
On the Level of Code Suggestion for Reuse
Akio Ohtani, Yoshiki Higo, Tomoya Ishihara, and Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University,
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

Email: {a-ohtani,higo,t-ishihr,kusumoto}@ist.osaka-u.ac.jp

Abstract—Code search techniques are well-known as one of the
techniques that helps code reuse. If developers input queries that
represent functionality that they want, the techniques suggest
code fragments that are related to the query. Generally, code
search techniques suggest code at the component level of pro-
gramming language such as class or file. Due to this, developers
occasionally need to search necessary code in the suggested area.
As a countermeasure, there is a code search technique where
code is suggested based on the past reuse. The technique ignores
structural code blocks, so that developers need to add some
code to the pasted code or remove some code from it. That
is, the advantages and disadvantages of the former technique
are disadvantages and advantages of the latter one, respectively.
In this research, we have conducted a comparative study to
reveal which level of code suggestion is more useful for code
reuse. In the study, we also compared a hybrid technique of
the two techniques with them. As a result, we revealed that
component-level suggestions were able to provide reusable code
more precisely. On the other hand, reuse-level suggestions were
more helpful to reuse larger code.

Keywords-Code search, Code reuse, Code clone

I. INTRODUCTION

Software reuse is known as a promising way to promote
efficient software development. Keyword-based code search
systems are a kind of frameworks that support code reuse [1],
[2], [3]. Such systems return source code (code fragments)
related to a given query (keywords that a developer inputs).
However, existing keyword-based code search systems have
a drawback. They suggest code at a component level of the
programming language. Thus, they sometimes suggest extra
(unnecessary) code together with necessary one. Developers
need to seek code that they actually want to reuse from the
suggested code. Most of the existing systems suggest code
at file-level or class-level, so that developers need to search a
small piece of reusable code from a large amount of suggested
code if they want to implement small functions. Besides,
developers do not always need code at the same level [4].
Sometimes they need a whole class but at other times they
need only several lines of code. Search systems should suggest
code at the level of developers’ demands.

As a way to solve the above issue, Ishihara et al. proposed a
code search technique that suggests code at the level of the past
reuse [5]. This technique suggests code that has been reused. In
the technique, code clones (hereafter, clones) across software
systems are regarded as reused code. That is, detecting clones
among systems is regarded as identifying code reuse among
them. Before now, some techniques have been proposed to
detect clones across systems [6], [7], [8].

However, suggesting code at reuse-level requires manual
code addition or deletion after developers copy and paste
suggested code as it is. That is because reused code does
not necessarily match with the structural code blocks such
as class, method, or simple block in methods. Developers
do not need to seek code that they actually want to reuse
from a large amount of suggested code, but they need to add
some code to the pasted code or remove some code from
it. The advantage and disadvantage of the component-level
suggestion are the disadvantage and advantage of the reuse-
revel suggestion, respectively.

It is unclear which of the two techniques supports devel-
opers more efficiently and more effectively than the other
one. Consequently, in this research, we have conducted a
comparative study on the following techniques.

Technique-A: the first technique is a component-level code
suggestion [1], which suggests code at the method-
level1. In this paper, we do not introduce this tech-
nique any more in this paper due to space limitation.

Technique-B: the second technique is a code suggestion
based on past reuse [5].

Technique-C: the third technique is a revised version of the
second technique. That is, suggested code is identi-
fied based on the past reuse, but they are reshaped
to match with the structural units of programming
language like the first technique. The third technique
is our proposed technique in this paper.

The remainder of this paper is organized as follows: In
Section II, we introduce our previous technique (Technique-
B), and in Section III we explain our proposed technique
(Technique-C); in Section IV reports the experimental result,
then we discuss it in Section V; threats to validity in the
experiment is described in Section VI; lastly, we conclude this
paper in Section VII.

II. TECHNIQUE-B: REUSE-LEVEL CODE SEARCH

Ishihara et al. proposed a code search technique that sug-
gests code reused in the past [5]. Their technique firstly
detects the past code reuse in advance. When a developer
inputs a query, it suggests reused code related to the query.
The highlighted area in Figure 1(a) is an example of code

1The technique originally suggests code at class-level. But, in this ex-
periment, we developed a tool that suggests code at method-level with the
component-level code search technique because the class-level suggestion is
too coarse in this comparative study.

