
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Method and implementation for investigating code clones
in a software system

Yoshiki Higo a,*, Toshihiro Kamiya b, Shinji Kusumoto a, Katsuro Inoue a

a Department of Software Science, Graduate School of Information Science and Technology, Osaka University,

1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
b National Institute of Advanced Industrial Science and Technology, Information Technology Research Institute,

Akihabara Dai Bldg. 1-18-13 Sotokanda, Chiyoda-ku, Tokyo, 101-0021, Japan

Received 11 March 2006; received in revised form 10 October 2006; accepted 12 October 2006
Available online 22 November 2006

Abstract

Maintaining software systems is becoming more difficult as the size and complexity of software increase. One factor that complicates
software maintenance is the presence of code clones. A code clone is a code fragment that has identical or similar code fragments to it in
the source code. Code clones are introduced for various reasons such as reusing code by ‘copy and paste’. If modifying a code clone with
many similar code fragments, we must consider whether to modify each of them. Especially for large-scale software, such a process is
very complicated and expensive. In this paper, we propose methods of visualizing and featuring code clones to support their understand-
ing in large-scale software. The methods have been implemented as a tool called Gemini, which has applied to an open source software
system. Application results show the usefulness and capability of our system.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Software maintenance; Code clone; Software understanding; Software metrics

1. Introduction

Software maintenance is a continuous process of chang-
ing a software system after the system has been delivered to
the field. As the size and complexity of software increase,
maintenance tasks become more difficult and burdensome.
For example, Yip and Lam reported that 66% of the cost of
the software life cycle is spent on maintenance phase [23].

A code clone is defined as a code fragment that has iden-
tical or similar fragments to it in the source code. The pres-
ence of code clone is one factor that complicates software
maintenance. Fowler postulates in [9] that the most fre-
quent cause of refactoring is the presence of code clones.
They are introduced in the source program for such rea-
sons as reusing code by ‘copy-and-paste’. When modifying

a code clone with many other similar code fragments that
reside in the system, we must determine whether to modify
each of them. For large-scale software, in particular, such a
process is very complicated and costly. Therefore, a power-
ful code clone detection tool is essential to effectively main-
tain software.

So far, much research has been done on the automatic
detection of code clones [3,4,6,8,13,14]. We have also devel-
oped a code clone detection tool, CCFinder [11], designed to
detect code clones effectively in a large-scale software sys-
tem used in the industrial world, and it is still being
improved day by day. CCFinder has been applied to dozens
of software systems from which we have found many code
clones. Today CCFinder is used in more than 100 software
organizations all over the world, and we have received sig-
nificant feedback from them. Since CCFinder often identi-
fies an enormous amount of code clones, it is necessary
to provide some guidelines for selecting only the important
code clones from the raw output of the tool.

0950-5849/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2006.10.005

* Corresponding author. Tel.: +816 6850 6571; fax: +816 6850 6574.
E-mail addresses: y-higo@ist.osaka-u.ac.jp (Y. Higo), t-kamiya@

aist.go.jp (T. Kamiya), kusumoto@ist.osaka-u.ac.jp (S. Kusumoto),
inoue@ist.osaka-u.ac.jp (K. Inoue).

www.elsevier.com/locate/infsof

Information and Software Technology 49 (2007) 985–998



Aut
ho

r's
   

pe
rs

on
al

   
co

py

In this paper, we propose visualization and characteriza-
tion methods for code clones. By using these methods,
users can see how code clones are distributed in the system
at a glance or obtain the code clones that have the features
they are interested in. Also, based on our previous experi-
ence, we determined that there are many uninteresting code
clones in the results of code clone detection. An uninterest-
ing code clone is a code clone deemed insignificant in the
context of software maintenance. We propose a filtering
method that skips such code clones and reduces investiga-
tion effort. A filtering method makes the visualization and
characterization methods more effective. A system named
Gemini has been implemented based on the proposed meth-
ods. Case study results demonstrate the usefulness and
applicability of Gemini.

In Section 2, we describe a code clone and subsequently
introduce CCFinder, the code clone detection tool. Section
3 describes the proposed methods and the tool, Gemini.
Section 4 illustrates the evaluation of Gemini. Section 5
introduces several other methods related to code clone
visualization and code clone detection. Finally, we con-
clude our discussion with future works in Section 6.

2. Code Clone

2.1. Definition

A code clone, in general, means a code fragment that has
identical or similar code fragments to it in the source code.
However, there is no single or generic definition for a code
clone. So far, several methods of code clone detection have
been proposed, and each has its own definition of code
clone. Some of these methods are described in Section 5.
In the remaining parts of this paper, we apply the code
clone detection feature of CCFinder as the definition of
code clone.

2.2. CCFinder

In CCFinder [11], a clone relation is defined as an equiv-
alence relation (reflexive, transitive, and symmetric rela-
tions) on fragments. A fragment, which is a part of a
source file, can be represented using ID, Linestart, Col-

umnstart, Lineend, and Columnend. For fragment f, ID(f ) is
the numeral ID of the source file where f resided. CCFinder
assigns a unique ID to all target source files. Linestart(f )
(Lineend(f )) is the line number of the start (end) of f, and
Columnstart(f) (Columnend(f )) is the column number of the
start (end) of f. In this definition, some fragments may par-
tially overlap. A clone relation exists between two frag-
ments if and only if the token sequences included in them
are identical1. For a given clone relation, a pair of frag-
ments is called a clone pair if the clone relation holds
between them. An equivalence set of a clone relation is
called a clone set. That is, a clone set is a maximal set of

fragments where a clone relation exits between any pair
of them.

Fig. 1 illustrates an example of a clone relation. As
shown here, five fragments have clone relations with other
fragments. Fragment f1 has a clone relation with fragment
f4, and fragments f2, f3, and f5 have clone relations with
each other. In this case,four clone pairs, (f1, f4), (f2, f3),
(f2, f5), (f3, f5), and two clone sets, {f1, f4}, {f2, f3, f5} exist.

