
Source Code Reuse Evaluation by Using
Real/Potential Copy and Paste

Takafumi Ohta, Hiroaki Murakami, Hiroshi Igaki, Yoshiki Higo, and Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, Japan

1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

{t-ohta, h-murakm, igaki, higo, kusumoto}@ist.osaka-u.ac.jp

Abstract—Developers often reuse existing software by copy
and paste. Source code reuse improves productivity and software
quality. On the other hand, source code reuse requires several
professional skills to developers. In source code reuse, developers
must locate reusable code fragments, and judge whether such
reusable code is adequate to copy and paste into the source file
under development. This paper presents extraction and analysis
methods for developers’ source code reuse behavior (copy and
paste). Our method extracts developers’ actual source code reuse
(real copy and paste). Then, by using a code clone detection tool,
the method extracts code fragments for (potential reuse). Our
study of real and potential copy and paste provides a quantitative
assessment for source code reuse by developers.

Keywords—Reuse Based Software Engineering Teaching, Code
Clone, Source Code Reuse

I. INTRODUCTION

As the size and complexity of software systems increases,
adopting effective software development methodologies in
software projects is crucial. RBSE is one of the software
development paradigms that promise to increase software
development quality and productivity [1]. In RBSE, developers
can reuse existing software on various granularities, code
fragments [2], components [3], and services [4]. Implementing
software by using source code reuse techniques might reduce
development cost. Such techniques also improve software
quality compared to software implemented from scratch. On
the other hand, source code reuse requires several professional
skills to developers. Reusing existing software requires deep
understanding of current reuse behavior. Developers have to
know how to locate reusable code fragments. Even if develop-
ers gained the reusable code fragments, they have to merge the
code fragments to their developing software adequately. As a
result, nurturing RBSE technique is required crucially.

One of the difficult points for nurturing RBSE is to prepare
the evaluation criteria for the source code reuse by developers.
If it becomes possible to evaluate source code reuse activities,
the chance for successful RBSE increases. Therefore, in our
research, we propose an extraction method of source code
reuse for each developer, and an evaluation criteria to judge
whether each reuse behavior is good or not.

During implementing code, developers sometimes copy
code fragments and paste them on the source file. In order to
evaluate the source code reuse behaviors, we obtain such copy
and paste (in short, C&P) by each developer (we call this “real
C&P ”) precisely. In addition, we make a comparison between

the real C&P and the potential C&P. If there exist two code
fragments that are similar to each other in a software project,
a developer could have reused one of two code fragments to
implement the other code fragment. In conventional research,
code clone detectors were used for presuming source code
reuse [5]. We call such source code reuse presumed by code
clone detectors “potential C&P”. Ideally, it is desirable that
the real C&P does not require any edits after pasting. On the
other hand, since the ideal code fragment does not necessarily
exist, we cannot always perform such ideal source code reuse.
Therefore, by comparing the real C&P to the potential C&P,
we evaluate whether the real C&P requires too many edits after
pasting.

In this paper, we propose extraction and comparison meth-
ods for real/potential C&P by developers to evaluate devel-
opers’ behaviors on source code reuse. The result of our case
study ensured that our methods were able to assess developers’
reuse behaviors quantitatively. The next section describes the
reuse based software engineering in our study.

II. REUSE BASED SOFTWARE ENGINEERING

Reuse Based Software Engineering (RBSE) represents a
software development paradigm that promises to shorten de-
velopment cycles based on software reuse [1]. Quality and
productivity of software could be increased by reusing exist-
ing software [1]. In software development, developers reuse
various units of software, code fragments [2], components [3],
and services [4].

A success of RBSE depends on the skilled developers [6].
If a developer does not sufficiently understand the existing
software, the developer cannot adequately detect and adopt
reusable units. In addition, ad-hoc reuse of the code frag-
ments sometimes introduce faults [7]. For this reason, some
researchers consider education of RBSE as one of the most
important topic in the software engineering [6]. Actually, a
large amount of research on education for RBSE have been
performed [8][9][10][11].