…	
220:	 public	 void	 form(String	 id)	 {	
…	 	 	 	 	 	 …	
238:	 	 	 StringBuffer	 buffer	 =	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 new	 StringBuffer();	
239:	 	 	 buffer.append(“<form>”);	
240:	 	 	 if	 (items	 ==	 null)	 {	
…　　　　　　　…	
244:	 	 	 }	 else	 {	
245:	 	 	 	 	 if	 (items.size()	 >	 0)	 {	
…	 	 	 	 	 	 	 	 	 	 …	
261:	 	 	 	 	 	 	 buffer.append(“</p>”);	
262:	 	 	 	 	 }	
263:	 	 	 }	
…	 	 	 	 	 	 …	
266:	 }	
…	

(a) Before using proposed technique

…	
220:	 public	 void	 form(String	 id)	 {	
…	 	 	 	 	 	 …	
238:	 	 	 StringBuffer	 buffer	 =	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 new	 StringBuffer();	
239:	 	 	 buffer.append(“<form>”);	
240:	 	 	 if	 (items	 ==	 null)	 {	
…	 	 	 	 	 	 	 	 …	
244:	 	 	 }	 else	 {	
245:	 	 	 	 	 if	 (items.size()	 >	 0)	 {	
…	 	 	 	 	 	 	 	 	 	 …	
261:	 	 	 	 	 	 	 buffer.append(“</p>”);	
262:	 	 	 	 	 }	
263:	 	 	 }	
…	 	 	 	 	 	 …	
266:	 }	
…	

(b) Enlarged suggested area

…	
220:	 public	 void	 form(String	 id)	 {	
…	 	 	 	 	 	 …	
238:	 	 	 StringBuffer	 buffer	 =	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 new	 StringBuffer();	
239:	 	 	 buffer.append(“<form>”);	
240:	 	 	 if	 (items	 ==	 null)	 {	
…	 	 	 	 	 	 	 	 …	
244:	 	 	 }	 else	 {	
245:	 	 	 	 	 if	 (items.size()	 >	 0)	 {	
…	 	 	 	 	 	 	 	 	 	 …	
261:	 	 	 	 	 	 	 buffer.append(“</p>”);	
262:	 	 	 	 	 }	
263:	 	 	 }	
…	 	 	 	 	 	 …	
266:	 }	
…	

(c) Shrunk suggested area

Fig. 1. Example of enlarging and shrinking suggested code by using the proposed technique

suggested by Ishihara’s technique. Contrary to Technique-A,
their technique ignores borders of code blocks.

The technique leverages the index-based clone detection [9]
to detect past code reuse quickly. Code reuse is the most
common cause that clones occur in source code [10], [11].
Thus, detecting clones can identify past code reuse.

Ishihara’s technique consists of two procedures, Code Anal-
ysis and Code Suggestion. The Code Analysis procedure
detects clones from a given set of source files and extracts key-
words from each of the detected clones. Clones and keywords
are stored into a database. The Code Suggestion procedure
suggests code related to query input by developers. The Code
Suggestion procedure utilizes the database created by the Code
Analysis procedure for suggesting code.

III. TECHNIQUE-C: REUSE-LEVEL CODE SEARCH
CONSIDERING BLOCK BORDERS

The proposed technique is an enhancement of Ishihara’s
technique. We explain the proposed techniques by using Java
code examples because currently our implementation handles
Java language. However, it is not difficult to expand it to other
programming languages.

Ishihara’s technique ignores block borders in source code,
so that suggested code occasionally includes unnecessary
program statements or lacks necessary ones for completing
tasks. In Figure 1(a), the hatched area is the code suggested
by Ishihara’s technique, and the dashed rectangles mean their
block borders that are split by the suggested code. Thus, if
we copy and paste the code as it is, the pasted code requires
further modifications such as deleting unnecessary program
statements or adding necessary ones.

Hereafter, we use term decoupled block, which means a
code block where the border of a given clone exists. Two
if-blocks that start from the 240 line and the 245 line are
decoupled blocks of the clone in Figure 1(a).