CCFinder detects code clones from source programs and
reveals the locations of clone pairs in source programs. The
minimum code clone length to be detected is set by users in
advance. The clone detection of CCFinder is a process in
which source files are input and clone pairs are output.
The process consists of the following steps. (Fig. 2 shows
how the input source code is treated in each step):

(1) Lexical analysis: Each line of every source file is
divided into tokens corresponding to the lexical
rules of the programming language. The tokens of
all source files are concatenated into a single token
sequence (Fig. 2(b)).

(2) Transformation: The token sequence is transformed,
for example, tokens are added, removed, or changed
based on the transformation rules that aim at the
regularization of identifiers and the identification of
structures (Fig. 2(c)).

(3) Match detection: From all the substrings on the
transformed token sequence, equivalent pairs are
detected as clone pairs (Fig. 2(d)).

(4) Formatting: Each location of detected clone pairs is
converted into line and column numbers on the ori-
ginal source files (Fig. 2(e)).

3. Visualization and characterization methods of code clone

for comprehension

3.1. Motivation

Since we have delivered CCFinder to more than 100 soft-
ware organizations, its usefulness in actual software main-
tenance can be evaluated. We have received significant
feedback from these organizations, including that CCFinder
extracts too many code clones. Hence it is necessary to pro-
vide guidelines to select important code clones from the
tool’s output. Moreover, it is quite difficult for users to1 The sequences are the transformed ones as described below.

Fig. 1. Clone pair and clone set.

986 Y. Higo et al. / Information and Software Technology 49 (2007) 985–998



Aut
ho

r's
   

pe
rs

on
al

   
co

py

investigate code clones only using the output of CCFinder.
Fig. 3 shows an example of the output. In the figure, each
line between #begin{clone} and #end{clone} identi-
fies a clone pair. For example, the fragment starting at line
73 to 86 in the source file (0.2) and the fragment starting at

line 124 to 137 in the source file (1.2) contribute to a clone
pair. Depending on the size and nature of the target pro-
gram, the amount of code clones detected by CCFinder
sometimes becomes quite huge. For example, in JDK 1.5,
there are approximately 2,500,000 clone pairs (12,000 clone

Fig. 2. Detection process of CCFinder.

Y. Higo et al. / Information and Software Technology 49 (2007) 985–998 987



Aut
ho

r's
   

pe
rs

on
al

   
co

py

sets) whose fragment length is more than 30 tokens. It is
true that CCFinder enables users to obtain code clones
quickly from such large-scale software, but it is unrealistic
to check all of the detected code clones by hand to deter-
mine useful information. A simple browsing tool, which
displays the source code of clone pairs one by one, is not
helpful for large-scale software.

3.2. Proposal techniques

From many our previous experiences with CCFinder, we
observed that CCFinder detects many uninteresting code
clones. As such, a filtering method is proposed to counter-
act this problem. To realize an effective code clone analysis
for large software products, we need some kind of bird’s
eye view of code clones to grasp the amount of code clones
in the system, especially in the initial phase of analysis.
Also, we provide an appropriate characterization of enti-
ties (code clones, target source files, and functionalities)
that enables users to select arbitrary entities based on their
features.

In this section, we explain our methods with an example
to give a complete picture of them. Here, we assume that
we detect code clones from four source files (F1, F2, F3,
F4) located in two directories (D1, D2). Each source file con-
sists of the following five tokens (the meaning of super-
script * will be described in Section 3.2.1).

F1: a b c a b,
F2: c c* c* a b,
F3: d e f a b,
F4: c c* d e f

Also, we use label C(Fi,j,k) to represent a fragment.
Fragment C(Fi,j,k) starts at the jth token and ends at the
kth token in source file Fi (j must be less than k).

Here, we assume that at least two tokens are needed to
be identified as a code clone. With this assumption, the fol-
lowing three clone sets are detected from the source files.

S1 :{C(F1,1,2),C(F1,4,5),C(F2,4,5),C(F3,4,5)}
S2 :{C(F2,1,2),C(F2,2,3),C(F4,1,2)}
S3 :{C(F3,1,3),C(F4,3,5)}

3.2.1. Filtering out uninteresting code clones

Many uninteresting code clones are included in the
CCFinder detection results. In this paper, an ‘‘uninteresting
code clone’’ is a code clone whose existence information is
useless when using code clone information in software
development or maintenance.

We have identified two types of uninteresting code
clones. The first is a language-dependent code clone. When
a specific programming language is used, a programmer
has to repeatedly write some code fragments that cannot
be merged into code fragments due to language limitations.
A language-dependent code clone consists of such code
fragments. The second is an application-dependent code
clone. Some application frameworks sometimes require idi-
omatic code fragments to the application code to interface
with the frameworks. For example, a code fragment of
database connection is a typical application-dependent
code clone. Application-dependent code clone is a code
clone that consists of such code fragments. Language-de-
pendent code clones are detected from all software systems
written in the same programming language, but not appli-
cation-dependent code clones, which differ greatly among
systems. Therefore, it is much more difficult to filter out
application-dependent code clones than language-depen-
dent ones. The presence of uninteresting code clones does
not negatively influence software development or mainte-
nance. They are stereotyped code and are very stable.

As the first step to filter out uninteresting code clones,
we propose a method to filter out language-dependent code
clones. For example, consecutive variable declarations,
consecutive method invocations, and case entries of switch
statements, which become code clones due to the structure
of the programming language, are typical language-depen-
dent code clones.

Fig. 4 is an example of a language-dependent code
clone. The highlighted parts are a clone pair between files
A and B. Each code fragment of the clone pair is an imple-
mentation of consecutive method invocations. The variable
and method names in the code fragments are different. As
described in Section 2.2, CCFinder transforms user-defined
names into the same special token. This transform detects
the same logic code with different names; for example, after
copy and paste some variable names are changed. Unfortu-
nately, CCFinder also detects many language-dependent
code clones such as Fig. 4.

