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ABSTRACT
Program source code is one of the main targets of software engi-
neering research. A wide variety of research has been conducted
on source code, and many studies have leveraged structural, vo-
cabulary, and method signature similarities to measure the func-
tional sameness of source code. In this research, we conducted
an empirical study to ascertain how we should use three similari-
ties to measure functional sameness. We used two large datasets
and measured the three similarities between all the method pairs in
the datasets, each of which included approximately 15 million Java
method pairs. The relationships between the three similarities were
analyzed to determine how we should use each to detect function-
ally similar code. The results of our study revealed the following.
(1) Method names are not always useful for detecting functionally
similar code. Only if there are a small number of methods having a
given name, the methods are likely to include functionally similar
code. (2) Existing file-level, method-level, and block-level clone
detection techniques often miss functionally similar code generated
by copy-and-paste operations between different projects. (3) In the
cases we use structural similarity for detecting functionally similar
code, we obtained many false positives. However, we can avoid
detecting most false positives by using a vocabulary similarity in
addition to a structural one. (4) Using a vocabulary similarity to
detect functionally similar code is not suitable for method pairs in
the same file because such method pairs use many of the same pro-
gram elements such as private methods or private fields.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided software
engineering; D.2.7 [Distribution, Maintenance, and Enhance-
ment]: Restructuring, reverse engineering, and reengineering

General Terms
Experimentation, Measurement
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1. INTRODUCTION
In software engineering, program source code is one of the main

research targets. Various studies have been conducted on source
code, and these studies often utilize similarity of structure and/or
vocabulary to measure the functional sameness of source code. For
example, clone detection is a family of research studies that utilizes
the similarities of code structure such as token sequences or abstract
syntax trees [36, 38]. Detected clones are generally code instances
implementing the same functions. They are sometimes merged
as new modules [14, 15, 25]. On the other hand, keyword-based
code searching is a representative study that utilizes the similarity
of code vocabulary [18, 32]. Developers can obtain reusable code
from keyword-based code searching systems by inputting keywords
related to the function that they want.

Clone detection research assumes that, if the structures of two
code units are identical or similar to each other, their functions are
also identical or similar to each other. On the other hand, keyword-
based code searching research assumes that, if the vocabulary in a
code unit is similar to that of another unit, their functions are also
similar.

However, of course, those assumptions do not always make sense.
For example, herein, we consider two code units: one is an im-
plementation of quicksort and the other is bubblesort. Both code
units have the same function, which sorts numerical values stored
in an array in ascending/descending order. Thus, both code units
should include the same words such as “sort” or “array”. In this
case, the functional sameness appears in their vocabulary but not
in their structures because the two code units implement different
algorithms.

In addition, in some program languages such as C or Java, for
statements are often used to perform an action for each element in a
given array iteratively. Thus, many code units using for statements
have a common operation that iteratively does something. How-
ever, such an iterative operation with a for statement is a stylized
implementation. Such stylized implementations do not necessarily
include the same words.

If a code unit is a declarative unit in programming language, the
code has its own name. For example, in Java language, classes
and methods have names. Corazza et al. reported that the vocabu-
lary appearing in the signature of a method is the most informative
one in Java language [6]. On the other hand, there are many Java
methods whose names are not at all informative such as main or
actionPerformed.



The purpose of this research is to reveal how we should lever-
age the three similarities, structural similarity, vocabulary similar-
ity, and method name similarity, for measure functional sameness
from program source code. In this research, we have investigated
the relationships between functional sameness and the three sim-
ilarities. In the investigation, we selected the Java method as the
target code unit. To reduce bias in the investigation results, we
conducted the same investigation on two different datasets. We in-
vestigated the relationships for approximately 14 million method
pairs in the two datasets.

The following are the main findings of this research.

• The name of a method does not always reflect its function.
In cases where a given name is used by a small number of
methods, the degree of the functional sameness of the meth-
ods is likely to be high. However, if there are many methods
that have the same given name, the degree of their functional
sameness is low. Checking the number of methods having a
given name is a way to learn whether the name well repre-
sents its function.

• There are hash-based clone detection techniques at the file
level, method level, and block level. However, such tech-
niques often miss functionally similar code generated by copy-
and-paste operations between different projects.

• If we use structural similarity to detect functionally similar
code in Java, we obtain many false positives such as con-
secutive switch-case or consecutive else-if statements. Such
consecutive instructions are dependent on Java. If we use vo-
cabulary similarity in addition to structural similarity, we can
avoid the detection of most false positives.

• Method pairs in the same class share the same private fields
an private methods. As a result, such method pairs tend to
have a high vocabulary similarity. Consequently, using a
vocabulary similarity is not suitable for method pairs in the
same class.

The remainder of this paper is organized as follows: Section 2
describes the experimental design used in this study; Section 3 ex-
plains how we measure the three similarities; in Section 4, we de-
scribe how we prepared the datasets for the experiments; Section
5 shows the experimental results; and Section 6 discusses future
research based on these results; Section 7 describes some threats
to the validity of these experiments; Section 8 introduces existing
works related to our experiment; lastly, in Section 9, we conclude
this paper.

2. EXPERIMENTAL DESIGN
In this research, we investigate how the following three types of

similarity should be used in detecting functionally similar code.