Our research motivation is to construct a criteria to evaluate
source code reuse for each developer. In order to nurture
developers based on the viewpoint of source code reuse,
assessments of the actual reuse behaviors based on the practical
criteria are needed . Constructed criteria enable developers to
judge whether each C&P performed by them is good or not.

A process on C&P consists of the following four steps.
First, a developer opens a source file that contains reusable

978-1-4673-6913-8/15/$31.00 c© 2015 IEEE IWSC 2015, Montréal, Canada33

x = x + z;

z = x – z;

x = x - z;

clip board

1: if(x >= y){

2: x = x + y;

3: y = x – y;

4: x = x – y;

5: }

6: if(x >= z){

7: x = x + z;

8: z = x – z;

9: x = x – z;

10: }

source code

1: if(x >= y){

2: x = x + y;

3: y = x – y;

2: x = x + y;

3: y = x – y;

4: x = x – y;
3: y = x – y;

4: x = x – y;

5: }

…

2: x = x + y;

3: y = x – y;

4: x = x – y;

7: x = x + z;

8: z = x – z;

9: x = x – z;

Fig. 1: An extraction process of a real copied code

code fragments. Second, he/she copies the specific code frag-
ments. Third, he/she pastes the copied code fragments into the
developing source file. Finally, he/she edits the pasted code as
needed.

In the final step, it is desirable that the C&P does not
require too many edits of the pasted code. Hence, we focus
on the size of edits after pasting as the evaluation criteria of
source code reuse. Namely, our criteria assess C&P with few
number of edits after pasting is good. Here, the criteria require
an adequate threshold for the amounts of edits. It is difficult to
find an adequate value as the threshold because the threshold
might depend on each real C&P. In order to configure the
threshold for each real C&P, we focus on potential C&P. If
there exist any code fragments that are similar to the code
fragments implemented by a developer, the developer might
have reused the code fragments potentially. A Comparison
between real/potential C&P enables us to identify ideal C&P
that includes the fewest amounts of edits in the real C&P.

Hereafter, we explain our methodology to extract the
real/potential C&P.

III. REAL AND POTENTIAL C&P

In this section, we explain definitions and extraction meth-
ods of real/potential C&P. Our extraction method assumes that
developers use a VCS (Version Control System), and both
real/potential C&P are extracted from each commit in the
software repository.

A. Real C&P

Developers often copy some code fragments and paste them
into a developing source file. In our definition, “real C&P”
consists of “a real copied code fragment (in short, a real
copied code)” and “a real pasted code fragment (in short, a
real pasted code)”. We define a set of the file path, the start
line and end line of the copied code fragment as the “real
copied code”. Moreover, we define a set of the file path, the
start line and end line of the pasted code fragment as the “real

x = x + z;

z = x – z;

x = x – z;

clip board

copy

if(x >= y){

x = x + y;

addi

x = x + z;

z = x – z;

x = x – z;

addi+1

if(x >= y){

x = x + y;

addi

x = x + z;

z = x – z;

x = x – z;

addi+1

Fig. 2: An extraction process of a real pasted code

pasted code”. Developers often edit the copied code fragment
after pasting. So, in our definition, “real pasted code” means
the code fragment that is edited by developer after pasting until
the next commit.

In order to extract real C&P, we utilize a clipboard history,
an application history and an edit history of a set of source
files in a software project. The clipboard history records a
copied document and time when the document is copied.
The application history records name of the application that
developers have executed (e.g. Eclipse, text editor), the file
path that such application has opened and open/close time
of each file. The edit history of a set of source files records
snapshots of each source file at a short-time interval. Many
editors and IDEs have the capability to record the edit history
automatically.