We focused on a repetition structure within a code clone
because a language-dependent code clone has repetitive
implementations of the same logics. We propose to filter

Fig. 3. Example of output from CCFinder.

988 Y. Higo et al. / Information and Software Technology 49 (2007) 985–998



Aut
ho

r's
   

pe
rs

on
al

   
co

pyout such code clones with a metric called RNR(S) that
represents the ratio of non-repeated code sequence in clone
set S.

Here, we assume that clone set S includes n fragments,
f1,f2, � � �, fn. LOSwhole(fi) represents the Length Of whole

Sequence of fragment fi, and LOSrepeated(fi ) represents the
Length Of repeated Sequence of fragment fi, then,

RNRðSÞ ¼ 1�

Pn

i¼1

LOSrepeatedðfi Þ

Pn

i¼1

LOSwholeðfi Þ

We defined repeated code sequence as repetitions of its adja-
cent code sequence and non-repeated code sequence as the
other parts. In the example, three tokens are considered
repeated code sequences, and the superscript * indicates that
its token is in a repeated code sequence.

In this case,

RNRðS1Þ ¼ 1� 0þ 0þ 0þ 0

2þ 2þ 2þ 2
¼ 8

8
¼ 1:0

RNRðS2Þ ¼ 1� 1þ 2þ 1

2þ 2þ 2
¼ 2

6
¼ 0: _3

RNRðS3Þ ¼ 1� 0þ 0

3þ 3
¼ 6

6
¼ 1:0

This metric enables users to identify clone sets such as con-
secutive variable declarations or consecutive accessor dec-
larations in Java or repeated printf, scanf, and
switch statements clones in C language. From our expe-
rience, clone sets whose RNR values are less than ‘0.5’ are
deemed uninteresting.

3.2.2. Scatter Plot of code clone

We utilized and enhanced Scatter Plot [2,8,15] for a
bird’s eye view visualization method of code clones.
Fig. 5 shows the Scatter Plot of the example explained pre-
viously. Both the vertical and horizontal axes represent
tokens of source files that are sorted alphabetically by file
path, so the source files in the same directory are close to
each other. A clone pair is shown as a diagonal line seg-
ment, assuming that a cloned fragment has at least two
tokens. Each dot on diagonal line segments means the cor-
responding tokens on the horizontal and vertical axes are
identical. The dots are spread symmetrically with a diago-
nal line from the upper left corner to the bottom right.

Using Scatter Plot, the distribution state of code clones
can be grasped at a glance. Also, our Scatter Plot shows fil-
tering results with metric RNR. Each blue dot represents an
element judged an uninteresting code clone. By using the
filtering results, users can avoid spending too much time
on uninteresting code clones, which means code clone anal-
ysis can be done more effectively by using Scatter Plot.

The directory (a package in the case of Java) separators
are drawn as a solid lines, to distinguish them from file sep-
arators shown as dotted lines. Users can recognize the
boundaries of directories and understand which directories
(packages) contain many code clones and which directories
shares many code clones with other directories.

3.2.3. Clone set metrics

Here, we elaborate how to quantitatively characterize
code clones and how to visualize them. We defined the fol-
lowing metrics to characterize code clones.

• LEN(S): LEN(S) is the average length of sequences (size
of fragments) in clone set S. In the example, the values
of LEN(S1), LEN(S2), and LEN(S3) are 2, 2, and 3,
respectively. Using metric LEN, the fragment size of
clone set S3 is greater than the ones of clone sets S1

and S2.

Fig. 4. Example of language-dependent code clone.

Fig. 5. Example of Scatter Plot.

Y. Higo et al. / Information and Software Technology 49 (2007) 985–998 989



Aut
ho

r's
   

pe
rs

on
al

   
co

py

• POP(S): POP(S) is the number of S fragments. A high
POP(S) value means that S fragments appear in many
places in the system. In the example, the values of
POP(S1), POP(S2), and POP(S3) are 4, 3, and 2, respec-
tively. Using metric POP, the number of occurrences of
clone sets S1 is larger than S2 and S3.

• NIF(S): NIF(S) is the number of source files that include
any S fragments. A high NIF(S) value may indicate a
badly designed software system, the absence of abstrac-
tion for S fragments, or spread code fragments of a
crosscutting concern. In the example, the values of
NIF(S1), NIF(S2), and NIF(S3) are 3, 2, and 2, respec-
tively. Using metric NIF, clone set S1 involves more
source files than S2 and S3.

• RNR(S): RNR(S) is described in Section 3.2.1. As
mentioned there, using metric RNR, we can see whether
each clone set is practical or uninteresting. From our
experience, ‘0.5’ is deemed appropriate as a threshold
value of RNR. In the example, clone set S2 is judged
uninteresting.

Using these simple metrics, we can see which clone sets
are discriminative in various aspects.

We propose a visualization/selection method using a
Metric Graph for characterized code clones. Here, we
explain Metric Graph using Fig. 6. In Metric Graph, each
metric has a parallel coordinate axis. Users can specify
the upper and lower limits of each metric. The hatching
part shows the range bounded by their upper and lower
limits. A polygonal line is drawn per clone set. In this fig-
ure, three lines of clone sets S1, S2, and S3 are drawn. In
the left graph (Fig. 6(a)), all metric values of all clone sets
are in the hatching part. As such, all clone sets are in the
selected state. In the right graph (Fig. 6(b)), the values of
LEN(S1) and LEN(S2) are smaller than the under limit of
LEN, which places S1 and S2 in an unselected state. This
means that we can get ‘‘long’’ code clones by changing
the lower limit of LEN. Thus Metric Graph enables users
to choose arbitrary clone sets based on metric values.

3.2.4. File metrics

We also defined the following metrics to characterize
source files. All metrics only use clone sets whose RNR

have thresholds of th or greater for calculation. Here, we
use ‘0.5’ as the threshold. These metrics are used for the fil-
tering of source files, which will be described below in Sec-
tion 3.3.

