlooked the modification in CombinedDomainCategoryPlot.java.
In Fig. 5.4, the two code fragments are clones. By using ClonePacker in 04/Dec./2007,
the developers would have understood that the two method invocations must have
been modified simultaneously. ClonePacker is useful for preventing code frag-
ments that should be modified simultaneously from being overlooked.

66

 604: protected void setFixedRangeAxisSpaceForSubplots(AxisSpace space) {
 605: Iterator iterator = this.subplots.iterator();
 606: while (iterator.hasNext()) {
 607: XYPlot plot = (XYPlot) iterator.next();
- 608: plot.setFixedRangeAxisSpace(space);
+ plot.setFixedRangeAxisSpace(space, false);
 609: }
 700: }

 465: protected void setFixedRangeAxisSpaceForSubplots(AxisSpace space) {
 466: Iterator iterator = this.subplots.iterator();
 467: while (iterator.hasNext()) {
 468: CategoryPlot plot = (CategoryPlot) iterator.next();
- 469: plot.setFixedRangeAxisSpace(space);
+ plot.setFixedRangeAxisSpace(space, false);
 470: }
 471: }

trunk/source/org/jfree/chart/plot/CombinedDomainXYPlot.java

trunk/source/org/jfree/chart/plot/CombinedDomainCategoryPlot.java

This modification was occurred in 04/Dec./2007

This modification was occurred in 28/Mar./2008

Figure 5.4: Modifications in JFreeChart

5.5 Experiment

5.5.1 Evaluation for Clone Analysis Time

In order to evaluate ClonePacker, we conducted an experiment with partici-
pants. The participants performed some tasks with ClonePacker and Libra. Then,
we compared task completion time of ClonePacker and Libra. In this experi-
ment, ten participants took part in the experiment. Eight participants were master’s
course students, and the other two participants were undergraduate students at Os-
aka University.

First, we divided the participants into two groups, called GA and GB . Since
the number of the participants was ten, each group had five participants.

Table 5.1: Details of Experimental Tasks
Tasks Target method Locations of the target method # Type-1 # Type-2 # Type-3(start line - end line)
Task-1 suite test/samples/minimap/MinimapSuite.java (37 - 57) 0 2 0
Task-2 handles figures/GroupFigure.java (67 - 74) 0 2 1
Task-3 draw contrib/PolygonScaleHandle.java (111 - 129) 4 3 1
Task-4 store util/SerializationStorageFormat.java (62 - 68) 0 1 0
Task-5 fillRoundRect contrib/zoom/ScalingGraphics.java (212 - 217) 0 2 2
Task-6 handles contrib/TextAreaFigure.java (299 - 303) 5 0 1

67

Ta
sk

 C
om

pl
et

io
n

T
im

e
(s

ec
.)

0

20

40

60

80

100

120

140

●

●

0

20

40

60

80

100

120

140

Participants using Libra Participants using ClonePacker

Task_1 Task_2 Task_3 Task_4 Task_5 Task_6

Figure 5.5: Results of Task Completion Time

Second, each group worked on the tasks. All of the tasks were very simple,
”Please report locations of all clones of the given method”. In each task, the
participants were given one target method, then they found its clones by using
the tools and reported the locations of detected clones. In this experiment, we set
minimum token length as 30 and the number of allowed gapped statements as 2. We
made the participants measure their task completion time from the beginning to the
end in each task. Table 5.1 shows details of the tasks. All of the target methods
were found in JHotDraw 6.0 beta 1. For example, in Task-2, ClonePacker found
three clones (two Type-2 clones and one Type-3 clone). However, Libra found
only two Type-2 clones because Libra used CCFinder for detecting clones and
CCFinder did not have a capability of detecting Type-3 clones.

Although ClonePacker reported types of the detected clone, the participants
had to report only the locations of the detected clones. The reason is that Libra did
not report types of detected clones and we would like to provide a fair comparison
between ClonePacker and Libra. Furthermore, in order to achieve a fair compari-
son, both the groups changed the tools at the timing of finishing a half of the tasks.
GA used ClonePacker and GB used Libra for working on Task-1, Task-2 and
Task-3. Then, GA used Libra and GB used ClonePacker for working on Task-4,
Task-5 and Task-6.