Next, in order to extract a real copied code, our process
specifies a snapshot of a source file just before a developer has
copied a code fragment to the clipboard using the clipboard
history, the application history, and the edit history. The
specified snapshot of the file contains a real copied code. Fig.
1 shows the extraction method of the start and end line of the
real copied code. In order to specify the real copied code, our
method calculates similarities between the code fragment in the
clipboard and each code fragment in the source file including
the real copied code from the head of the source file based on
the Eq. 1, successively.

distance(clip, fi) =
levenshtein(clip, f)

length(clip)
(1)

The variables clip and fi represent the copied code in
the clipboard history and each extracted code fragment in
the source file including the real copied code, respectively.
Here, we regard clip and fi as character strings. The function
levenshtein calculates the Levenshtein distance between clip
and fi. The function length calculates the length of clip.
Hence, distance represents the ratio of the modification be-
tween the clip and the fi as the similarity. Here, we use the
threshold Ts to decide whether the copied code is pasted into
the source files.

The code fragment that has the smallest similarity is
considered as a real copied code. Fig. 1 shows the results

34

added

code
clone1

clone2

Fig. 3: An overview of the extraction method for the potential C&P

of the comparisons. The code fragments whose similarity is
less than 0.3 are the code fragments of the 2nd line to the 4th
line and the 7th line to the 9th line. In this example, the code
fragment in line 7 to 9 is regarded as the start and end lines
of the real copied code.

Fig. 2 shows an extraction process of the real pasted code.
In the figure, SFi indicates a snapshot of source files included
in the edit history. First, our process extracts the added code
between the consecutive snapshots that are recorded within
tdelay time from the time when SFi is recorded. In Fig. 2,
there exist two snapshots named SFi+1 and SFi+2. The code
fragment addi in Fig. 2 represents the added code between the
consecutive snapshots SFi and SFi+1.

Next, similarities between the copied code and each ex-
tracted added code are calculated by the Eq. 1, successively.
Here, the variable fi represents the extracted added code
between consecutive snapshots of the source files. Hence, Eq.
1 represents a ratio of a modification between the clip and
the fi. Here, we use the threshold Th to decide whether the
copied code is pasted into the source files. In this paper, we
set Th as 0.3. Fig. 2 shows distance(clip, addi) is 0.72, and
distance(clip, addi+ 1) is 0. In this case, we regard addi+1

as the “temporal” real pasted code. A developer may edit
the pasted code before the next commit. Then, based on the
“temporal” real pasted code, our method extracts real pasted
code from the next commit in the VCS.

B. Potential C&P

If there exist some code fragments that are similar to the
implemented code by a developer, the developer could have
implemented the code by C&P, potentially. Potential C&P
consists of potential copied/pasted code fragment (in short,
copied/pasted code) and the similarity type.

Fig. 3 shows an overview of our extraction method for a
potential C&P. In Fig. 3 , first, a code clone detecter finds
clone pairs from source files in the revision ri+1. Next, our
method specifies every potential C&P from the clone pairs.
In the potential C&P, only one of the two cloned fragments
constituting a clone pair is contained in the added code.

In each clone pair, we call the cloned fragment in the added
code as “potential pasted code”, and another code fragment as
“potential copied code”. Here, based on the Bellon’s definition

[12], we classify each clone pair into type1 to 3 as the
similarity type of the potential C&P.

If the potential pasted code has multiple potential copied
code, we select a potential copied code that resembles the
pasted code most based on the similarity types (type1, type2
and type3).

IV. EVALUATION CRITERIA FOR REAL/POTENTIAL C&P

In order to evaluate each real C&P by developers, first,
we extract every real C&P and every potential C&P for each
commit. Then, we evaluate each real C&P according to the
following steps.

Step1: We compare the real copied code with the real
pasted code. We regard a combination of the copied code and
the pasted code as a clone pair, and classify the real C&P that
contains the copied/pasted code based on the types of clones
[12]. Here, if the real C&P does not match any types of clones,
the real C&P is classified into type0.