• Structural similarity

• Vocabulary similarity

• Method name similarity

Although all of the above similarities have been leveraged in ex-
isting research studies, they are not complete measures. Code pairs
regarded as similar by these measures are occasionally recognized
as false positives by humans. For example, in code clone detection,
where structural similarity is generally leveraged, code fragments
including repeated instructions tend to be detected as clones, but
they are generally regarded as false positives [3, 12, 44]. Conse-
quently, the authors made the following hypotheses.

A	

B	 C	

D	 E	

F	

G	

Structure Similarity	

Vocabulary 	
Similarity	

Method Name 
Similarity	

Figure 1: Three types of similarities used in this research

• Code pairs regarded as similar by two measures are more
likely to be recognized as similar by humans than ones re-
garded by only one measure.

• Code pairs regarded as similar by all three measures are more
likely to be recognized as similar by humans than ones re-
garded as similar by two measures.

Figure 1 shows the relationships between the three similarities.
By using this figure, the probabilities that code pairs are function-
ally similar code are presented as follows.

A,B,C ≤ D,E,F ≤ G

In this research, we determine: (1) whether code pairs in each re-
gion (from A to G) are truly functionally similar code; and, (2) the
characteristics of code pairs in each region. We conducted experi-
ments on two large sets of open source projects written in the Java
language. The details of the experimental targets are described in
Section 4.

Java is an object-oriented language, and multiple classes operate
by cooperating with one another. Each class should have its own re-
sponsibility, so that two methods in the same class tend to be more
closely related to each other than two methods in different classes.
In addition, Java has the notion of package, which includes a set
of classes that closely cooperate with each other. Thus, two meth-
ods in the same package should tend to be more closely related to
each other than two methods in different packages. To summarize
the above-mentioned assumption, the degree of similarity between
two methods depends on their distance apart in source code. In this
research, we took into account the distance between a given code
pair when investigating it. More concretely, we used four distance
categories:

Within-File (WF) two methods are in the same file,

Within-Directory (WD) two methods are in different files, but in
the same directory,

Within-Project (WP) two methods belong to different directories,
but to the same project, and

Across-Project (AP) two methods are defined in different projects.



3. SIMILARITY MEASURES
In this section, we explain how we measured structural, vocabu-

lary, and method name similarities from a given pair of Java meth-
ods.

3.1 Structural Similarity
The measurement procedure for structural similarity (SS) con-

sists of the following steps, which are based on the clone detection
procedure of Nicad [37].

STEP 1 The source code of each target method is transformed into
a token sequence. In this step, all white spaces, tabs, and new
line characters are deleted.

STEP 2 All the tokens representing variable names, method names,
and type names are replaced with special tokens. The three
types of special tokens are all different from each other.

STEP 3 The longest common subsequence between the two nor-
malized token sequences is identified.

STEP 4 A quantified value of SS is calculated using the following
formula.

SS(TA,TB) = min(
|LCS(TA,TB)|

|TA|
,
|LCS(TA,TB)|

|TB|
)

where “TA” and “TB” are normalized token sequences ob-
tained from methods “A” and “B”, and “|TA|” represents the
number of tokens included in “TA”. “LCS(TA,TB)” shows the
longest common subsequence between “TA” and “TB”.

An identified longest common subsequence is not necessarily a
consecutive subsequence of the original sequence. In other words,
the longest common subsequence algorithm considers additional
shorter equal subsequences among two sequences as common se-
quence in addition to the longest equal consecutive subsequence.

The experiment in this paper, we used 0.7 as a threshold for de-
termining whether given two methods are structurally similar to
each other or not.

3.2 Vocabulary Similarity
We use Jaccard similarity [43] as vocabulary similarity (VS).

The steps for measuring Jaccard similarity in this research are as
follows.

STEP 1 Variable names and method names are extracted from the
source code of each method by performing syntax analysis.

STEP 2 Nouns and verbs are obtained from the extracted names
with their dictionary forms by performing camel/snake case
splitting and stemming. Note that stop words are ignored.

STEP 3 A quantified value of VS is calculated using the following
formula.

V S(VA,VB) =
|VA ∩VB|
|VA ∪VB|

where “VA” and “VB” show sets of words in two methods “A”
and “B”, respectively. “|VA|” is the number of words included
in “VA”.

The experiment in this paper, we used 0.7 as a threshold for de-
termining whether given two methods have vocabulary similarity
or not.

3.3 Method Name Similarity
In this research, the unit of investigation is the Java method.

Each Java method has its own signature, so we need to quantify
the similarity between two given signatures. However, quantifying
signature similarity appropriately as a single value is very difficult
because a signature includes multiple elements that need to be con-
sidered. For example, we need to take into account the method
name, number of parameters, type of each parameter, and name of
each parameter. In this research, instead of quantifying the simi-
larity of a whole signature, we use the simplest way to determine
whether signatures of two given methods are similar; that is, if their
method names are exactly the same, their signatures are regarded
as similar. If not, they are regarded as not being similar.

Readers may think why method name similarity is not measured
in an analogous way with vocabulary similarity. Generally, a method
name consists of a few English words. Measuring Jaccard similar-
ity from such a small number of words is meaningless. Conse-
quently, in this research, we chose a binary similarity for method
name similarity.

4. DATASETS
In this research, we conducted experiments on the following two

datasets in order to reduce bias due to the datasets used1.