The proposed technique suggests cloned code with consider-
ation for code block borders. The proposed technique suggests
code with the code range adjustment by considering decoupled
blocks. More concretely, the proposed technique has two ways
to adjust code ranges.

• Enlarging code range so as to include a decoupled block
• Shrinking code range so as to exclude a decoupled block

Decoupled blocks can occur at the top and the bottom of
clones. For each decoupled block, the proposed technique
adjusts code range with the above two strategies.

Figure 1 shows an example of code range adjustment. In
Figure 1(a), the highlighted code is a clone, and the two
if-blocks that start from the 240 line and the 245 line are
its decoupled blocks. If we adopt the strategy enlarging, the
highlighted code in Figure 1(b) is suggested to developers.
Conversely, if we adopt the strategy shrinking, the highlighted
code in Figure 1(c) is suggested. There are not partially-
included sub-blocks in both of the suggested code ranges.

A. Procedures

Figure 2 shows an overview of the proposed technique.
The procedure of the proposed technique is similar Ishihara’s
technique [5], but it has some additional operations. The
hatched items show the additional operations.

The proposed technique consists of two procedures, Code
Analysis and Code Suggestion. The Code Analysis procedure
includes the following 5 steps.

STEP-A1: detecting clones from given source files. The
number of clones for each clone group is counted.

STEP-A2: extracting keywords from the detected clones.
STEP-A3: computing CRS (component rank scores) for

methods that include the detected clones.
STEP-A4: identifying code blocks in given source files.
STEP-A5: adjusting code ranges for each of the clones by

comparing it with the code blocks.
The Code Suggestion procedure includes the 3 steps.
STEP-S1: ranking code fragments that include keywords

related to a given query.
STEP-S2: selecting an adjusted code range for a code

fragment selected by the developer.
STEP-S3: suggesting the adjusted range to the developer.
The remainder of this section explains the added steps.

B. STEP-A4: Block Detection

The start and end lines of code blocks in given source files
are identified. In our implementation, we use Java Develop-
ment Tools (JDT) for obtaining the block positions in Java
source code. The tool traverses the abstract syntax tree of
each method to identify the following types of code blocks:

source files	

clone	 detec)on	

CRS	 calcula)on	 keywords	 extrac)on	

WOS	 calcula)on	

code	 sugges)on	

block	 detec)on	

code	 adjustment	

selec)ng	 	
code	 range	

CRS	CRS	CRS	
keyword	keyword	keyword	

block	block	block	

database	

code fragments	

clone	clone	clone	

clone	clone	clone	
clone	clone	clone	

code	
fragment	
code	

fragment	
code	

fragment	

clone	clone	clone	

code	
fragment	
code	

fragment	
code	

fragment	
keyword	keyword	keyword	

string	 buffer	

code	
fragment	
code	

fragment	
code	

fragment	code	
fragment	
code	

fragment	
code	

fragment	

code analysis procedure	

code suggestion procedure	

user’s	
input	

user’s	
opera)on	

user’s	
input	

output	
to	 user	

Fig. 2. Overview of proposed technique

do-while, for, foreach, if, switch, synchronized, try, and while.
If a node is recognized as one of those types, the start and
end lines are computed by using APIs in JDT.

C. STEP-A5: Code Adjustment

Each clone is compared with code blocks. If the top border
or bottom border of the clone is dividing sub-blocks, code
ranges that include the sub-blocks and exclude them are
obtained. In the case of Figure 1(a), the two adjusted code
ranges shown in Figures 1(b) and 1(c) are obtained.

D. STEP-S2: Selecting Code Range

In this step, the proposed technique ranks adjusted code
ranges of a clone selected by the developer. The ranking is
performed by computing a metric misalignment.

Here, we assume that L(c) is a set of lines included in a
given code fragment c, and co, c1, c2, · · · , cn are a clone and
its adjusted code ranges.

Misalignment (m) between a clone (co) and its adjusted code
range (ci) is computed with the following formula.

m(co,ci) = |L(ci)∩L(co)|+ |L(ci)∩L(co)| (1)

Just after a developer selects a clone, the adjusted code
range whose misalignment is the smallest is selected as the
default code range. She/he can see other adjusted code ranges
by operating the front-end GUI.