Figure 5.5 shows results of the task completion time. Its horizontal axis repre-
sents each task and the vertical axis represents task completion time. The blue box
plots represent time for participants using Libra and red box plots represent time
for participants using ClonePacker. For example, in Task-1, the fastest participant

68

using ClonePacker took about 20 seconds per clone to report locations of detected
clones. From Figure 5.5, it was likely that the participants using ClonePacker re-
ported the locations of clones faster than Libra.

In order to show that there was a significant difference between the completion
time for ClonePacker and Libra, we introduced the following null and alternative
hypotheses.

H0: The null hypothesis is that there is no significant difference between the com-
pletion time for ClonePacker and Libra.

H1: The alternative hypothesis is that there is a significant difference between the
completion time for ClonePacker and Libra.

We confirmed that completion time for ClonePacker and Libra have equal vari-
ances and do not follow a normal distribution at 0.05 level of a significance by
using F-test and Shapiro-Wilk test, respectively. Thus, we conducted Wilcoxon
test. The p-value obtained from Wilcoxon test was 6.724e-05. Since p-value was
less than 0.05, we rejected H0 and adopted H1. Therefore, there was a signifi-
cant difference between the completion time for ClonePacker and Libra. From
the result of Wilcoxon test and Figure5.5, we confirmed that the participants using
ClonePacker reported the locations of clones faster than Libra.

5.5.2 Evaluation for Usability

Next, we compared ClonePacker with Libra from the perspective of their us-
ability by using System Usability Scale [6]. The purpose of this evaluation is to
investigate whether ClonePacker is easy to use or not.

System Usability Scale consists of the following 10 item questionnaire with
five response options for the participants; strongly agree (5), agree (4), neutral (3),
disagree (2), Strongly disagree (1).

Q1: I think that I would like to use this system frequently.

Q2: I found the system unnecessarily complex.

Q3: I thought the system was easy to use.

Q4: I think that I would need the support of a technical person to be able to use
this system.

Q5: I found the various functions in this system were well integrated.

Q6: I thought there was too much inconsistency in this system.

69

Q7: I would imagine that most people would learn to use this system very quickly.

Q8: I found the system very cumbersome to use.

Q9: I felt very confident using the system.

Q10: I needed to learn a lot of things before I could get going with this system.

The participants answered the questionnaire for ClonePacker and Libra, re-
spectively. Moreover, we provided a free description column in order to collect
their opinions and comments. Note that the questionnaires were filled out anony-
mously.

Next, the answers of the participants were normalized by the following steps.

• for odd questionnaire, subtract 1 from the answer of the participants.

• for even questionnaire, subtract the answer of the participants from 5.

• By these transformations, all values become from 0 to 4 (0 is the most nega-
tive answer, and 4 is the most positive answer).

• Each transformed values was multiplied by 2.5. After this multiplication,
sum of the values become from 0 to 100 (100 is the most positive score).

Table 5.2 shows that the results of the evaluation. From Table 5.2, the scores
of the participants for ClonePacker is higher than Libra in most cases. Therefore,
we confirmed that ClonePacker has higher usability than Libra. However, in only
two cases, Libra has higher usability than ClonePacker. The questionnaires are
Q2 and Q6. This imply that some participants think that ClonePacker is unnec-
essarily complex or there is too much inconsistency in ClonePacker. For Q2, the
participant answered “ClonePacker requires care for browsing two views” in the
free description column. For Q6, the free description column was blank. In the
future, we will improve ClonePacker based on the opinions.

5.6 Threats to Validity

5.6.1 Configurations of Clone Detection

In this experiment, we set minimum token length as 30 and the number of
allowed gapped statements as 2. In general, configurations of a clone detection
strongly affect the detection results. Wang et al. proposed a technique to find
suitable configurations of a clone detection automatically [84]. If we use their
technique for finding suitable configurations, we may obtain different results from
this experiment.