APACHE The entire set of Java projects included in the Apache
Software Foundation2. The SVN repositories are open to
the public. In the experiment, we used a snapshot taken on
2013/Oct/31.

UCI A large set of Java software projects that includes approxi-
mately 13,000 projects and 20 million methods3 . If we were
to use the entire UCI dataset, we would need to measure sim-
ilarity between 200 trillion method pairs. In this research, we
used 500 projects in the dataset, which were extracted by us-
ing the following steps.

STEP 1 13,000 projects were sorted in the order of the num-
ber of methods they included.

STEP 2 The sorted list was divided equally into 10 sections.

STEP 3 50 projects were randomly extracted from each of
the 10 sections.

The APACHE dataset consists of directories and files that were
checked out from SVN repositories. SVN repositories often include
branches and tags directories. The former directories include files
that belong to branches, and the latter ones include files of tagged
versions. In order to exclude source files under such directories, we
used only source files under trunk directories, which are used for
storing mainstream development.

1The two datasets are open to the public on our website, http:
//sdl.ist.osaka-u.ac.jp/~higo/fse2014/
2http://www.apache.org
3http://www.ics.uci.edu/~lopes/datasets/

Table 1: Overview of Datasets
APACHE UCI

No. of projects 84 500
No. of files 66,724 60,548

No. of methods 628,219 532,556
Total LOC 11,545,556 10,073,635



In addition, we expended considerable effort to eliminate test
cases from the datasets. We obtained a list of source files whose
paths included “test”. Then, we checked every source file in the list
manually to identify whether it was a test case.

Our elimination targets were not only test cases but also source
code generated by tools. Here we used the same strategy as for
generated code. That is, first we obtained source files whose paths
include “generated”. Then, we checked each of them manually. We
also obtained a list of source files where code comments include
“@generated”, “antlr”, “javacc”, “sablecc”, or the names of other
compiler compilers. Then, each of them was interactively checked,
and eliminated if it was regarded as generated code.

The same data cleansing was performed on the UCI dataset be-
cause it included projects that had been checked out from SVN
repositories. Table 1 shows numerical data of the two datasets such
as the number of source files, the number of methods, and LOC.
However, some of the methods should not be targets even if they
are neither test cases nor generated code. When we make programs
using the Java language, we generally define many small methods
such as getters and setters. Measuring the similarity between such
small methods does not make sense. In addition, Merlo et al. re-
ported that small methods tend to have similar metric values even if
their contents are different [31]. Consequently, we removed small
methods from our measurement targets. In this research, a given
method was regarded as small and ignored if it satisfied either of
the following conditions.

• It included 50 or fewer tokens.

• It included 10 or fewer words that appeared in user-defined
identifiers.

As mentioned above, method pairs were classified into four cat-
egories based on the distance between the two methods in the pairs.
Table 2 shows the number of method pairs in each category. The
within-file category has the least number of method pairs, and the
across-project category has the largest number of method pairs.

5. INVESTIGATION RESULTS
We investigated method pairs in each region shown in Fig. 1

by browsing their source code manually. In this investigation, we
used 0.7 for the thresholds of structural similarity and vocabulary
similarity. Table 3 shows the number of method pairs in each of
the regions. If 100 or more method pairs were included in a given
region, we investigated at least 100 pairs. If fewer than 100 pairs
were included in a given region, we investigated all the pairs. In
the reminder of this section, we describe the result for each of the
regions.

In this paper, we describe only the results for the APACHE dataset
due to space limitations. However, we would like to note that we
obtained the same result from both the datasets. Some of the graphs
for the UCI dataset can be seen on our website4.
4http://sdl.ist.osaka-u.ac.jp/~higo/fse2014/

Table 2: Number of Method Pairs in Each Category
Category APACHE UCI
within-file 4,974 18,617

within-directory 13,162 24,722
within-project 559,592 147,181
across-project 14,162,007 14,723,451

total 14,739,735 14,913,971

5.1 Region “C”
Method pairs in Region “C” had the same name, but their struc-

tural similarity and vocabulary similarity were low. Manual in-
vestigation revealed that none of the selected pairs contains related
methods. Hence, it does not seem worthwhile to detect them as
functionally similar code. They quite often had highly abstract
names such as “get” or “execute” or language-dependent names
such as “main” or “addActionListener”.

In the graph for across-project in Fig. 2, many method pairs hav-
ing the same name are located near the bottom left corner. That
is, their structural similarity and vocabulary similarity are low.
On the other hand, some of the same-name method pairs are lo-
cated near the top right corner. In order to ascertain the differences
in characteristics between bottom-left method pairs and top-right
method pairs, we analyzed the relation between the abstractness of
their names, their structural similarity, and their vocabulary simi-
larity. Figure 3 shows the result. For example, in Fig. 3(a), the
left-most boxplot shows the distribution of structural similarity of
same-name method pairs where there are five or fewer methods
having the same name. This figure shows that the lower the num-
ber of methods that have the same name, the higher their strucutral
similarity and vocabulary similarity.

Besides, Fig. 4 shows histogram representing frequency of struc-
tural and vocabulary similarities for the same-name and different-
name method pairs for the category across-project. We can see that
even most the same-name method pairs have low structural and vo-
cabulary similarity. This result shows that the method name same-
ness of a given method pair does not necessarilly indicate its high
structural similarity or high vocabulary similarity.