In the case of Figure 1, the two adjusted code ranges have
the following misalignment values.

m(co,c1) = 18, m(co,c2) = 6

co, c1, and c2 mean code fragments in Figures 1(a), 1(b), and
1(c), respectively. In this case, adjusted code range c2 has
higher priority than c1.

IV. EXPERIMENT

In this section, we describe the experiment that we com-
pared the three code search techniques A, B, and C.

A. Experimental Design

Nine research participants attended the experiment. Each
of them was given nine tasks, and she/he implemented Java
code for each task with an assigned technique. The technique
assignment was performed as follows: firstly, the participants
were divided into three groups; then, we assigned one of the
three technique to each group.

Before participants’ implementation, the authors prepared
several test cases for each task and gave a lecture to let them
know how to use the tools of the techniques. In a given
task, the participants read the specifications firstly and then
they implemented code with an assigned tool. The participants
decided keywords by themselves. We imposed no restriction
on the number of code search. They were able to input any
keywords as long as they wanted. Their screens were captured
as motion pictures. If any one of the following conditions is
satisfied, the task was regarded as finished.

1) For the non-GUI tasks, the implemented code passed all
the test cases. Herein, a non-GUI task means a task that
does not make any GUI component.

2) For the GUI tasks, the participants checked the GUI of
their implementations by using the printed GUI exam-
ples for the tasks. If they regarded their GUI matched
with the example, then the authors checked the behavior
of the GUI by operating them.

3) The participants searched code fragments by using a
specified tool 5 minutes, but they were not able to find
reusable code. This condition was introduced because
participants had only 20 minutes for each task. If they
spend much time for searching code, it is difficult for
them to complete tasks within the time limit even if they
find reusable code.

4) Twenty minutes passed before any of the above 3
conditions was satisfied.

In the cases of (1) and (2), we regarded that the task was
successfully finished. But in the cases of (3) and (4), we
regarded that the task failed.

We imposed the two restrictions for the participants.

• They were able to use only one of the tools for a given
task. Using two or three tools in the task was prohibited.

• They had to reuse code at least 1 line of code suggested
from the tool.

B. Research Participants

The research participants in this experiment were two
undergraduate students, five master’s course students, two
Ph.D. candidates in the department of computer science at
Osaka University. All the participants had at least half year
experience of Java programming and they had developed at
least 5,000 lines of Java code in the past. Their experiences
are on their exercise lessons and their research activities.
The nine participants were divided into three groups with the
consideration for their Java experiences so that the average
programming skills of the three participants in the three groups
are approximately the same.

C. Source Code Used for Making Database

Techniques-BC need a database to suggest code when
they take keywords as their inputs (see Figure 2). In this
experiment, we made a database from UCI [7]. The size of
UCI dataset is huge: it includes 13,192 projects, 2,127,877
Java source files, and 20,449,896 methods.

We detected clones with Ishihara’s technique [5], and then
we detected block borders for each of the clones. The detected
clones and its block borders were registered to the database. It
took about 8 hours to finish the operations from UCI dataset.
The database creation had been performed before we decided
tasks because we needed to use the database to decide tasks.

D. Tasks

In this experiment, the authors prepared 9 tasks, each of
which was implementing a Java method that met the given
specifications. When we were deciding the tasks, we made
sure that all the 3 techniques were able to suggest (a part
of) reusable code if they took appropriate keywords as their
inputs from research participants. Concretely speaking, we
browsed source code of many clones in the database one by
one, and if possible we created a task that the cloned code
or its surrounding code was reusable on. On the other hand,
Technique-A can suggest code in any method if they take
keywords used in the method. By deciding tasks based on
clones in the database, we were able to ensure that all the
three techniques suggested reusable code for the tasks if they
took appropriate keywords.