• NOCth(F): NOCth(F) is the number of fragments of any
clone sets in source file F whose RNR values are equal to
or greater than threshold th. In the example, the values
of NOC0.5(F1) and NOC0.5(F3) are 2, and those of
NOC0.5(F2) and NOC0.5(F4) are 1. Here, by using metric
NOC, source files F1 and F3 have more duplicated frag-
ments than source files F2 and F4.

• ROCth(F): ROCth(F) is the ratio of the duplication of F.
In the example, the values of NOC0.5(F1), NOC0.5(F2),
NOC0.5(F3), and NOC0.5(F4) are 0.8, 0.4, 1.0 and 0.6,
respectively. Here, by using metric ROC, source file F3

is completely duplicated.
• NOFth(F): NOFth(F) is the number of source files that

share any code clones with F. In the example, the values
of NOF0.5(F1), NOF0.5(F2), NOF0.5(F3), and NOF0.5(F4)
are 2, 2, 3, and 1 respectively. Here, by using metric
NOF, source file F3 shares code clones with all the other
source files.

3.3. Code clone visualization tool: Gemini

We implemented a code clone visualization tool named
Gemini based on the proposed visualization and character-
ization strategies. Gemini supports all programming lan-
guages that CCFinder can handle and provides the
following views as implementations of the code clone visu-
alization mechanism and code clone/source file selection
mechanisms.

• Scatter Plot
• Metric Graph
• File List

As described in Section 3.2.2, by using Scatter Plot,
users can understand the distribution state of code clones
at a glance, which is very useful, especially in the early stage
of analysis.

Metric Graph is designed to enable users to quantitatively
select clone sets. In Scatter Plot, the degree to which clone
sets are distinguished depends on their positions. For exam-
ple, suppose clone set Sexample has 100 fragments. If all frag-
ments of Sexample are in the same source file, they will be
distinguished because the positions of each line segment
are close to each other. But if they are in different source
files, their line segments are scattered, and so they cannot
be distinguished. On the other hand, in Metric Graph,
the ‘100 fragments’ feature is represented as metric
POP(Sexample), and users can select Sexample regardless of
their positions.

File List is used to select source files. File List exhibits all
source files of the system with quantitative information, the
file metrics described in Section 3.2.4 and two size metrics.

ba

Fig. 6. Filtering clone sets using the Metric Graph.

990 Y. Higo et al. / Information and Software Technology 49 (2007) 985–998



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Users can sort all source files based on any metrics. Fig. 7
shows a snapshot of File List. In the figure, the two size
metrics, LOC(F ) and TOC(F ), represent the number of
lines and tokens in source file F respectively. For metrics
NOC, ROC, and NOF, two values are shown. The values
outside parentheses are the metrics on threshold th, and
those in parentheses are the metrics on threshold 0, which
means that all code clones are counted. File List is very use-
ful when users want to select source files based on quanti-
tative information. We did not apply a quantitative file
selection mechanism using Metric Graph for File List
because it is more useful to use not only quantitative met-
rics but also their paths or names. As described in Section
3.2.3, Metric Graph is suitable for selections based on
numeric values, but not for strings such as file paths or
names. This explains why we use File List not Metric Graph.
Also, File List has a function that sorts source files in
ascending or descending order of their metrics or in alpha-
betical order of their file names.

4. Case study

4.1. Target and configurations

We chose Ant [1](version 1.6.0) as the target. Ant 1.6.0
includes 627 source files, and its size is approximately
180,000 LOC. In this case study, we set 30 tokens as the
minimum token length of a code clone (intuitively, 30
tokens correspond to about 5 LOC). The value ‘30’ comes
from our previous studies of CCFinder [11].

It took less than a minute to detect code clones with
CCFinder. As the results of code clone detection, we found
2406 clone sets and 190,004 clone pairs. The results show
that it is unrealistic to check all detected code clones due
to the enormous amount, and it is also very important to
select discriminative code clones or source files. In this

study, we set 0.5 as the threshold of metric RNR. If
RNR(S) is less than 0.5, more than half of the tokens in
clone set S are in repeated token sequences. The details
of the filtering results are written in Section 4.2

4.2. Filtering with RNR

We browsed through the source code of all code clones
judged uninteresting by using RNR. Table 1 shows the
breakdown of clone sets whose RNR are less than 0.5.
The number of such clone sets is 1073, and all of them
are the consecution of simple implementations. As
described in Section 2.2, CCFinder detects code clones after
translating all user-defined names into the same special
token, and so each code fragment included in the same
clone set is an implementation of different contents, as in
Fig. 4.

Many consecutive accessor declarations are coinciden-
tally found as code clones; however, the user-defined names
in them are different. We identify them as code clones
because both the accessor and field names are transformed
into the same token before detection.

Consecutive simple method declarations are coinciden-
tally found as code clones just as in the case of consecutive
accessor declarations. Fig. 8(a) shows one such code clones
that implements simple instructions, but not accessors.

Consecutive method invocations are detected as code
clones. Fig. 8(b) shows one such code clone. It is pointless
to display it to users in code clone analysis because they can
do nothing about it.

Consecutive if and if-else statements are detected as code
clones. Fig. 8(c) shows one such code clone. These code
clones implement verifications of variable states. Since
these code clones are obviously harmless, it is pointless to
show them in code clone analysis.

Consecutive case entries are coincidentally found as
code clones, as in the case of consecutive accessor declara-
tions. Fig. 8(d) shows one such code clone. The program-
mer usually implements simple instructions in case
entries. Moreover, CCFinder replaces all user-defined
names into the same special token. Thus consecutive case
entries tend to be detected as code clones, but they are
harmless.

Fig. 7. Snapshot of the File List.