5.2 Regions “A” and “E”
Method pairs in Region “A” have a high structural similarity, but

they have low vocabulary similarity and different method names.
Method pairs in Region “E” have high structural similarity and the
same method names, but have a low vocabulary similarity.

In the category across-project, many method pairs included con-
secutive switch-case statements and consecutive if-else statements.
In Java language, such implementations are often used in cases
where we need to bifurcate a procedure into multiple branches. In
other words, the reason their structural similarity was high was that
they included language-dependent implementations. We were not
able to find any other reason, such as that they had been created
by copy-and-paste operations. Such code (repeated instructions)
is occasionally regarded as false positives in clone detection [12].
There is even a clone detection technique that has a special function
to avoid detecting repeated instructions as clones [34].

In the categories within-project and within-directory, many meth-
ods had similar procedure logic for different object types. For ex-
ample, in project qpid, the following two files had methods whose
names were “construct” (see Fig. 5):

Table 3: Number of Method Pairs in Each Region
Region APACHE UCI

A 45 161
B 149 355
C 29,591 37,047
D 229 598
E 82 80
F 98 176
G 472 1,918



Figure 2: Overview of Three Types of Similarities for APACHE (Each dot represents a method pair. Each black dot is a method pair
whose names are different and each red dot is a method pair whose names are the same)

• messeging/codec/PropertiesConstructor.java, and

• transport/codec/AttachConstructor.java.

Their structural and vocabulary similarities were 0.83 and 0.22,
respectively. Such method pairs are latent refactoring opportuni-
ties. However, refactoring them is not an easy task because they
generally include small code fragments that are different from each
other. Complicated operations such as the Form Template Method
[7] are required to refactor them. We also found method pairs that

included the language-dependent repeated code mentioned in the
previous paragraph.

In the category within-file, there were only 14 method pairs whose
structural similarity was high but whose vocabulary similarity was
low. The lowest value of vocabulary similarity was 0.39. If two
methods are defined in the same class, they can use the same pri-
vate methods and private fields. That is, method pairs in the same
class tend to have a higher vocabulary similarity. Figure 6 supports
this conclusion.
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Figure 3: Boxplot representing relationship struc-
tural/vocabulary similarity distribution and name abstractness
for the category across-project. X-axis represents the degree of
name abstractness. There are 5 levels of name abstractness.

5.3 Regions “B” and “F”
Method pairs in Region “B” have a high vocabulary similarity,

but a low structural similarity and different method names. Pairs
in Region “F” have a high vocabulary, but low structural similarity
and the same method names.

In the category across-project, we found many cases of code
reuse between different projects. After copying and pasting a code
fragment, it was modified extensively (in many cases, new state-
ments had been added to the pasted code). Such large modifications
lowered the structural similarity between the original code and the
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(b) vocabulary similarity

Figure 4: Histogram representing frequency of struc-
tural/vocabulary similarity for same-name/differnet-name
method pairs for the category across-project. The black bars
represent frequency of different-name method pairs and the
red bars represent same-name ones.

copied code. However, user-defined names were not changed in
such modifications. Consequently, their vocabulary similarity had
been kept high. We could not find any different characteristics be-
tween pairs having the same names and different names.

In the categories within-project and within-directory, the struc-
tures of method pairs were partially similar to each other. They
should be detected by token-based or string-based clone detection
techniques such as CCFinder [20]. Some method pairs having the



	  53　public	  Properties	  construct(Object	  	  
	  54	  {	  
	  
	  58	  	  	  Properties	  obj	  =	  new	  Properties()	  
	  
	  72	  	  	  	  	  obj.setMessageId(	  val	  );	  
	  
	  99	  	  	  	  	  obj.setUserId(	  (Binary)	  val	  );	  
	  
126	  	  	  	  	  obj.setTo(	  (String)	  val	  );	  
	  
153	  	  	  	  	  obj.setSubject(	  (String)	  val	  );	  
	  
180	  	  	  	  	  obj.setReplyTo(	  (String)	  val	  );	  
	  
207	  	  	  	  	  obj.setCorrelationId(	  val	  );	  
	  
234	  	  	  	  	  obj.setContentType(	  (Symbol)	  va	  
	  
261	  	  	  	  	  obj.setContentEncoding(	  (Symbol	  
	  
288	  	  	  	  	  obj.setAbsoluteExpiryTime(	  (Dat	  
	  
315	  	  	  	  	  obj.setCreationTime(	  (Date)	  val	  	  
	  
342	  	  	  	  	  obj.setGroupId(	  (String)	  val	  );	  
	  
369	  	  	  	  	  obj.setGroupSequence(	  (Unsigned	  
	  
396	  	  	  	  	  obj.setReplyToGroupId(	  (String)	  	  
	  
424	  }	  

	  53	  public	  Attach	  construct(Object	  und	  
	  54	  {	  
	  
	  58	  	  	  Attach	  obj	  =	  new	  Attach();	  
	  
	  72	  	  	  	  	  obj.setName(	  (String)	  val	  );	  
	  
	  99	  	  	  	  	  obj.setHandle(	  (UnsignedIntege	  
	  
126	  	  	  	  	  obj.setRole(	  Role.valueOf(	  val	  	  
	  
153	  	  	  	  	  obj.setSndSettleMode(	  SenderSe	  
	  
180	  	  	  	  	  obj.setRcvSettleMode(	  Receiver	  
	  
207	  	  	  	  	  obj.setSource(	  (Source)	  val	  );	  
	  