The participants were given signatures of the method and
Javadoc comments including the specifications. They imple-
mented the bodies of the methods. For non-GUI tasks, the
authors prepared some test cases. For GUI tasks, the authors

TABLE I
ASSIGNMENT OF TOOLS FOR GROUPS

T1, T2, T3 T4, T5, T6 T7, T8, T9
G1 Technique-A Technique-B Technique-C
G2 Technique-C Technique-A Technique-B
G3 Technique-B Technique-C Technique-A

implemented the tasks and executed the programs. Then, the
authors captured the screens and printed them for distributing
to the participants. The whole bodies of the methods excepting
signatures and Javadoc comments were regarded as partici-
pants’ implementations.

The following list is the collections of the tasks that partic-
ipants did in the experiment.

T1: sorting the numbers included in a given string.
T2: removing vowels and changing capitals into small

letters in a given string.
T3: implementing a simple window with three buttons (red,

yellow, and blue) by using Swing, which is a Java
GUI library. If a button is clicked, the background
of the window is changed to the color.

T4: storing a given string (the 1st parameter) into a file with
a given name (the 2nd parameter).

T5: sorting string in the alphabetical order.
T6: performing a multiplication of two matrices
T7: counting the number of words in a given text file.
T8: implementing a simple window with three labels by

using Swing. The strings on the labels are given by
parameters.

T9: performing exclusive-OR operation on given two byte
arrays.

Each group did the tasks with the tools shown in Table I.
Unfortunately, there were tasks where the participants failed
implementations. Table II shows the number of failed tasks
for each of the tools. There were 81 tasks in this experiment,
and 34 out of them were failed.

E. Measures

In this experiment, we leveraged the following three mea-
sures to investigate to what extent each of the techniques was
able to support code reuse. Those measures were computed
by watching the motion pictures carefully.

time: this is a difference between starting time and fin-
ishing time. Starting time is a clock time when a
participant inputs a first character to the method body
or a query to the tool for searching code. Finishing
time is a clock time when all the test cases were
passed. All the test cases were able to run by batched
processing because the authors had built an Ant task
for the test cases.

usage rate: this measure represents how accurately the
tool suggests reusable code to participants. This is
a fraction where the denominator is the number of
the suggested program statements and numerator is
the number of reused program statements in the
suggested ones. Usage rate can be represent with

TABLE II
NUMBER OF FAILED TASKS FOR EACH TOOL

Tool T1 T2 T3 T4 T5 T6 T7 T8 T9
Technique-A 1 1 2 3 1 2 1 0 1
Technique-B 1 1 1 1 1 2 1 1 1
Technique-C 1 2 2 1 1 3 2 0 0

setTitle(title);	
setDefaultCloseOperation(…);	
setSize(320,	 160);	
setLocationRelativeTo(null);	
	
p	 =	 new	 JPanel();	
	
JLabel	 label1	 =	 new	 JLabel();	
label1.setText(“reuse1”);	
label1.setForeground(Color.RED);	
p.add(label1);	
	
JLabel	 label2	 =	 new	 JLabel();	
label2.setText(“reuse2”);	
label2.setForeground(Color.BLUE);	
p.add(label2);	
	
JLabel	 label3	 =	 new	 JLabel();	
label3.setText(“reuse3”);	
label3.setForeground(Color.YELLOW);	
p.add(label3);	
	
Container	 cp	 =	 getContentPane();	
cp.add(p,	 BorderLayout.CENTER);	

38	 public	 Object	 getObject(TreeMap<String,	 String>	 contextMap,	 int	 ndx)	
39	 {	
40	 	 	 String	 prompt	 =	 contextMap.get(“arg”	 +	 ndx	 +	 “prompt”);	
41	
42	 	 	 String	 initialValue	 =	 contextMap.get(“arg”	 +	 ndx	 +	 “initialValue”);	
43	 	 	 inputField	 =	 new	 JTextField();	
44	 	 	 inputField.setText(initialValue);	
45	 	
46	 	 	 String	 error	 =	 contextMap.get(“arg”	 +	 ndx	 +	 “error”);	
47	 	 	 errorLabel	 =	 new	 JLabel();	
48	 	 	 errorLabel.setText(error);	
49	 	 	 errorLabel.setForeground(Color.RED);	
50	
51	 	 	 Object[]	 parts	 =	 {prompt,	 inputField,	 errorLabel};	
52	
53	 	 	 String	 propertyClassName	 =	 contextMap.get(“arg”	 +	 ndx	 +	 “propertyClassName”);	
54	 	 	 propertyEditor	 =	 GChainDialog.getPropertyEditor(propertyClassName);	
55	 	
56	 	 	 return	 parts;	
57	 }	

Tool’s suggestion	

Participant’s code	suggested code	

copied and pasted region	

modified token after the paste 	

Fig. 3. Example of measures calculation

the following formula.