70

Table 5.2: Results of System Usability Scale
Participant Tool Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score

A
ClonePacker 3 1 4 2 4 2 4 2 4 3 72.5

Libra 3 4 2 2 3 2 2 4 3 4 42.5
difference 0 3 2 0 1 0 2 2 1 1 30.0

B
ClonePacker 4 2 4 2 4 2 4 2 4 2 75.0

Libra 3 2 2 2 3 2 4 4 3 2 57.5
difference 1 0 2 0 1 0 0 2 1 0 17.5

C
ClonePacker 4 2 4 4 4 2 5 2 4 4 67.5

Libra 4 3 2 4 2 2 2 4 3 4 40.0
difference 0 1 2 0 2 0 3 2 1 0 27.5

D
ClonePacker 4 1 4 3 3 2 4 1 3 3 70.0

Libra 2 4 1 4 3 3 2 3 2 3 32.5
difference 2 3 3 1 0 1 2 2 1 0 37.5

E
ClonePacker 3 2 4 3 3 2 4 2 3 2 65.0

Libra 3 2 3 4 3 2 3 2 3 3 55.0
difference 0 0 1 1 0 0 1 0 0 1 10.0

F
ClonePacker 3 2 4 2 4 3 4 2 4 4 65.0

Libra 2 3 2 3 3 2 3 3 2 4 42.5
difference 1 1 2 1 1 -1 1 1 2 0 22.5

G
ClonePacker 4 4 4 2 2 2 4 4 2 2 55.0

Libra 1 2 4 4 1 2 4 5 1 2 40.0
difference 3 -2 0 2 1 0 0 1 1 0 15.0

H
ClonePacker 4 1 4 2 4 1 5 2 4 2 82.5

Libra 2 3 1 4 2 2 1 5 2 4 25.0
difference 2 2 3 2 2 1 4 3 2 2 57.5

I
ClonePacker 4 1 5 2 4 1 4 2 3 3 77.5

Libra 2 3 3 4 2 2 3 4 3 4 40.0
difference 2 2 2 2 2 1 1 2 0 1 37.5

J
ClonePacker 4 1 4 1 4 2 4 1 4 4 77.5

Libra 2 1 4 2 3 2 4 3 4 4 62.5
difference 2 0 0 1 1 0 0 2 0 0 15.0

5.6.2 Target Software System

We used only one target software system in this study. If we use other software
systems, the results might be different. In order to minimize this threat, we should
apply ClonePacker to many other systems. Furthermore, ClonePacker visualizes
many circles for large software systems including many clones. In such a case, in
order to visualize all detected clones, each circle is likely to be small. Thus, the
user may not be able to browse detected clones efficiently. In the future, we are
going to tackle this problem.

71

5.6.3 Participants

Ten participants used ClonePacker and Libra for conducting the given tasks.
All of the participants had experiences of Java programming more than one year.
If their programming skills are differed widely, the differences would affect their
completion time of the given tasks. However, we tried our best to allocate the
participants by considering their programming experiences. Moreover, the partic-
ipants changed the tools at the timing of finishing a half of the tasks. Hence, we
considered that we were able to minimize the differences of skills in GA and GB .

5.6.4 Experimental Methodology

Some people may think that the experimental methodology is unfair because
the proposed visualization technique is more abstract representation than the ex-
isting technique. There are many situations that a code fragments is used for re-
trieval key and then detection results are analyzed in clone analysis or manage-
ment. Moreover, some studies designed experiments on the assumption for such
situations [56, 87]. We therefore consider that the experimental methodology is
reasonable. Of course, more elaborate clone analysis is needed. For example, we
compare time for fixing clone-related bugs actually between use cases of clone
analysis tools. In this experiment, we compared time for reporting locations of
detected clones between tools because knowing locations of clones is the most
fundamental task in clone analysis.

5.7 Conclusions

In this chapter, we introduced our Eclipse plugin, named ClonePacker. It
helps programmers when they modify a code fragment and check its clones. ClonePacker
receives a set of source files and a method that is to be modified from programmers.
Then, ClonePacker detects clones of the method from the source files. Finally,
ClonePacker visualizes the detection results by using Circle Packing.

We conducted an experiment with participants to compare task completion time
of ClonePacker and Libra. As a result, we confirmed that programmers using
ClonePacker reported the locations of clones faster than Libra, and ClonePacker
has higher usability than Libra. In the future, we are going to apply ClonePacker
to many systems.

72

Chapter 6

Conclusion

This chapter provides the conclusions of this dissertation.

6.1 Contribution

In this dissertation, we proposed fast and precise clone detection. The pro-
posed techniques are designed for improving existing techniques with respect to
the following problems.

Problem 1: Detection time is too long

Problem 2: Detection accuracies are not sufficient

Problem 1 is caused by AST-based and PDG-based detection techniques. These
detection techniques transform source code into a tree or graph representation, and
then they detect common sub-trees or isomorphic sub-graphs as clones. Finding
common sub-trees or isomorphic sub-graphs requires much time. Therefore, the
detection time of these techniques is too long.