Table 1
Breakdown of uninteresting code clones

Kinds of code clones Number of clone sets

Consecutive accessor declarations 428
Consecutive simple method declarations 224
Consecutive method invocations 177
Consecutive if or if-else statements 160
Consecutive case entries 30
Consecutive variable declarations 29
Consecutive assign statements 19
Consecutive catch statements 4
Consecutive while statements 2

Total 1073

Y. Higo et al. / Information and Software Technology 49 (2007) 985–998 991



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Consecutive variable declarations and assign statements
are coincidentally found as code clones, as in the case of
consecutive accessor declarations. Figs. 8(e) and (f) show
one such code clones. These coincidences reflect the detec-
tion algorithm of CCFinder, and they should not be detect-
ed as code clones.

Consecutive catch statements are detected as duplicated
fragments. Fig. 8(g) shows one such code clone. Their exis-
tence reflects the specifications of Java and should not be
detected as code clones.

Consecutive while statements are detected as duplicated
fragments. Fig. 8(h) shows one such code clone. In this
case, the logics of each while statement are very simple,

and it is no problem to filter out them. But if their logics
are complex, they should not be filtered out.

We were able to filter out 44% (1073 of 2403) of the
clone sets by using RNR. All of the clone sets filtered out
were either coincidental ones, inevitable duplications by
Java specifications, or consecutive simple instructions.

4.3. Scatter Plot analysis

Fig. 9 shows snapshots of Ant’s Scatter Plot. In Fig. 9,
clone sets whose RNR are less than 0.5 are drawn in blue,
and the others are drawn in black. Each vertical or hori-
zontal line is the border between files or directories. In

Fig. 8. Examples of uninteresting code clones.

992 Y. Higo et al. / Information and Software Technology 49 (2007) 985–998



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Fig. 9(a), all such lines are omitted because there are too
many. We can see the distribution state of code clones over
the system by using Scatter Plot at a glance. The distinct
parts in Scatter Plot are the parts where there are many
code clones in the system. Discovering whether the duplica-
tion of such parts in the system is the expected is one signif-
icant use of code clone information. We investigated what
kinds of implementations were conducted in the distinct
parts of the Scatter Plot. Fig. 9(a) is the entire Scatter Plot.
The following describes ‘‘A,’’ ‘‘B,’’ and ‘‘C,’’ the three dif-
ferent parts marked in Fig. 9(a).

Fig. 9(b) represents part ‘‘A’’ in Fig. 9(a). Here are the
source files under directory ant/filters/. These source files
implement classes that return a java.io.Reader object
under such various conditions as the following.

• ConcatFilter.java: Concatenate a file before and/or after
the file.

• HeadFilter.java: Read the first n-lines of a stream.
• LineContains.java: Filter out all lines that don’t include

all the user-specified strings.
• PrefixLines.java: Attach a prefix to every line.

These source files share the following functionalities.

1. Reads a character from a specified stream. If it has
reached the end of stream, then some operations are
performed.

2. Creates a new Reader object and returns it.

The details of each functionality in these source files
were different, but the processing flows were duplicated.

Fig. 9(c) represents part ‘‘B’’ in Fig. 9(a). It shows that
source file ant/taskdefs/optional/ide/VAJAntToolGUI.java
contains many code clones. This source file implements a
simple GUI for providing build information to Ant or

Fig. 9. Snapshots of Scatter Plot.

Y. Higo et al. / Information and Software Technology 49 (2007) 985–998 993



Aut
ho

r's
   

pe
rs

on
al

   
co

py

browsing build processes. Most of these code clones were
classified into either of the following two types.

• If statements that determine process flow depending on
the source of events. Fig. 10 shows one of them.

• Method declarations that create GUI widgets. Fig. 11
shows one of them.

These code clones are typical GUI processes.
Fig. 9(d) shows a closer view of part ‘‘C’’ in Fig. 9(a). It

corresponds to the source files under directory ant/taskdef/
optional/clearcase/. These source files implement several
tasks working with ClearCase [7], a famous version control
systems. Each command (for example, Checkin, Checkout,
Update. . .) of ClearCase is implemented as a class. These
source files were created by entire file copy, rather than
copy and paste of particular parts of the text.

4.4. Metric Graph analysis

We investigated what kind of code clones is quantita-
tively discriminative by using Metric Graph. The following
types of code clones are investigated. Before performing
this analysis, we raised the lower limit of RNR to filter
out clone sets whose RNR are less than 0.5.

• Clone sets whose POP are high.
• Clone sets whose LEN are high.
• Clone sets whose NIF are high.

4.4.1. Clone sets whose POP are high
Fig. 12 is one of the fragments comprising the clone set

that has more fragments than any other. The clone set had

31 fragments, and all were in source file VAJAntTool.java
described in Section 4.3. Each fragment begins with the
end of a method and ends with the beginning of its next
method. This means the center parts of each method differ
from each other.

4.4.2. Clone sets whose LEN are high

The two source files WebLogicDeployment.java and
WebSphereDeployment.java, from directory ant/taskdefs/
optional/ejb/, shared the longest code clones. The fragment
size of the clone set was 282 tokens (77 lines). Both source
files implement tasks working with WebLogic [21] and
WebShpere [22], which are well-known application servers.
Each source file has a method named isRebuildRequired,
and both duplicated codes are in the methods. Some vari-
able names differ between the methods, but other proper-
ties (indents, blank lines, comments) are completely
identical, which indicates that those code clones were made
by ‘copy and paste’.

4.4.3. Clone sets whose NIF are high

The clone set that involved the most source files was
implementations of consecutive accessor declarations,
which appeared in 19 files (22 places). The accessor’s names
differed from each other, but CCFinder ignores differences
of user-defined names2 when detecting code clones. Since
there are both setters and getters in the fragments of clone
sets, the fragments are not simple consecutive code. The
RNR value of the clone set was 85.

4.5. File List analysis

We investigated what kind of source files is discrimina-
tive by using File List. The following types of source files
were investigated. In this analysis, we targeted only clone
sets whose RNR are 0.5 or more.

• Files whose ROC are high.
• Files whose NOC are high.
• Files whose NOF are high.

Fig. 10. Example of code clones in ‘‘B’’ (branching using source of
events).