Usage Rate =
o f reused statements

o f suggested statements

contribution rate: this measure represents how much code
reuse contributes to the implementation. This is a
fraction where the denominator is the number of
all the program statements in participant’s code and
the numerator is the number of reused program
statements in the code. Contribution rate can be
represent with the following formula.

Contribution Rate =
o f reused statements

o f all statements

Figure 3 is an example of computing usage rate and
contribution rate. The left window is a code suggestion by
the proposed technique, and the right window is a source file
that the developer is implementing. The rectangle region in the
left window is suggested code and the hatched region is reused
code. The code is pasted in the developer’s code three times.
The developer implements 19 program statements and 9 of
them come are reused code. In this case, usage rate becomes
0.6 (3/5) and contribution rate becomes 0.47 (9/19).

F. Results

Figure 4 shows the values of usage rate for all the tasks. The
tasks where the height of bar graph is 0 are failed ones. The
graph also shows the average of usage rate for each technique
on each task. The right-most graph shows the average on all
the tasks. The average of all the tasks shows that Technique-C
marked a higher average than Techniques-AB.

Figure 5 shows the values of contribution rate for the tasks
in the same fashion as Figure 4. The value of Technique-C is
greater than the other two techniques in 4 out of the 9 tasks
and the average of Technique-C on all the tasks is higher than
Techniques-AB.

Figure 6 shows the values of time for the tasks. Regarding
the average on all the tasks, Technique-C took less time than
Technique-A but it took more time than Technique-B.

To wrap up, Technique-C suggested reusable code more
accurately than the other two techniques and code reuse
with Technique-C was the most helpful to implement tasks.
However, the time for implementation with Technique-C was
longer than Technique-B.

V. DISCUSSION

In this section, we discuss some factors that affected the
results shown in Figures 4, 5, and 6.

A. Long Implementation Time with Technique-C

While both the usage rate and contribution rate of
Technique-C has higher values than the other two techniques,
the time of Technique-C was not shortest in the three tech-
niques. The reason was that the participants took longer time
to operate the GUI of Technique-C than the GUIs of the other
techniques. The GUI of Technique-C had buttons for changing
suggested code ranges of a selected clone. There were some
tasks where the participants changed the suggested code ranges
by pushing the buttons plenty of times and looked for reusable
code. On the other hand, the GUIs of Techniques-AB are very
simple. They just suggest code of the selected code fragment.
From this finding, we can say that default code range is very
important to shorten the implementation time.

B. Some Cases Where Technique-C’s Usage and Contribution
Rates are Low

There are some tasks where both the usage rate and
contribution rate of Technique-C was lower than the other two
techniques. The reason was that the participants overlooked
reusable code outside the suggested range.

Figure 7 shows such a case. The solid-rectangle area is
suggested to the participant and the dotted-rectangle area is
reusable code. The solid-rectangle area is the clone but the
proposed technique excluded the available code by adjusting
code range. The available code is just below the suggested area
but the participant overlooked it. Even if available code existed
in the viewer of Technique-C, it was overlooked because it was
not highlighted correctly.

One promising way to avoid overlooking is using data
dependencies between program statements [12]. In the case
of Figure 7, the cloned code includes some variable decla-
rations (“converted”, “spaces”, “ats”, and “linefeeds”). Those
variables are referenced in the reusable code. If the proposed
technique adjusted code ranges with consideration for such
data dependencies, the code area including the reusable code
will get higher priority than the one excluding it. In such a
situation, the participant will not overlook the available code.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task9	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task8	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task7	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task6	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task5	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task4	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task3	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task2	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

all	 tasks	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task1	

Technique-A	 Technique-B	 Technique-C	 A’s average	 B’s average	 C’s average	

Fig. 4. Usage rate

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task9	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task8	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task7	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task6	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task5	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task4	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task3	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task2	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