Problem 2 has two causes. The first is the use of module-based clone detection
techniques. Some existing detection techniques for gapped clones regard similar
modules as clones (e.g., blocks or methods). Thus, these techniques cannot find
clones that are partially duplicated in modules. The second cause is the presence
of repeated instructions in the source code. For example, repeating case entries
in a switch statement or repeating similar method invocations are included in
the repeated instructions. The existing line-based or token-based detection tech-
niques find many redundant clones from the repeated instructions. Hence, these
techniques have low precision.

To resolve these problems, we proposed two detection techniques.

73

First, we conducted a study of clone detection for reducing false positives. In
that study, we proposed pre-processing that folds repeated instructions in the source
code. This pre-processing prevented many false positives that are detected in line-
based and token-based techniques. Then, we implemented token-based detection
with processing using the suffix array algorithm. The name of the implemented tool
is FRISC. To evaluate the performance of FRISC, we compared FRISC with the
existing clone detectors. We used Bellon’s benchmark for the comparison. From
the experimental results, we confirmed that (1) the folding operation avoided many
false positives, (2) some clones were newly detected by the folding operation, and
(3) FRISC detected more clone references than any other detectors in most cases.

Second, we conducted a study of clone detection using the Smith-Waterman
algorithm. In that study, we proposed the clone detection technique that resolves
the existing problems. The proposed technique did not adopt tree-based or graph-
based comparisons, and regarded consecutive similar statements as clones. We
developed the proposed technique as a tool, named CDSW. The detection time of
CDSW is rapid, and CDSW can find clones that are partially duplicated in mod-
ules. Moreover, we improved Bellon’s benchmark by adding location information
of gapped lines for clone references. We reported an experiment that compares
Bellon’s clone references and our clone references. Finally, we compared accura-
cies between CDSW and the existing clone detectors by using Bellon’ benchmark
and the enhanced clone references. From the experimental results, we confirmed
that (1) our clone references evaluated gapped clones more correctly than Bellon’s
clone references, (2) CDSW detected clones in a short time from a large software
system, and (3) CDSW had the best F-measure of all the clone detectors used with
Bellon’s Benchmark.

We revealed that FRISC and CDSW improved the existing problems. Many
clone detectors including FRISC and CDSW provide the location information of
detected clones, such as file names, start lines, and end lines. However, it is some-
times difficult for developers to analyze clones with only the location information
of the clones.

Next, we conducted research on clone analyses. We conducted a study of clone
visualization using circle packing. When developers analyze detected clones,
they sometimes use clone visualization tools. However, when programmers use
such existing tools, they have to open a number of source files and move the scroll
bar up or down to browse the detected clones. To reduce the cost of browsing
the detected clones, we proposed a clone visualization technique and developed
the proposed technique as a tool, called ClonePacker. By using ClonePacker,
developers can analyze clones with a single view. We conducted experiments
with student participants, who compared ClonePacker with the existing tool Li-
bra from the perspectives of time to report the clone locations and usability of the

74

tools. From the experimental results, we confirmed that (1) the developers using
ClonePacker report the locations of clones faster than the developers using Libra
and (2) ClonePacker has higher usability than Libra.

6.2 Future Work

Based on the results and knowledge provided by these studies, some issues and
improvements will be starting points for future work.

Further improvement of detection accuracy: In this dissertation, we proposed
technique for improving accuracy of clone detection. However, we consider
that there is room for improvement on detection accuracy. Improving de-
tection accuracy is an everlasting challenge in clone-related research. One
solution is combining the techniques described in Chapter 3 and Chapter 4.
In Chapter 3, we proposed pre-processing for reducing uninteresting clones.
Moreover, in Chapter 4, we proposed the detection technique for improving
the detection time and accuracy. Thus, the pre-processing and the detection
techniques can be combined.

Applying the proposed techniques to various software systems: In this disser-
tation, we used open source software systems for the experiments. There are
many studies that clones in commercial software systems are investigated.
It is said that clones in commercial software systems have different charac-
teristics from clones in open source software systems. We should apply the
proposed techniques to various software systems (e.g., industrial systems,
very large systems and systems currently in development) and investigate
characteristics of detected clones in them. Then, we may obtain interesting
results.