Fig. 11. Example of code clones in ‘‘B’’ (method’s creating GUI widgets).

Fig. 12. One fragment comprising a clone set whose POP is highest.

2 Naturally, it is possible to make CCFinder recognize differences of user-
defined names.

994 Y. Higo et al. / Information and Software Technology 49 (2007) 985–998



Aut
ho

r's
   

pe
rs

on
al

   
co

py

4.5.1. Files whose ROC are high

Table 2 represents the duplicated ratio distribution of
source files. As seen in this table, Ant has many source files
with high duplicated ratios. Hence, we describe not only
the highest duplicated ratio source file, but also the top
10 files. In the following items, the numbers in parentheses
are the ROC0.5 values.

• FlatFileNameMapper.java (1.0): Returns the file name
included in a specified java.lang.String.

• IdentityMapper.java (1.0): This source file is a duplica-
tion of FlatFileNameMapper.java. Only the class name
is different.

• DirSet.java (1.0): Treats a set of directories. This source
file is a complete duplication of FileSet.java.

• FileSet.java (1.0): Treats a set of source files. This
source file is a complete duplication of DirSet.java.

• CCMkbl.java (0.98): Implements a task working with
ClearCase. This source file is duplicated with several
source files implementing other ClearCase’s tasks.

• SOSCheckin.java (0.97): Implements a task working
with SourceOffSite [16]. This source file is duplicated
with several source files implementing other SourceOff-
Site’s tasks.

• StringLineComments.java (0.97): This source file is one
of the file filters described in Section 4.3 part ‘‘A.’’ It
shares code clones with other filters.

• FieldRefCPInfo.java (0.96): Stores information of a
field (for example, field name, type, owner class, . . .).
This source file is a duplication of
InterfaceMethodRefCPInfo.java.

• InterfaceMethodRefCPInfo.java (0.96): Stores informa-
tion of a method (for example, method name, signature,
owner class, . . .). This source file is a duplication of
FieldRefCPInfo.java.

• MSVSSCREATE.java (0.96): Implements a task work-
ing with Visual SourceSafe [19]. This source file is dupli-
cated with several source files implementing other Visual
SourceSafe’s tasks.

4.5.2. Files whose NOC are high
The source file with the highest NOC0.5 value was VAJ-

AntToolGUI.java described in Section 4.3 part ‘‘B’’. This

source file had 378 code clones, which was overwhelmingly
more than any others.

4.5.3. Files whose NOF are high

The source file with the highest NOF0.5 value was ant/
taskdefs/optional/jsp/JspC.java, and most of the code
clones in the source file were implementations of consecu-
tive accessor declarations. These fragments are identical
to those described in Section 4.4.3. Not only this source file
but most such source files have many code clones of con-
secutive accessor declarations.

4.6. Evaluation

4.6.1. Filtering with RNR

We examined how the RNR filtering worked well. We
browsed through the source code of all detected code
clones so as to calculate precision, recall and f-value of
the filtering. 869 of 2406 were practical clone sets and
1537 were uninteresting ones. The definitions of the values
are the followings.

recallð%Þ ¼ 100

�# real uninteresting clone sets filtered out by RNR
# clone sets filtered out by RNR

precisionð%Þ ¼ 100� # clone sets filtered out by RNR
# all real uninteresting clone sets

f� value ¼ 2� recall� precision
recallþ precision

Fig. 13 illustrates transitions of recall, precision, and f-val-
ue when the RNR threshold is between 0 and 1.0. As men-
tioned above, in this case study, we used 0.5 as the
threshold. Under this condition, recall was 100(%), which
means that no practical clone set was accidentally filtered
out at all. Also, precision was 65(%), which indicates that
about one third real uninteresting clone sets were not fil-
tered out. Using 0.5 as the threshold raised precision from
36(%) to 65(%). Therefore, we can conclude that most part
of uninteresting clone clones were filtered out with no false
positive by using 0.5 as the threshold.

It might be useful to set the threshold as to make f-value
the greatest. In this case study, f-value reached its greatest
when the threshold was 0.7. Under this condition, recall
was 95(%) and precision was 82(%). In other words, one
twentieth clone sets filtered out were practical ones and
four fifths of real uninteresting clone sets were filtered
out. However, we consider that accidentally filtering out
practical code clones should be avoided because filtered
clone sets might play an important role in software devel-
opment and maintenance. Hence, it deems to be better to
use 0.5 as the threshold than 0.7.

4.6.2. Using Gemini in other contexts
In this section, we will discuss the external validity of the

case study. The discussion points are the followings.

Table 2
Duplicated ratios of files

Range of Duplicated Ratio(ROC0.5) # Files Percentage

0–10% 207 33%
11–20% 75 12%
21–30% 64 10%
31–40% 61 10%
41–50% 53 8%
51–60% 53 8%
61–70% 33 5%
71–80% 22 4%
81–90% 22 4%
91–100% 37 6%

Total 627 100%

Y. Higo et al. / Information and Software Technology 49 (2007) 985–998 995



Aut
ho

r's
   

pe
rs

on
al

   
co

py
• Performance and scalability of Gemini.
• General versatility of the code clone analysis method

described in this case study.
• Required users’ skills to perform code clone analysis.

First discussion point is the performance and scalability
of Gemini. We applied CCFinder and Gemini to a large-
scale software system, JDK 1.5 besides Ant for investigating
these properties. We used a PC-based workstation3 to per-
form the tools. Table 3 illustrates the sizes of the target
software systems and the results of executions. Note that
total time of CCFinder’s running and Gemini’s initialization
is only 10 min despites the huge size of JDK 1.5. Addition-
ally, the memory usage of both CCFinder and Gemini is
quite reasonable. Therefore, we can conclude that the per-
formance and scalability of these tools are enough to be
used in real software development and maintenance. Users
can efficiently perform code clone analysis of a large-scale
software system with an ordinary PC.