234	  	  	  	  	  obj.setTarget(	  (Target)	  val	  );	  
	  
261	  	  	  	  	  obj.setUnsettled(	  (Map)	  val	  );	  
	  
288	  	  	  	  	  obj.setIncompleteUnsettled(	  (B	  	  
	  
315	  	  	  	  	  obj.setInitialDeliveryCount(	  (	  
	  
342	  	  	  	  	  obj.setMaxMessageSize(	  (Unsign	  
	  
368	  	  	  	  	  if	  (val	  instanceof	  Symbol[]	  )	  
369	  	  	  	  	  {	  
370	  	  	  	  	  	  	  obj.setOfferedCapabilities(	  	  
371	  	  	  	  	  }	  
	  
376	  	  	  	  	  obj.setOfferedCapabilities(	  ne	  
	  
402	  	  	  	  	  if	  (val	  instanceof	  Symbol[]	  )	  
403	  	  	  	  	  {	  
404	  	  	  	  	  	  	  	  obj.setDesiredCapabilities(	  	  
405	  	  	  	  	  }	  
	  
410	  	  	  	  	  obj.setDesiredCapabilities(	  ne	  
	  
437	  	  	  	  	  obj.setProperties(	  (Map)	  val	  )	  
	  
462	  }	  

Figure 5: Method pair whose structural similarity is high
but whose vocabulary similarity is low (Different variables are
underlined. Bidirectional arrows show statement correspon-
dences. Identical statements are omitted due to space limita-
tions.)

same names are semantically the same procedure, even if their im-
plementation ways are different. Some of them were overriding the
same method in a common parent class. Some method pairs having
different names implemented opposite procedures such as “uncom-
press” and “compress” or implemented related procedures such as
logical AND and OR operators.

In the category within-file, methods can use the same resources
such as private methods or private fields. This is because their vo-
cabulary similarity tends to be higher. Figure 7 shows the distri-
butions of structural similarity and vocabulary similarity in each
category. This figure shows that vocabulary similarity in the cat-
egory within-file stay higher than the other categories even if their
structural similarity is not high.

5.4 Regions “D” and “G”
In none of the categories did we find false positives, regardless of

the methods’ name sameness. We also found that if both structural
similarity and vocabulary similarity were 1.0, their method names
were always the same.

In the category across-project, we found many examples of code
reuses between different projects. In the category within-file, the
method pairs seemed to be good opportunities for performing the
Extract Method refactoring pattern. If both the similarities of a
given method pair are 1.0, their difference exists only in data types;
for example, one is a quicksort implementation for an “int” array
and the other is also a quicksort implementation for a “byte” array.

In the categories within-project and within-directory, such method
pairs can be latent opportunities that similar procedures are pulled
up to common parent classes. However, methods that are exactly

Figure 6: Vocabulary similarity in each category

the same are a minority. If a given method pair includes different
statements, we need to use complicated modifications such as the
Form Template Method to treat the differences. In addition, if two
classes that include methods of a given pair do not have a common
parent class, we first need to create it. If either of the two classes
has an explicit parent class, which means it has an “extends” clause,
the class hierarchy must be changed to create a new common parent
class. However, creating a new class and changing an existing class
hierarchy make up a large task and may be a design-level modifi-
cation. Thus, we need to give careful consideration to it. In other
words, if two classes already have a common parent class, we need
less effort to refactor the method pair.

We investigated to what extent method pairs had common par-
ent classes. In this investigation, “java.lang.Object” and the other
classes in JDK were not treated as a common parent class. Table 4
shows the result. We can see that a considerable number of method
pairs have common parent classes. The category within-directory
has a higher rate of method pairs having a common parent class
than the category within-project. Interestingly, however, if we con-
sider only method pairs whose structural similarity and vocabulary
similarity are 1.0, the category within-project has a higher rate. It
is not a hard task to pull up method pairs if they are completely the
same and have a common parent class.

6. TOWARD FUTURE RESEARCH
In this section, we discuss some directions for future research

based on the investigation results.

6.1 Pulling up Similar Methods
In the categories within-directory and within-project, we found

many pairs of functionally similar methods. However, most of them
included different statements from each other. To promote refactor-
ing of such method pairs, we need techniques to help refactoring.

Hotta et al. proposed a technique to identify the differences be-
tween a given pair of Java methods [15]. They leveraged program
dependence graphs to detect non-duplicated statements, which should
be kept in child classes in a case where we apply the Form Template
Method refactoring pattern to a given pair of similar methods.

Krishnan and Tsantalis proposed a technique to identify a set of
statements that should be extracted as a new method [25]. Clone
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Figure 7: Structural-similarity-based and vocabulary-similarity-based boxplots

detection tools generally identify maximum duplications in source
code as clones. However, maximum duplications often include var-
ious differences such as different variables, different literals, or dif-
ferent statements. Their technique identifies duplications that in-
clude a small number of differences. Clones detected by their tech-
nique are suited to refactoring, and developers can create easily
reusable methods from detected clones.