75

Bibliography

[1] R. Agrawal and R. Srikant. Mining Sequential Patterns. In Proceedings of
the 11th International Conference on Data Engineering, pages 3–14, 1995.

[2] G. Alkhatib. The Maintenance Problem of Application Software: An Em-
pirical Analysis. Journal of Software Maintenance: Research and Practice,
4(2):83–104, 1992.

[3] M. Asaduzzaman, C. K. Roy, and K. A. Schneider. VisCad: Flexible Code
Clone Analysis Support for NiCad. In Proceedings of the 5th International
Workshop on Software Clones, pages 77–78, 2011.

[4] B. S. Baker. Finding Clones with Dup: Analysis of an Experiment. Transac-
tions on Software Engineering, 33(9):608–621, 2007.

[5] B.S. Baker. Parameterized Duplication in Strings: Algorithms and an Appli-
cation to Software Maintenance. SIAM Journal on Computing, 26(5):1343–
1362, 1997.

[6] A. Bangora, P. T. Kortumb, and J. T. Miller. An Empirical Evaluation of the
System Usability Scale. International Journal of Human-Computer Interac-
tion, 24(6):574–594, 2008.

[7] R. D. Banker, S. M. Datar, C. F. Kemerer, and D. Zweig. Software Com-
plexity and Maintenance Costs. Communications of the ACM, 36(11):81–94,
1993.

[8] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone Detec-
tion Using Abstract Syntax Trees. In Proceedings of the 14th International
Conference on Software Maintenance, pages 368–377, 1998.

[9] S. Bellon, R. Koschke, G. Antniol, J. Krinke, and E. Merlo. Comparison and
Evaluation of Clone Detection Tools. Transactions on Software Engineering,
31(10):804–818, 2007.

77

[10] L. Bergroth, H. Hakonen, and T. Raita. A Survey of Longest Common Sub-
sequence Algorithms. In Proceedings of the 7th International Symposium on
String Processing Information Retrieval, pages 39–48, 2000.

[11] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams, Y. Zou, and A. E. Has-
san. An Empirical Study on Inconsistent Changes to Code Clones at the
Release Level. Science of Computer Programming, 77(6):760–776, 2012.

[12] R. N. Burns and A. R. Dennis. Selecting the Appropriate Application Devel-
opment Methodology. SIGMIS Database, 17(1):19–23, 1985.

[13] CCFinderX. <http://www.ccfinder.net/ccfinderx-j.
html>.

[14] M. S. Charikar. Similarity Estimation Techniques from Rounding Algo-
rithms. In Proceedings of the 34th Annual ACM Symposium on Theory of
Computing, pages 380–388, 2002.

[15] CloneDR. <http://www.semdesigns.com/Products/Clone/>.

[16] J. R. Cordy. The TXL Source Transformation Language. Science of Computer
Programming, 61(3):190–210, 2006.

[17] J.R. Cordy and C.K. Roy. The NiCad Clone Detector. In Proceedings of the
19th International Conference on Program Comprehension, pages 219–220,
2011.

[18] S. Ducasse, M. Rieger, and S. Demeyer. A Language Independent Approach
for Detecting Duplicated Code. In Proceedings of the 15th International Con-
ference on Software Maintenance, pages 109–118, 1999.

[19] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley, 1999.

[20] N. Göde and R. Koschke. Frequency and Risks of Changes to Clones. In
Proceedings of the 33rd International Conference on Software Engineering,
pages 311–320, 2011.

[21] N. Göde and R. Kosheke. Incremental Clone Detection. In Proceedings of
the 13th European Conference on Software Maintenance and Reengineering,
pages 219–228, 2009.

[22] B. Hauptmann, V. Bauer, and M. Junker. Using Edge Bundle Views for Clone
Visualization. In Proceedings of the 6th International Workshop on Software
Clones, pages 86–87, 2012.

78

[23] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method and Implementa-
tion for Investigating Code Clones in a Software System. Information and
Software Technology, 49(9–10):985–998, 2007.

[24] Y. Higo and S. Kusumoto. Code Clone Detection on Specialized PDGs with
Heuristics. In Proceedings of the 15th European Conference on Software
Maintenance and Reengineering, pages 75–84, 2011.

[25] Y. Higo and S. Kusumoto. Repeated Instructions Removal Preprocessing for
Lightweight Code Clone Detection. In Proceedings of the 22nd International
Symposium on Software Reliability Engineering, pages 2–4, 2011.