Second, we will discuss the general versatility of the code
clone analysis method described in this case study. We have
already analyzed many other open source and industrial
software systems, and the analysis methods for them are
almost the same as the one described in this case study. This
analysis method can be applied to various software systems
independently of their sizes, development patterns, and
their domains. From many experiences of code clone anal-
yses, we have learnt that ‘30’ is an appropriate value of the

minimum code clone size that CCFinder detects. But infre-
quently under this condition, especially in the case of
large-scale software, too many code clones are detected,
and we cannot efficiently analyze code clones. In such cases,
users should change the minimum code clone size to ‘50’ or
‘100’ and re-run CCFinder for efficient analysis. Also, it
became clear that industrial software tends to include more
code clones than open source software. If users are going to
detect and analyze code clones in a large-scale industrial
software system, they should use ‘100’ as the minimum code
clone size in the first running of CCFinder.

Finally, we will discuss required users’ skills to perform
code clone analysis. In the code clone analysis with Gemini,
they have to browse through that the source code of code
clones and understand the implementations. Hence, they
must be familiar with the programming language of the tar-
get software. And if the target software was developed by 2
or more people, the higher skill of reading source code is
required. But they do not need to know the detail informa-
tion of the target software; actually we do not have deep
knowledge of Ant. If users had such information, they
could perform deeper analysis. If users want to do the same
kind of analysis as the one described in this case study, they
do not need to have such information.

5. Related works and discussion

Kapser et al. implemented a visualization tool called
CLICS to comprehend cloning [12]. CLICS shows the struc-
tures in the source files and the system architecture with

Table 3
Size of target software systems and results of executions

Target Name Size CCFinder Gemini

# Files LOC Run time Mem usage Init time Mem usage

Ant 627 180,844 55 s 30 MBytes 4 s 46 MBytes
JDK1.5 6555 1,883,928 594 s 194 MBytes 15 s 137 MBytes

3 CPU: PentiumIV 3.0 GHz, Memory Size: 2.0GBytes, OS:
WindowsXP.

Fig. 13. Transition of recall, precision, and f-value.

996 Y. Higo et al. / Information and Software Technology 49 (2007) 985–998



Aut
ho

r's
   

pe
rs

on
al

   
co

py

code clone information, which makes it possible for users
to easily get the information of code clones they are inter-
ested in. Also, CLICS is facilitated with a query support fea-
ture to display code clones that satisfy the conditions of
queries. CLICS does not implements Scatter Plot due to
its limited scalability.

We believe that our enhanced Scatter Plot is scalable and
useful for understanding the state of the code clones of a
software system. In our case study, Scatter Plot worked
smoothly on the source code of JDK 1.5, whose size was
1.8 million LOC, including 2,497,433 clone pairs in 12,522
clone sets, under LEN P 30 conditions. Our Scatter Plot
displays the results from which the uninteresting code clones
were already filtered out, which differentiates it from previ-
ous works [2,8,15]. This enhancement reflects our previous
experiences, where we applied Scatter Plot to large software
systems and found an enormous amount of such code
clones. Kapser et al. share our opinion [12], and their tool,
CLICS has implemented filtering features. Also, in Scatter
Plot, the directory (package) separators are shown different-
ly from the file ones, which makes it possible for users to dis-
cover the boundaries of directories and then finds out the
directories (packages) that contain many code clones and
directories that share many code clones with other directo-
ries. Users can withness the state of the practical code clones
in the package hierarchy of a software system by using our
Scatter Plot since uninteresting code clones are filtered out.

Kapser et al. also describe functionalities to support
navigation and understanding cloning in a software system
[12]. The functionalities are as below.

(1) Facilities to evaluate overall cloning activity.

(2) Mechanisms to guide users toward clones that will be

most effectively used in their task.

(3) Methods for filtering and refining the analysis of the

clones.

Here, we consider these functionalities in the context of
our tool, Gemini. Since Scatter Plot provides a bird’s eye
view, it accomplishes the first functionality. We believe that
Metric Graph and File List implement the second function-
ality because we can use them to easily get arbitrary clone
sets based on their quantitative features. The third func-
tionality is realized through the filtering metric RNR that
enables users to filter out uninteresting code clones. With
all the above characteristics, Gemini is definitely useful
and appropriate as a code clone visualization tool.

Rieger et al. suggested and implemented diagrams to
visualize code clone information [15]. Their diagrams are
based on the principle of Polymetric View and provide
abstracted code clone information on various granularities
for users. They also argue that in the large-scale software,
since too many code clones are detected, filtering function-
alities are essential.

Johnson suggested a navigation method using HTML
[10]. The hyperlink functionality of HTML enables users
to jump freely between source files having clone relations

with each other or fragments included in the same clone
set (in his paper, Hash is used instead of clone set). We
agree that hyperlink properties offer convenient navigation
for users, but there is no functionality to see the state of the
system’s code clones.

As described in Section 2.1, several code clone detection
methods have been proposed. A code clone detection tool
Dup [3] uses a sequence of lines to represent source code
and detects clones line-by-line. A language independent
clone detection tool duploc [8] reads source files, makes a
sequence of lines, removes white spaces and comments in
lines, and detects matches by string-based Dynamic Pattern
Matching (DPM). Baxter et al. [6] proposed a technique to
extract clone pairs of statements, declarations, or their
sequences from C source files. The tool parses source code
to build an abstract syntax tree and compares its subtrees
by characterization metrics. Komondoor et al. [13] pro-
posed a method using program slicing in which a program
dependence graph is constructed by analyzing target source
code. Identical or similar parts are detected as code clones.
A clone-detecting method proposed by Mayrand et al. uses
a representation called Intermediate Representation Lan-
guage (IRL) to characterize each function in the source
code [14]. A clone detection tool, Similar Method Classifier
(SMC) [4], uses a hybrid approach of characterization met-
rics and dynamic pattern matching (DPM).