Hotta’s technique suggests method pairs where the Form Tem-
plate Method pattern can be applied. However, humans may not
think suggested method pairs should be refactored. If removing
duplicate code is the primary goal of refactoring, it is worth sup-
porting the deletion of duplicate code as far as possible, even by
using complicated operations. On the other hand, there are many

Table 4: Number of method pairs where common parent
classes exist. The numbers in parentheses are method pairs
whose structural and vocabulary similarities are 1.

(a) APACHE
within-directory within-project

(A) all in D and G 124 257
(B) common parent 43 (5) 47 (19)
rate of (B) against (A) 0.34 (0.04) 0.18 (0.07)

(b) UCI
within-directory within-project

(A) all in D and G 443 1,375
(B) common parent 285 (53) 785 (336)
rate of (B) against (A) 0.64 (0.12) 0.57 (0.24)

cases where developers do not want to change a class hierarchy or
do not want to perform complicated refactoring operations.

Krishnan’s technique suggests code fragments that can be refac-
tored easily with some duplicate code remaining. His technique is
intended for the Extract Method pattern. However, the same strat-
egy should prove useful for other refactoring patterns such as Pull
Up Method. There are probably many cases where developers want
to perform simple refactorings that leave some duplicate code re-
maining, rather than complicated refactorings designed for remov-
ing all duplications. We need techniques for pulling up a chunk of
duplicated code to a parent class with a small amount of effort.

6.2 Detecting Semantic Clones
Detecting semantic clones (type-4 clones) is a challenging re-

search topic. Existing graph-based detection techniques can detect
a part of semantic clones, such as a pair of iterative procedures: one
is implemented using a for loop, and the other is implemented using
a while loop [13, 22, 24]. However, their detection capabilities are
not adequate. Kim et al. proposed a technique that leverages states
of memory while a target program is executing [21]. This technique
can detect semantic clones that are not detected by graph-based de-
tection techniques. However, we need to prepare many test cases
to use this technique. In addition, such a dynamic analysis suffers
from scalability issues.

Within-directory and within-project method pairs in Region “F”
told us that using vocabulary and method name is a good way to
detect semantic clones. Such method pairs were often semantic
clones in the experiment. However, within-file method pairs in two
regions were often false positives because they tended to have a
higher vocabulary similarity (see Fig. 6).



	  …	  
	  17	  package	  org.apache.activemq.filter;	  
	  …	  
	  31	  public	  abstract	  class	  ComparisonExpression	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  extends	  BinaryExpression	  implements	  BooleanExpression	  {	  
	  …	  
355	  	  	  @SuppressWarnings({	  "rawtypes",	  "unchecked"	  })	  
356	  	  	  protected	  Boolean	  compare(Comparable	  lv,	  Comparable	  rv)	  {	  
357	  	  	  	  	  Class<?	  extends	  Comparable>	  lc	  =	  lv.getClass();	  
358	  	  	  	  	  Class<?	  extends	  Comparable>	  rc	  =	  rv.getClass();	  
359	  	  	  	  	  //	  If	  the	  the	  objects	  are	  not	  of	  the	  same	  type,	  
360	  	  	  	  	  //	  try	  to	  convert	  up	  to	  allow	  the	  comparison.	  
361	  	  	  	  	  if	  (lc	  !=	  rc)	  {	  
362	  	  	  	  	  	  	  try	  {	  
363	  	  	  	  	  	  	  	  	  if	  (lc	  ==	  Boolean.class)	  {	  
364	  	  	  	  	  	  	  	  	  	  	  if	  (convertStringExpressions	  &&	  rc	  ==	  String.class)	  {	  
365	  	  	  	  	  	  	  	  	  	  	  	  	  lv	  =	  Boolean.valueOf((String)lv).booleanValue();	  
366	  	  	  	  	  	  	  	  	  	  	  }	  else	  {	  
367	  	  	  	  	  	  	  	  	  	  	  	  	  return	  Boolean.FALSE;	  
368	  	  	  	  	  	  	  	  	  	  	  }	  
369	  	  	  	  	  	  	  	  	  }	  else	  if	  (lc	  ==	  Byte.class)	  {	  
370	  	  	  	  	  	  	  	  	  	  	  if	  (rc	  ==	  Short.class)	  {	  
371	  	  	  	  	  	  	  	  	  	  	  	  	  lv	  =	  Short.valueOf(((Number)lv).shortValue());	  
372	  	  	  	  	  	  	  	  	  	  	  }	  else	  if	  (rc	  ==	  Integer.class)	  {	  
373	  	  	  	  	  	  	  	  	  	  	  	  	  lv	  =	  Integer.valueOf(((Number)lv).intValue());	  
374	  	  	  	  	  	  	  	  	  	  	  }	  else	  if	  (rc	  ==	  Long.class)	  {	  
375	  	  	  	  	  	  	  	  	  	  	  	  	  lv	  =	  Long.valueOf(((Number)lv).longValue());	  
376	  	  	  	  	  	  	  	  	  	  	  }	  else	  if	  (rc	  ==	  Float.class)	  {	  
377	  	  	  	  	  	  	  	  	  	  	  	  	  lv	  =	  new	  Float(((Number)lv).floatValue());	  
378	  	  	  	  	  	  	  	  	  	  	  }	  else	  if	  (rc	  ==	  Double.class)	  {	  
378	  	  	  	  	  	  	  	  	  	  	  	  	  lv	  =	  new	  Double(((Number)lv).doubleValue());	  
379	  	  	  	  	  	  	  	  	  	  	  }	  else	  if	  (convertStringExpressions	  &&	  rc	  ==	  String.class)	  {	  
380	  	  	  	  	  	  	  	  	  	  	  	  	  rv	  =	  Byte.valueOf((String)rv);	  
381	  	  	  	  	  	  	  	  	  	  	  }	  else	  {	  
382	  	  	  	  	  	  	  	  	  	  	  	  	  return	  Boolean.FALSE;	  
383 	  	  	  	  	  	  	  	  	  }	  
	  …	  