[26] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On Software
Maintenance Process Improvement Based on Code Clone Analysis. In Pro-
ceedings of the 4th International Conference on Product Focused Software
Process Improvement, pages 185–197, 2002.

[27] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue. Simultaneous Modification
Support Based on Code Clone Analysis. In Proceedings of the 14th Asia-
Pacific Software Engineering Conference, pages 262–269, 2007.

[28] Y. Higo, Y. Ueda, M. Nishino, and S. Kusumoto. Incremental Code Clone
Detection: A PDG-Based Approach. In Proceedings of the 18th Working
Conference on Reverse Engineering, pages 3–12, 2011.

[29] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is Duplicate Code More Fre-
quently Modified than Non-duplicate Code in Software Evolution?: An Em-
prical Study on Open Source Software. In Proceedings of the 4th Interna-
tional Joint ERCIM/IWPSE Symposium on Software Evolution, pages 73–82,
2010.

[30] K. Hotta, J. Yang, Y. Higo, and S. Kusumoto. How Accurate Is Coarse-
grained Clone Detection?: Comparison with Fine-grained Detectors. In Pro-
ceedings of the 8th International Workshop on Software Clones, pages 1–18,
2014.

[31] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index Based Code
Clone Detection: Incremental, Distributed, Scalable. In Proceedings of the
32th International Conference on Software Engineering, pages 1–9, 2010.

[32] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Inter-Project Func-
tional Clone Detection Toward Building Libraries - An Empirical Study on
13,000 Projects. In Proceedings of the 19th Working Conference on Reverse
Engineering, pages 387–391, 2012.

79

[33] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard : Scalable and Ac-
curate Tree-Based Detection of Code Clones. In Proceedings of the 29th
International Conference on Software Engineering, pages 96–105, 2007.

[34] J.H. Johnson. Substring Matching for Clone Detection Tools. In Proceedings
of the 10th International Conference on Software Maintenance, pages 120–
126, 1994.

[35] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do Code Clones
Matter? In Proceedings of the 31th International Conference on Software
Engineering, pages 1–9, 2009.

[36] T. Kamiya. Classifying code clones with configuration. In Proceedings of the
4th International Workshop on Software Clones, pages 75–76, 2010.

[37] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multi-Linguistic
Token-Based Code Clone Detection System for Large Scale Source Code.
Transactions on Software Engineering, 28(7):654–670, 2002.

[38] I. Keivanloo and G. Roussel amd J. Rilling. Java Bytecode Clone Detection
via Relaxation on Code Fingerprint and Semantic Web Reasoning. In Pro-
ceedings of the 6th International Workshop on Software Clones, pages 36–42,
2012.

[39] A. Khajeh-Saeed, S. Poole, and J. B. Perot. Acceleration of the Smith-
Waterman Algorithm using Single and Multiple Graphics Processors. Journal
of Computational Physics, 229(11):4247–4258, 2010.

[40] H. Kim, Y. Jung, S. Kim, and K. Yi. MeCC: Memory Comparison-Based
Clone Detector. In Proceedings of the 33rd International Conference on Soft-
ware Engineering, pages 301–310, 2011.

[41] M. Kim, L. Bergman, T. Lau, and D. Notkin. An Ethnographic Study of
Copy and Paste Programming Practices in OOPL. In Proceedings of the 3rd
International Symposium on Empirical Software Engineering, pages 83–92,
2004.

[42] E. Kodhai, S. Kanmani, A. Kamatchi, R. Radhika, and B. V. Saranya. Detec-
tion of Type-1 and Type-2 Code Clones Using Textual Analysis and Metrics.
In Proceedings of the 2010 International Conference on Recent Trends in In-
formation, Telecommunication and Computing, pages 241–243, 2010.

80

[43] R. Komondoor and S. Horwitz. Using Slicing to Identify Duplication in
Source Code. In Proceedings of the 8th International Symposium on Static
Analysis, pages 40–56, 2001.

[44] R. Koschke. Large-Scale Inter-System Clone Detection Using Suffix Trees.
In Proceedings of the 16th European Conference on Software Maintenance
and Reengineering, pages 309–318, 2012.

[45] R. Koschke, R. Falke, and P. Frenzel. Clone Detection using Abstract Syntax
Suffix Trees. In Proceedings of the 13th Working Conference on Reverse
Engineering, pages 253–262, 2006.