Basit et al. suggested a method detecting structural
clones [5]. A structural clone is a pattern of cloned code
fragments, and it indicates the presence of design-level sim-
ilarities. They also implemented a tool detecting such
clones based on the ‘‘market basket analysis’’ technique
of the Data Mining domain. Providing structural clone
information is a great support of program comprehension,
but how the information is expressed is a big challenge.

Walenstein et al. reported that the judgment of code
clones varies among experts [20]. In one of their experi-
ments, three experts disagreed whether the fragments are
really code clone or not for more than 60% of automatically
detected clones. Our metric system does not settle the con-
troversy, but it helps users choose what kind of codes
should be regarded as code clones.

6. Conclusion

We proposed visualization and characterization meth-
ods of code clones in a software system and implemented
them as a tool, Gemini. Gemini provides valuable mecha-
nisms that perform the following functions describe below.

• Filters out uninteresting code clones.
• Views the states of code clones over a system.
• Navigates code clones that have feature users are inter-

ested in.

As described in Section 4, our proposed methods
worked well and we could determine various cloning activ-
ities in Ant.

Y. Higo et al. / Information and Software Technology 49 (2007) 985–998 997



Aut
ho

r's
   

pe
rs

on
al

   
co

py

Of course, further research issues remain. For example,
sometimes gaps occur between the original code frag-
ments and the modified ones since developers are
usually modifying copied and pasted code fragments.
Here, we call modified the code fragments, which include
some gaps, Gapped code clones [18]. By treating the gapped
code clones as well, our methods can become more
effective.

As described in Section 3.2.1, the proposed filtering
method only deals with language-dependent code clones.
We are going to improve the method to filter out applica-
tion-dependent code clones. Features of application-depen-
dent code clones are so strikingly different among software
systems that such metric-based filtering as RNR is probably
unpractical. We believe that pattern-based filtering works
well. For example, users input code patterns that they are
not interested in. After that, Gemini filters out all code
clones whose contents correspond to the code patterns.
Using such a filtering approach, we can filter out any kind
of code clones dependent on the domain or the framework
of a system.

Acknowledgement

We thank Yasushi Ueda of the Japan Aerospace Explo-
ration Agency for his contributions to a previous paper
[17].

References

[1] Ant. http://ant.apache.org/.
[2] B.S. Baker, A program for identifying duplicated code, in: Proceed-

ings of the 24th Symposium of Computing Science and Statistics,
March 1992, pp. 49–57.

[3] B.S. Baker, On finding duplication and near-duplication in large
software systems. in: Proceedings of the 2nd Working Conference on
Reverse Engineering, July 1995, pp. 86–95.

[4] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, K. Kontogiannis,
Advanced clone-analysis to support object-oriented system refactor-
ing, in: Proceedings of the 7th IEEE International Working Confer-
ence on Reverse Engineering, November 2000, pp. 98–107.

[5] H.A. Basit, S. Jarzabek, Detecting higher-level similarity patterns
in programs, in: Proceedings of the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, September 2005,
pp. 156–165.

[6] I. Baxter, A. Yahin, L. Moura, M. Anna, L. Bier, Clone detection
using abstract syntax trees, in: Proceedings of the International
Conference on Software Maintenance 98, March 1998, pp. 368–377.

[7] ClearCase. http://www-306.ibm.com/software/awdtools/clearcase/.
[8] S. Ducasse, M. Rieger, S. Demeyer, A language independent

approach for detecting duplicated code, in: Proceedings of the
International Conference on Software Maintenance 99, August
1999, pp. 109–118.

[9] M. Fowlor, Refactoring: Improving the Design of Existing Code,
Addison Wesley, 1999.

[10] J.H. Johnson, Navigating the textual redundancy web in legacy
source, in: Proceedings of the 1996 Conference of Centre for
Advanced Studies on Collaborative Research, November 1996, pp.
7–16.

[11] T. Kamiya, S. Kusumoto, K. Inoue, Ccfinder: A multi-linguistic
token-based code clone detection system for large scale source
code, IEEE Transactions on Software Engineering 28 (7) (2002)
654–670.

[12] C. Kapser, M. Godfrey, Improved tool support for the investiga-
tion of duplication in software, in: Proceedings of the 21st
International Conference on Software Maintenance, September
2005, pp. 305–314.

[13] R. Komondoor, S. Horwitz, Using slicing to identify duplication in
source code, in: Proceedings of the 8th International Symposium on
Static Analysis, July 2001, pp. 40–56.

[14] J. Mayrand, C. Leblanc, E. Merlo, Experiment on the automatic
detection of function clones in a software system using metrics, in:
Proceedings of the International Conference on Software Mainte-
nance 96, November 1996, pp. 244–253.

[15] M. Rieger, S. Ducasse, M. Lanza, Insights into system-wide code
duplication, in: Proceedings of the 11th Working Conference on
Reverse Engineering, November 2004, pp. 100–109.

[16] SourceOffSize. http://www.sourcegear.com/sos/.
[17] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, Gemini: maintenance

support environment based on code clone analysis, in: Proceedings of
the 8th International Symposium on Software Matrics, June 2002, pp.
67–76.

[18] Y. Ueda, T. Kamiya, S. Kusumoto, K. Inoue, On detection of gapped
code clones using gap locations, in: Proceedings of the 9th Asia-
Pacific Software Engineering Conference, December 2002, pp. 327–
336.

[19] VisualSourceSafe. http://msdn.microsoft.com/vstudio/previous/ssafe/.
[20] A. Walenstein, N. Jyoti, J. Li, Y. Yang, A. Lakhotia, Problems

creating task-relevant clone detection reference data, in: Proceedings
of the 10th Working Conference on Reverse Engineering, November
2003, pp. 285–294.

[21] WebLogic. http://www.beasys.com/products/weblogic/.
[22] WebSphere. http://www-306.ibm.com/software/websphere/.
[23] S.W.L. Yip, T. Lam, A software maintenance survey, in: Proceedings

of the 1st Asia-Pacific Software Engineering Conference, December
1994, pp. 70–79.

998 Y. Higo et al. / Information and Software Technology 49 (2007) 985–998