(a) method “compare” in project “activemq”

	  …	  
	  21	  package	  org.apache.qpid.filter;	  
	  …	  
	  33	  public	  abstract	  class	  ComparisonExpression	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  extends	  BinaryExpression	  implements	  BooleanExpression	  
	  34	  {	  
	  …	  
403	  	  	  protected	  Boolean	  compare(Comparable	  lv,	  Comparable	  rv)	  
404	  	  	  {	  
405	  	  	  	  	  Class	  lc	  =	  lv.getClass();	  
406	  	  	  	  	  Class	  rc	  =	  rv.getClass();	  
407	  	  	  	  	  //	  If	  the	  the	  objects	  are	  not	  of	  the	  same	  type,	  
408	  	  	  	  	  //	  try	  to	  convert	  up	  to	  allow	  the	  comparison.	  
409	  	  	  	  	  if	  (lc	  !=	  rc)	  
410	  	  	  	  	  {	  
411	  	  	  	  	  	  	  if	  (lc	  ==	  Byte.class)	  
412	  	  	  	  	  	  	  {	  
413	  	  	  	  	  	  	  	  	  if	  (rc	  ==	  Short.class)	  
414	  	  	  	  	  	  	  	  	  {	  
415	  	  	  	  	  	  	  	  	  	  	  lv	  =	  ((Number)	  lv).shortValue();	  
416	  	  	  	  	  	  	  	  	  }	  
417	  	  	  	  	  	  	  	  	  else	  if	  (rc	  ==	  Integer.class)	  
418	  	  	  	  	  	  	  	  	  {	  
419	  	  	  	  	  	  	  	  	  	  	  lv	  =	  ((Number)	  lv).intValue();	  
420	  	  	  	  	  	  	  	  	  }	  
421	  	  	  	  	  	  	  	  	  else	  if	  (rc	  ==	  Long.class)	  
422	  	  	  	  	  	  	  	  	  {	  
423	  	  	  	  	  	  	  	  	  	  	  lv	  =	  ((Number)	  lv).longValue();	  
424	  	  	  	  	  	  	  	  	  }	  
425	  	  	  	  	  	  	  	  	  else	  if	  (rc	  ==	  Float.class)	  
426	  	  	  	  	  	  	  	  	  {	  
426	  	  	  	  	  	  	  	  	  	  	  lv	  =	  ((Number)	  lv).floatValue();	  
427	  	  	  	  	  	  	  	  	  }	  
428	  	  	  	  	  	  	  	  	  else	  if	  (rc	  ==	  Double.class)	  
429	  	  	  	  	  	  	  	  	  {	  
430	  	  	  	  	  	  	  	  	  	  	  lv	  =	  ((Number)	  lv).doubleValue();	  
431	  	  	  	  	  	  	  	  	  }	  
432	  	  	  	  	  	  	  	  	  else	  
433	  	  	  	  	  	  	  	  	  {	  
434	  	  	  	  	  	  	  	  	  	  	  return	  Boolean.FALSE;	  
435	  	  	  	  	  	  	  	  	  }	  
436 	  	  	  	  	  	  	  }	  
	  …	  

(b) method “compare” in project “qpid”

Figure 8: Source Code of the Vocabulary-Similar Method Pair
whose Structural Similarity is the Lowest

6.3 Identifying Code Reuse between Different
Projects

We found many instances of code reuse between different projects
in Regions “B” and “D”. After copying and pasting code from a dif-
ferent project, reused code was modified. If the modifications were
small, the pair of original and reused code fell into Region “D”.
If large modifications were performed, the structural similarity de-
creased and it fell into Region “B”. There were 126 and 283 method

pairs whose vocabulary similarity was larger than 0.7 in APACHE
and UCI, and all of them seemed to be examples of code reuse by
copy-and-paste operations. Figure 8 shows a method pair whose
vocabulary similarity is greater than 0.7 and whose structural sim-
ilarity is the lowest (0.47). Although structural similarity is low, it
is obvious that the pair was made by copying and pasting because
the head parts of the two methods are quite similar to each other.

There are several approaches to detect clones between different
projects. They can be classified into two categories, fine-grained
detection [17, 23, 27, 39, 41] and unit-level detection[19, 35, 40].

• Fine-grained detections can identify duplications even if they
are only small code chunks in source files. However, their
scalability is inferior to unit-level detections. For example,
Livieri et al. took two days to complete clone detection from
700 million lines of code using 80 personal computers [27].

• Unit-level detections can identify duplications only if whole
units such as file, class, or method are duplicated. However,
they have high scalability. For example, Ishihara et al. took
less than two hours to complete clone detection from 360
million lines of code by using a single workstation [19].