[46] J. Krinke. Identifying Similar Code with Program Dependence Graphs. In
Proceedings of the 8th Working Conference on Reverse Engineering, pages
301–309, 2001.

[47] J. Krinke. Is Cloned Code more stable than Non-Cloned Code? In Proceed-
ings of the 8th International Working Conference on Source Code Analysis
and Manupulation, pages 57–66, 2008.

[48] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl. Assessing
the Benefits of Incorporating Function Clone Detection in a Development
Process. In Proceedings of the 13th International Conference on Software
Maintenance, pages 314–321, 1997.

[49] F. Lanubile and T. Mallardo. Finding Function Clones in Web Applications.
In Proceedings of the 7th European Conference on Software Maintenance
and Reengineering, pages 379–386, 2003.

[50] Z. Li, S. Myagmar, S. Lu, and Y.Zhou. CP-Miner: Finding Copy-Paste and
Related Bugs in Large-Scale Software Code. Transactions on Software Engi-
neering, 32(3):176–192, 2006.

[51] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Very-Large Scale Code
Clone Analysis and Visualization of Open Source Program Using Distributed
CCFinder: D-CCFinder. In Proceedings of the 29th International Conference
on Software Engineering, pages 106–115, 2007.

[52] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluating the Relation be-
tween Changeability Decay and the Characteristics of Clones and Methods.
In Proceedings of the 23rd International Conference on Automated Software
Engineering,, pages 100–109, 2008.

81

[53] J. Mayland, C. Leblanc, and E. Merlo. Experiment on the Automatic Detec-
tion of Function Clones in a Software System Using Metrics. In Proceedings
of the 12th International Conference on Software Maintenance, pages 244–
253, 1996.

[54] M. Mondal, M. S. Rahman, R. K. Saha, C. K. Roy J. Krinke, and K. A.
Schneider. An Empirical Study of the Impacts of Clones in Software Main-
tenance. In Proceedings of the 19th International Conference on Program
Comprehension, pages 242–245, 2011.

[55] M. Mondal, C. K. Roy, and K. A. Schneider. A Comparative Study on the
Bug-Proneness of Different Types of Code Clones. In Proceedings of the 31th
International Conference on Software Maintenance and Evolution, pages 91–
100, 2015.

[56] S. Morisaki, N. Yoshida, Y. Higo, S. Kusumoto, K. Inoue, K. Sasaki, K. Mu-
rakami, and K Matsui. Empirical Evaluation of Similar Defect Detection by
Code Clone Search. IEICE Transactions on Information and Systems, 91-
D(10):2466–2477, 2008 (in Japanese).

[57] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Gapped Code
Clone Detection with Lightweight Source Code Analysis. In Proceedings
of the 21st International Conference on Program Comprehension, pages 93–
102, 2013.

[58] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N. Nguyen.
ClemanX: Incremental Clone Detection Tool for Evoluving Software. In
Proceedings of the 31st International Conference on Software Engineering,
pages 437–438, 2009.

[59] NiCad3 Clone Detector. <http://www.txl.ca/nicaddownload.
html>.

[60] Detection of Software Clones. <http://www.bauhaus-stuttgart.
de/clones/>.

[61] J. Ossher, H. Sajnani, and C. Lopes. File Cloning in Open Source Java
Projects: The Good, The Bad, and The Ugly. In Proceedings of the 27th
International Conference on Software Maintenance, pages 283–292, 2011.

[62] Circle Packing. <http://bl.ocks.org/mbostock/4063530>.

82

[63] L. Paulevë, H. Jëgou, and L. Amsaleg. Locality Sensitive Hashing: A Com-
parison of Hash Function Types and Querying Mechanisms. Pattern Recog-
nition Letters, 31(11):1348–1358, 2010.

[64] A. J. Rostkowycz, V. Rajlich, and A. Marcus. A Case Study on the Long-
Term Effects of Software Redocumentation. In Proceedings of the 20th In-
ternational Conference on Software Maintenance, pages 92–101, 2004.

[65] C. K. Roy and J. R. Cordy. NICAD: Accurate Detection of Near-Miss In-
tentional Clones using Flexible Pretty-Printing and Code Normalization. In
Proceedings of the 16th International Conference on Program Comprehen-
sion, pages 172–181, 2008.