Step2: We investigate whether the real pasted code has the
corresponding potential pasted code based on the following p-
OK value. We define the p-OK value using the definition of
the OK value defined in [12]. The p-OK value is calculated
from the function contained denoted in Eq. 3.

p−OK = max(contained(f1, f2), contained(f2, f1)) (2)

contained(f1, f2) =
|lines(f1) ∩ lines(f2)|

|lines(f1)|
(3)

Here, f1 and f2 mean a code fragment respectively, and
lines(f) means a set of lines in a code fragment f . If an
evaluated p-OK value is more than a threshold, we identify f1
and f2 are correspondent. In this evaluation method, we set the
threshold as 0.7, same as [12]. If the real pasted code does not
have the corresponding potential pasted code, the real C&P
is evaluated as “Bad”. “Bad” means that the developer has
edited most of the real copied code after pasting, and the real
pasted code does not have any similar code fragments. That is,
it might have been difficult to implement the real pasted code
by source code reuse. On the contrary, if the real pasted code
has the corresponding potential pasted code, this evaluation
process goes to Step3.

Step3: We compare the type between the real C&P and
the potential C&P. Here, if the type of the real C&P does not
match the type of the corresponding potential C&P, the real
C&P is evaluated as “Better”. “Better” mean that the developer
could have reused better code fragment that is more similar to
the real pasted code. On the contrary, if the type of the real
C&P matches the type of the corresponding potential C&P, the
real C&P is evaluated as “Best”. “Best” means the developer
performed the ideal C&P.

We conducted a case study based on our evaluation criteria.

V. CASE STUDY

In this section, we explain the results that we have ap-
plied our extraction method to students’ software development
project. Table I shows that the development scale and the

35

0

5

10

15

20

25

30

35

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

real
p

o
ten

tial

M39 M19 M1 M15 M7 M20 M38 M24 M11 M30 M3 M16 M26 M8 M12 M25 M27 M6 M31 M14 M36 M28 M5 M17 M33 M4 M2 M9 M10 M13 M18 M21 M22 M23 M32 M34 M35 M37M29

Q
u

an
ti

ty

Student ID

Type1 Type2 Type3 Type0

Fig. 4: Extracted real and potential C&P

number of corrected logs for each student team. In the project,
each team has 4-5 students, and the duration of the project
is 4 days (students developed software for 8 hours per day).
The project objective is to develop a web application based
on the specifications of the ticket selling system using HTML,
JavaScript and Java. The development environment is same for
all students (they used Eclipse on the laptop PC).

Table I shows Team 1 developed the application with
18,420 LOC by 192 commits. Here, 5,019 LOC and 145
commits indicate the values that are involved in Java source
files, respectively. The members of Team1 copied the various
documents to the clipboard 1,130 times. 582 out of 1,130
documents indicate the code fragments in Java. The number
of the application history and the accumulated edit history for
every source file of Team1 are 11,879 and 25,039, respectively.

We use the code clone detector called CDSW [13].
CDSW is a statement based code clone detector. CDSW can

TABLE I: Development scale and recorded logs

Team LOC commits

clipboard

history edit history

application

history

1 5,019(18,420) 145(192) 582(1,130) 25,039 11,879
2 3,814(17,512) 79(123) 649(1,414) 539,872 13,763
3 4,722(18,877) 150(180) 989(2,070) 521,884 16,290
4 4,002(17,415) 114(145) 607(1,423) 330,727 12,120
5 3,654(17,005) 95(145) 744(1,433) 295,884 10,126
6 4,684(18,152) 111(147) 813(1,253) 105,032 11,080
7 4,407(17,811) 91(124) 743(1,599) 309,587 13,184
8 4,305(17,948) 56(84) 316(711) 380,682 11,644
9 3,619(16,968) 50(107) 877(1,395) 258,704 10,297

detect the type1 to type3 code clone. We set the minimal
clone length and the number of allowed gapped statements for
parameters of CDSW , as 20 and 3 respectively. The minimal
clone length means the number of tokens in the detected
clones. In our case study, we omitted the real C&P including
the real copied/pasted code that the number of lines is less
than 3.

Fig. 4 shows the number of extracted real/potential C&P
by all students for every type. The x-axis and y-axis of Fig. 4
represent the Student ID and the number of C&P, respectively.
The Student ID is sorted in ascending order by the ratio of the
real C&P of which type is 0.