all	 tasks	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

A	 B	 C	

task1	

Technique-A	 Technique-B	 Technique-C	 A’s average	 B’s average	 C’s average	

Fig. 5. Contribution rate

00	

300	

600	

900	

1200	

1500	

1800	

A	 B	 C	

task9	

00	

300	

600	

900	

1200	

1500	

1800	

A	 B	 C	

task8	

00	

300	

600	

900	

1200	

1500	

1800	

A	 B	 C	

task7	

00	

300	

600	

900	

1200	

1500	

1800	

A	 B	 C	

task6	

00	

300	

600	

900	

1200	

1500	

1800	

A	 B	 C	

task5	

00	

300	

600	

900	

1200	

1500	

1800	

A	 B	 C	

task4	

00	

300	

600	

900	

1200	

1500	

1800	

A	 B	 C	

task3	

00	

300	

600	

900	

1200	

1500	

1800	

A	 B	 C	

task2	

00	

300	

600	

900	

1200	

1500	

1800	

00	

300	

600	

900	

1200	

1500	

1800	

A	 B	 C	

all	 tasks	

00	

300	

600	

900	

1200	

1500	

1800	

A	 B	 C	

task1	

Technique-A	 Technique-B	 Technique-C	 A’s average	 B’s average	 C’s average	

Fig. 6. Timing

C. Usage and Contribution Rates
Technique-A is the second place in usage rate, but it is

worst in contribution rate. These facts mean that the block-
level suggestion is more precisely providing reusable code than
the reuse-level suggestion. But, the latter is more helpful to
reuse code as much as possible than the former. Consequently,
we can say that the hybrid technique has advantages of both
the two techniques.

D. Developers’ Faith In Code Suggestion
If a developer believes that suggested code is really reusable,

she/he might insist on reusing it. In such case, implementation
with code reuse may take longer time than implementing code
from scratch. In this experiment, we imposed the participants

to reuse at least 1 line of code for each task. This restriction
was intended to collect enough data of code reuse, but this
restriction can be interpreted as a big faith to code suggestion.

If a developer does not believe code suggestion so much,
she/he will give up searching reusable code after she/he input
different keywords a few times. There should have been some
cases in the experiments where the participants would have
been able to finish the tasks without code reuse.

VI. THREATS TO VALIDITY

Here, we describe threats to validity in the experiment.
Research participants: all the research participants had

at least half year experiences of Java programming
and each of them had developed at least 5000 lines

	 …	
	 public	 static	 String	 convertTabs(String	 text)	 {	
	 	 	 boolean	 preformatted	 =	 false;	
	 	 	 String	 converted	 =	 "";	
	 	 	 int	 spaces	 =	 0;	
	 	 	 int	 ats	 =	 0;	
	 	 	 int	 linefeeds	 =	 0;	
	 	 	 for	 (int	 i	 =	 0;	 i	 <	 text.length();	 i++)	 {	
	 	 	 	 	 if	 (text.charAt(i)	 ==	 '	 ')	 {	
	 	 	 	 	 	 	 spaces++;	
	 	 	 	 	 …	
	 	 	 	 	 }	 else	 {	
	 	 	 	 	 	 	 spaces	 =	 0;	
	 	 	 	 	 	 	 ats	 =	 0;	
	 	 	 	 	 }	
	 	 	 	 	 …	
	 	 	 }	
	 	 	 return	 converted;	
	 }	
	 …	

suggested code	

reusable code	
cloned region	

Fig. 7. A code suggestion where a developer overlooked reusable code

of code. If participants with different experiences
had joined the experiment, we might have gotten a
different result.

Experimental restriction: we imposed the participants to
reuse code at least 1 line of suggested code in each
task. This restriction was intended to collect enough
data of code reuse. However, this restriction may
have affected the values of three measures.

Clones: we detected clones for Techniques-BC. Those
clones were detected by a detection tool, and so
the detected clones must include false positives.
We had not removed the false positives before the
participants performed tasks. False positives are not
reused code but they are anyway duplicated code. In
the experiment, we do not think the presence of false
positives had a negative impact on Techniques-BC.