[66] C. K. Roy and J. R. Cordy. Scenario-Based Comparison of Clone Detection
Techniques. In Proceedings of the 16th International Conference on Program
Comprehension, pages 153–162, 2008.

[67] C. K. Roy and J. R. Cordy. Near-Miss Function Clones in Open Source Soft-
ware: An Empirical Study. Journal of Software Maintenance and Evolution:
Research and Practice, 22(3):165–189, 2010.

[68] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and Evaluation of Code
Clone Detection Techniques and Rools: A Qualitative Approach. Science of
Computer Programming, 74(7):470–495, 2009.

[69] R. K. Saha, C. K. Roy, and K. A. Schneider. gCad: A Near-Miss Clone
Genealogy Extractor to Support Clone Evolution Analysis. In Proceedings of
the 29th International Conference on Software Maintenance, pages 488–491,
2013.

[70] R. K. Saha, C. K. Roy, K. A. Schneider, and D. E. Perry. Understanding the
Evolution of Type-3 Clones: An Exploratory Study. In Proceedings of the
10th Working Conference on Mining Software Repositories, pages 139–148,
2013.

[71] A. Santone. Clone Detection through Process Algebras and Java Bytecode.
In Proceedings of the 5th International Workshop on Software Clones, pages
73–74, 2011.

[72] Scorpio. <https://github.com/YoshikiHigo/TinyPDG>.

[73] W. Shang, B. Adams, and A. E. Hassan. An Experience Report on Scaling
Tools for Mining Software Repositories Using MapReduce. In Proceedings

83

of the 25th International Conference on Automated Software Engineering,,
pages 275–284, 2010.

[74] Simian. <http://www.redhillconsulting.com.au/
products/simian/>.

[75] T. F. Smith and M. S. Waterman. Identification of Common Molecular Sub-
sequences. Journal of Molecular Biology, 147(1):195–197, 1981.

[76] J. Svajlenko, I. Keivanloo, and C. K. Roy. Scaling Classical Clone Detection
Tools for Ultra-Large Datasets: An Exploratory Study. In Proceedings of the
7th International Workshop on Software Clones, pages 16–22, 2013.

[77] J. Svajlenko and C. K. Roy. Evaluating Modern Clone Detection Tools. In
Proceedings of the 30th International Conference on Software Maintenance
and Evolution, pages 321–330, 2014.

[78] J. Svajlenko and C. K. Roy. Evaluating Clone Detection Tools with Big-
CloneBench. In Proceedings of the 31th International Conference on Soft-
ware Maintenance and Evolution, pages 131–140, 2015.

[79] S. Tonidandel, E. King, and J. Cortina. Big Data at Work: The Data Science
Revolution and Organizational Psychology. Routledge, 2015.

[80] S. Uddin, C. K. Roy, and K. Schneider. SimCad : An Extensible and Faster
Clone Detection Tool for Large Scale Software Systems. In Proceedings of
the 21st International Conference on Program Comprehension, pages 236–
238, 2013.

[81] S. Uddin, C. K. Roy, K. A. Schneider, and A. Hindle. On the Effectiveness of
Simhash for Detecting Near-Miss Clones in Large Scale Software Systems. In
Proceedings of the 18th Working Conference on Reverse Engineering, pages
13–22, 2011.

[82] Y. Ueda, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Code
Clone Analysis Tool. In Proceedings of the 2002 International Symposium
on Empirical Software Engineering, pages 31–32, 2002.

[83] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Maintenance
Support Environment Based on Code Clone Analysis. In Proceedings of the
8th International Symposium on Software Metrics, pages 67–76, 2002.

[84] T. Wang, M. Harman, Y. Jia, and J. Krinke. Searching for Better Configura-
tions: A Rigorous Approach to Clone Evaluation. In Proceedings of the 9th

84

joint meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages
455–465, 2013.

[85] M. Weiser. Program Slicing. Transactions on Software Engineering,
10(4):352–357, 1984.

[86] Y. Sasaki and T. Yamamotoy and Y. Hayase and K. Inoue. Finding File Clones
in FreeBSD Ports Collection. In Proceedings of the 7th Working Conference
on Mining Software Repositories, pages 102–105, 2010.

[87] T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, S. Kawaguchi,
and H. Iida. SHINOBI: A Real-time Code Clone Detection Tool for Software
Maintenance. Technical Report NAIST-IS-TR2007011, Graduate School of
Information Science, Nara Institute of Science and Technology, 2010.

85