From Fig. 4, a large part of the real C&P was classified into
type0. Namely, almost all students edited the real copied code
excessively after pasting. On the other hand, the number of the
potential C&P is more than the number of the real C&P for
each student. In other words, many students miss the chances
to utilize reusable code.

VI. DISCUSSION

We evaluated every real C&P for each student based on
our evaluation criteria. We discuss the result of the evaluation
for each real C&P.

A. Classification of the Real C&P

In Fig. 5, every real C&P is classified into the following
three categories, “Best”, “Better”, and “Bad”. The x-axis and
y-axis represent the Student ID and the number of the real

36

0

5

10

15

20

25

30

M
1
9

M
1
5

M
3

9

M
7

M
2
4

M
1
1

M
1

M
3

M
2
5

M
6

M
3
1

M
1
6

M
2
7

M
2
6

M
1
4

M
3
8

M
2
0

M
3
6

M
2
8

M
3
0

M
1
7

M
1
2

M
4

M
5

M
2

M
8

M
9

M
1
0

M
1
3

M
1
8

M
2
1

M
2
2

M
2
3

M
3
2

M
3
3

M
3
4

M
3
5

M
3
7

M
2
9

Q
u
an

ti
ty

Student ID

Best Better Bad

Fig. 5: Classified real C&P for every student

C&P, respectively. The Student IDs are sorted in ascending
order by the ratio of the “Best” real C&P to all real C&P.

“Best” C&P
The real C&P has the corresponding potential
C&P, and the types of the real/potential C&P are
same.

“Better” C&P
Though the real C&P has the corresponding po-
tential C&P, the types of the real/potential C&P
are different.

“Bad” C&P
The real C&P does not have the corresponding
potential C&P.

On the average, the students performed the real C&P about
ten times, and one-third of them are classified as “Better”. The
category “Better” implies that the students could have reused
the better code fragment that requires fewer edits.

A large part of the real C&P is classified into “Bad”. The
category “Bad” implies that it was difficult to implement the
real pasted code by C&P.

These two categories may be able to promote improvement
of the source code reuse to developers.

B. The Analysis of the Correlation Between the Authorship
and the C&P

Fig. 6 and Fig. 7 show authorship information of the
real/potential C&P of top/worst ten students. In the x-axis
of the figures, “same” means that authorship of both real

copied/pasted code is same, and “different” means that author-
ship of both real copied/pasted code is different. The student
IDs are sorted in ascending order by the ratio of the “Best” real
C&P to all real C&P. As shown in Fig. 6, almost all “Bad” real
C&P has the different authorship between the real copied code
and the real pasted code. This result implies they have reused
the unsuitable code fragment, because they did not understand
well the code fragment that anyone else has implemented. On
the other hand, Fig. 7 shows the types of the potential C&P
are independent of the authorship between the potential copied
code and the pasted code, comparatively.

As a result, in order to improve source code reuse, it can be
said that the developers should understand the code fragments
that anyone else has implemented. Furthermore, the authorship
information about the real/potential C&P can serve as a means
to obtain efficiently the code fragments that a developer should
understand.

C. Related Work

The research, about extracting the reused code fragments,
has been well-studied. Kim et al. conducted an ethnographic
study using a logger that records editing behavior like select,
copy, paste and undo [14]. Heinemann et al. extract the
potentially copied code by utilizing the clone detection tool
[5].

More recently, some studies about the reusable source code
existing in the developed software is studied. Martinez et al.
analyzed whether the committed code fragments already exist
in the developed software [15]. The case study shows that
3-17% of the commit is redundant. Barr et al. also studied