Task: the three groups implemented 9 tasks in the different
orders. The order of the tasks that they implemented
might affect the three measures.

Tool: the three groups used the three techniques in the
different orders. The order of using the techniques
might impact on the experimental result.

Database: all the tools used in the experiments suggest code
that had been registered to the database in advance.
Consequently, the suggested code vary if the database
has a different set of source files. Besides, code reuse
generate clones between different software systems.
If we reuse unreliable code, the pasted code may
requires many modifications in the future. Thus, it
is very important to build a database with reliable
code.

VII. CONCLUSTION

In this research, we conducted an experiment where three
kinds of keyword-based code search techniques were com-
pared: the first technique suggested code at method-level.
The second one suggested code that had been reused in the
past. The third technique is a hybrid of the first and second
techniques. That is, the third technique suggests code based
on the past reuse, but it adjusted suggested code range with
consideration for the code blocks.

In the experiment, we compared the three technique from
the three points. The first point is how accurately the tech-
niques were able to suggest reusable code. The second point is
to what extent code reuse contributes to the implementations.
The third point is time required for implementing code with
the techniques.

The hybrid technique marked the best scores on the first and
second points, but it ranked the second in the implementation
time. The experimental result indicates that the method-level
code suggestions are able to provide reusable code more
precisely than the reuse-level ones. On the other hand, the
reuse-level code suggestions are more helpful to reuse larger
code than the method-level ones.

In the future, we are going to introduce data dependencies
for deciding appropriate code ranges for suggestion. This is
because we found some cases where the code range adjust-
ments were not appropriate and the participants overlooked
reusable code. Introducing data dependencies will be able to
recognize cohesive code chunk in the source code. Suggesting
cohesive code chunk will be more helpful to assist code reuse.

REFERENCES

[1] K. Inoue, R. Yokomori, T. Yamamoto, M. Matsushita, and S. Kusumoto,
“Ranking Significance of Software Components Based on Use Rela-
tions,” IEEE Transactions on Software Engineering, vol. 31, no. 3, pp.
213–225, 2005.

[2] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and
C. Cumby, “A Search Engine for Finding Highly Relevant Applications,”
in Proceedings of the 32nd International Conference on Software
Engineering, 2010, pp. 475–484.

[3] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: Finding Relevant Functions and Their Usage,” in Proceedings
of the 33rd International Conference on Software Engineering, 2011, pp.
111–120.

[4] M. Umarji, S. E. Sim, and C. V. Lopes, “Archetypal internet-scale source
code searching,” in IFIP Advances in Information and Communication
Technology, B. Russo, E. Damiani, S. Hissam, B. Lundell, and G. Succi,
Eds. Springer, 2008.

[5] T. Ishihara, K. Hotta, Y. Higo, and S. Kusumoto, “Reusing Reused
Code,” in Proceedings of the 20th Working Conference on Reverse
Engineering, 2013, pp. 368–372.

[6] T. Ishihara, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Inter-
Project Functional Clone Detection Toward Building Libraries - An
Empirical Study on 13,000 Projects,” in Proceedings of the 19th Working
Conference on Reverse Engineering, 2012, pp. 387–391.

[7] J. Ossher, H. Sajnani, and C. Lopes, “File Cloning in Open Source Java
Projects: The Good, the Bad, and the Ugly,” in Proceedings of the 27th
International Conference on Software Maintenance, 2011, pp. 283–292.

[8] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue, “Finding File
Clones in FreeBSD Ports Collection,” in Proceedings of the 7th Working
Conference on Mining Software Repositories, 2010, pp. 102–105.

[9] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt, “Index-based
Code Clone Detection: Incremental, Distributed, Scalable,” in Proceed-
ings of the 26th International Conference on Software Maintenance,
2010, pp. 1–9.

[10] D. Rattan, R. Bhatia, and M. Singh, “Software Clone Detection: A
Systematic Review,” Information and Software Technology, vol. 55,
no. 7, pp. 1165–1199, 2013.

[11] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[12] S. P. Reiss, “Semantics-based Code Search,” in Proceedings of the 31st
International Conference on Software Engineering, 2009, pp. 243–253.