37

0
1
2
3
4
5
6
7
8
9

10

M19 M15 M39 M7 M24 M11 M1 M3 M25 M6

Q
u

an
ti

ty

Student ID

Best Better Bad

(a) Authorship of the real C&P of the top 10 students

0

2

4

6

8

10

12

14

16

M13 M18 M21 M22 M23 M32 M33 M34 M35 M37

Q
u

an
ti

ty

Student ID

Best Better Bad

(b) Authorship of the real C&P of the worst 10 students

Fig. 6: Authorship of the real C&P

0

5

10

15

20

25

30

M19 M15 M39 M7 M24 M11 M1 M3 M25 M6

Q
u

an
ti

ty

Student ID

Type1 Type2 Type3

(a) Authorship of the potential C&P of the top 10 students

0

5

10

15

20

25

M13 M18 M21 M22 M23 M32 M33 M34 M35 M37
Q

u
an

ti
ty

Student ID

Type1 Type2 Type3

(b) Authorship of the potential C&P of the worst 10 students

Fig. 7: Authorship of the potential C&P

the redundancy about the commit [16]. They focused on the
graftability of the commit that indicates the ratio of the code
fragment could be developed by reusing the source code
existing in the developed software and all added code fragment
by line granularity. The goal of these studies is validating
the hypothesis utilized in the research field of automatic
program repair [17][18]. In our research, we aim to identify
both real/potential C&P during the software project to assess
developer’s reuse behaviors.

Kotonya et al. developed the framework of the education of
the service-based RBSE [6]. In this research, they mentioned
that the difficulty of educating RBSE is how to make the
benefits of RBSE visible to students. In their project, the
problem scenario is designed to provide a realistic experience
of both “development for reuse” and “development with reuse”
as well as some element of project management. In our
research, we focused on code fragment based software reuse
in the viewpoint of the “development with reuse”.

VII. THREATS TO VALIDITY

Our proposed method cannot extract the source code
reuse in which developers do not use a clipboard, and the
real/potential copied code that exists outside the developing
project. In fact, some students copied code fragments from the
web pages, in our case study. In our future research, we are
planning to evaluate the source code reuse spanning multiple
projects and web pages.

Our method using the clipboard history, the application
history, and the edit history might extract the wrong real copied
code and the wrong real pasted code. If there exist multiple
identical code fragments that are similar to the real copied code
in the same file, our method may extract the wrong real copied
code. In addition, our method may extract the wrong pasted
code, when a developer edits a code fragment excessively
before the edit history of the file containing the fragment is
recorded.

Loggers that extend IDE might improve this kind of
problem. Actually, Kim et al. [14] developed the logger by
extending the text editor of the Eclipse that could record the
range of selected text, and the length and offset of text entries.
Although this type of loggers depends on the IDE, the loggers
can extract the real C&P with great accuracy. On the other
hand, our extract method is independent of IDEs. We will try
to combine our method and such loggers to extract the real
C&P with great accuracy and robustly in our future research.

We utilized a code clone detection tool “CDSW” that could
detect sentence-based code clones for extracting the potential
C&P. We compare the real C&P with the potential C&P line by
line for evaluating the real C&P. For this reason, the evaluation
result of the real C&P might change by using different code
clone detection tools.

Source code reuse behaviors may alter according to the
development environment such as programming languages, de-
veloper’s skills, and IDEs. In our case study, the subjects were
university students. They developed a web application with

38

Java, JavaScript, and HTML using Eclipse IDE. Therefore, our
case study might not reflect real-world software development
environment. On the other hand, in any development environ-
ment, developers might reuse source code. We might say that
our evaluation method of the real C&P is significant from the
perspective of improvement of source code reuse behaviors.

VIII. CONCLUSION

Reuse of the existing source code by C&P is one of
the common software development behaviors. Earlier studies
report that the C&P in an ad-hoc manner might cause mainte-
nance problems. Several analyses of the C&P are conducted to
clarify why developers perform C&P. On the other hand, there
are few methods that evaluate the C&P for each developer.

In this research, we proposed the evaluation criteria for the
real C&P. Our criteria have indicated that the real C&P could
be classified into three categories (“Bad”, “Better”, and “Best”)
based on the comparison of the real C&P and the potential
C&P. On average, we confirmed 80 percent of the real C&P
(That is, “Bad” or “Better” C&P) in the case study has room
for improvement. In addition, through the authorship analysis
in the case study, we confirmed that the analysis might support
developers’ source code understanding.

ACKNOWLEDGMENT

This work was supported by MEXT/JSPS KAKENHI
24700030 and 24680002.

REFERENCES

[1] E. S. Almeida, A. Alvaro, D. Lucredio, V. C. Garcia, and S. R. L.
Meira, “A survey on software reuse processes,” in Proceedings

of the IEEE International Conference on Information Reuse and

Integration, pp. 66–71, Aug 2005.

[2] T. Moriwaki, Y. Yamanaka, H. Igaki, N. Yoshida, S. Kusumoto, and
K. Inoue, “Towards an analysis of who creates clone and who reuses
it,” in Proceedings of the Eighth International Workshop on Software

Clones, Feb 2014.

[3] X. Cai, M. Lyu, K.-F. Wong, and R. Ko, “Component-based software
engineering: technologies, development frameworks, and quality as-
surance schemes,” in Proceedings of the 7th Asia-Pacific Software

Engineering Conference, pp. 372–379, 2000.

[4] M. Huhns and M. Singh, “Service-oriented computing: key concepts
and principles,” Internet Computing, IEEE, vol. 9, pp. 75–81, Jan
2005.

[5] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel, and
M. Irlbeck, “On the extent and nature of software reuse in open source
java projects,” in Proceedings of the 12th International Conference

on Top Productivity Through Software Reuse, ICSR’11, (Berlin,
Heidelberg), pp. 207–222, Springer-Verlag, 2011.

[6] G. Kotonya and J. Lee, “Teaching reuse-driven software engineering
through innovative role playing,” in Companion Proceedings of

the 36th International Conference on Software Engineering, ICSE
Companion 2014, (New York, NY, USA), pp. 276–282, ACM, 2014.

[7] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: finding copy-paste
and related bugs in large-scale software code,” IEEE Transactions on

Software Engineering, vol. 32, no. 3, pp. 176–192, Mar 2006.

[8] A. Parrish, B. Dixon, D. Hale, and J. Hale, “A case study approach to
teaching component based software engineering,” in 13th Conference

on Software Engineering Education and Training, pp. 140–147,
March 2000.

[9] M. Sitaraman, T. Long, B. Weide, E. Harner, and L. Wang, “A formal
approach to component-based software engineering: education and
evaluation,” in Proceedings of the 23rd International Conference on

Software Engineering, pp. 601–609, 2001.
[10] K. Qian and X. Fu, “Teaching component-based software develop-

ment,” in Proceedings of the 21st IEEE-CS Conference on Software

Engineering Education and Training Workshop, pp. 13–15, April
2008.

[11] A. Finkelstein, “Software engineering education: a place in the sun?,”
in Proceedings of the 16th International Conference on Software

Engineering, pp. 358–359, May 1994.

[12] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Transactions

on Software Engineering, vol. 33, no. 9, pp. 577–591, Sept 2007.

[13] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Gapped
code clone detection with lightweight source code analysis,” in
Proceedings of the 21st IEEE International Conference onProgram

Comprehension, pp. 93–102, May 2013.

[14] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study
of copy and paste programming practices in oopl,” in Proceedings

of the International Symposium on Empirical Software Engineering,
pp. 83–92, Aug 2004.

[15] M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingredients
already exist? an empirical inquiry into the redundancy assumptions
of program repair approaches,” in Companion Proceedings of the 36th

International Conference on Software Engineering, ICSE Companion
2014, (New York, NY, USA), pp. 492–495, ACM, 2014.

[16] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The plas-
tic surgery hypothesis,” in Proceedings of the 22Nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering,
FSE 2014, (New York, NY, USA), pp. 306–317, ACM, 2014.

[17] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A
systematic study of automated program repair: Fixing 55 out of
105 bugs for $8 each,” in Proceedings of the 34th International

Conference on Software Engineering, ICSE ’12, (Piscataway, NJ,
USA), pp. 3–13, IEEE Press, 2012.

[18] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang, “The strength of random
search on automated program repair,” in Proceedings of the 36th

International Conference on Software Engineering, ICSE 2014, (New
York, NY, USA), pp. 254–265, ACM, 2014.

39