To date, there has been no empirical study that has compared
across-project clone detection results between fine-grained and unit-
level detection. This research shows there is a risk of missing
clones even if we use both fine-grained and unit-level detection
techniques. Consequently, we need to develop new methodologies
for detecting across-project code reuse by using code characteris-
tics other than its structure.

7. THREATS TO VALIDITY
In order to relieve bias due to the dataset being used, we used

two different datasets in this experiment. The experimental results,
which are described in Section 5, were almost the same for the two
datasets. Consequently, we can say that if we use another dataset
in the future, the result will be almost the same. However, we used
only a set of parameters where the minimum length of token se-
quences was 50 and the minimum number of words was 10 and
both of the structural similarity and the vocabulary similarity were
0.7. If we use another set of parameters, we may obtain different
tendencies in the result.

The category within-directory means that given two methods are
in different files but in the same directory. Directories are gener-
ally nested, but the top-most directories in the source folder should
be the deciding factor. Consequently, if we had counted for only
the top-most directories for the category within-directory, we might
have obtained a different result.

We classified method pairs into eight categories based on binary
determinations on the three similarities. Then, we sampled 100
method pairs from each of the categories. In such a way, the degree
of similarities on the structural similarity and vocabulary similar-
ity may not be considered appropriately. A random sampling of
method pairs based on the similarity values should be an appropri-
ate way.

We used the longest common subsequence algorithm to measure
the structural similarity among methods because it is popular and
its computational complexity is not so high. However, there are
various ways to detect structurally similar code [36, 38]. If we had
used another way to measure the structural similarity, we would
have obtain a different distribution of structural similarity among
methods. Bellon et al. compared some techniques that detect struc-
turally similar code [3].



The UCI dataset includes the projects of Apache Software Foun-
dation. Consequently, The 500 projects extracted from UCI dataset
may include projects included in Apache dataset.

We split camel/snake cases, performed stemming, and removed
stop words in extracting vocabulary from source code. However,
some of the words were not extracted appropriately due to reasons
such as they were short names. To extract vocabulary more appro-
priately, it would be better to use Lawrie et al.’s method [26].

8. RELATED WORK
Tiark et al. conducted an experiment on type-3 clones5 [44].

Their concern was what kinds of code characteristics contributed
to type-3 clone detection. They revealed that, if a given clone pair
had a similar word set in their identifiers, humans were not likely
to reject it. Their result is similar to our result described in Section
5.4. However, they investigated only code that had been detected
as clones. They investigated neither code where the vocabulary
similarity was high nor code having the same signature.

Abebe et al. proposed using not only the structure of code but
also its vocabulary for predicting fault-prone modules [1]. They
confirmed that using vocabulary had improved the accuracy of pre-
diction. In their experiment, predictions using a CK metrics suite
were compared with ones using CK metrics and bad smell informa-
tion of a vocabulary. The majority of cases using vocabulary with
CK metrics improved prediction.

Bigger et al. investigated the vocabulary relationship between
comments, identifier, and literal on 125 projects [4]. They found
that 75% of words in the vocabulary appeared in identifiers. On the
other hand, only a few words appeared only in comment or literal.
Their investigation is a comparison between comment, identifier,
and literal. They did not compare vocabulary between projects.

Marcus et al. proposed a class cohesion metric based on code
comments and identifiers in code [30]. In their evaluation, they
made two bug-prediction models: one was made from the pro-
posed metric and existing structure-based cohesion metrics such as
LCOM1[5]; the other was made only from existing metrics. Then,
they compared the bug prediction accuracy of both the models and
they confirmed that the proposed metric was useful for bug predic-
tion.

Haiduc and Marcus investigated how many words in source code
were domain terms [11]. Their investigation targets were six graph
theory libraries, and they found that that 62% of words were do-
main terms. The result indicates that methods within a project or
domain have the same words in their code. We did not investi-
gate vocabulary similarity of same-domain software. However, our
investigation result showed that methods within a project have a
higher vocabulary similarity than ones across projects. Our inves-
tigation result showed the same trend as their investigation result.

Source code clustering is a promising technique for maintain-
ing legacy code or software evolution. For example, clustering can
be used for detecting source code that should be re-modularized
[33, 45] or identifying abstract data types [9]. Maletic and Marcus
showed that identifying similar modules in a software system was
helpful in understanding it [28, 29]. They utilized Latent Semantic
Indexing techniques to make similar module clusters. Such support
reduces the developer’s cost for finishing a given task when devel-
oping or maintaining systems, and a developer can finish the task
better than without support.

Different software programs use different words even if they in-
clude the same processing [10]. This is known as the vocabulary
problem, which states that “no single word can be chosen to de-

5type-3 clones are duplicate code that include gapped lines.

scribe a programming concept in the best way” [8]. Bajracharya
et al. developed a system to automatically learn how APIs can be
used [2]. They assumed that source code using the same APIs im-
plemented similar processing contents even if the source code used
different user identifiers such as variable names. They then devel-
oped a technique called Structural Semantic Indexing. In addition,
there are methods that automatically identify a set of words related
to one another even if they are not related as English words [42,
46].

Corazza et al. proposed a software clustering technique using vo-
cabulary information [6]. They classified vocabulary into six cat-
egories: class name, field name, method name, parameter name,
comments, and statements. They gave different weights to dif-
ferent categories, and clusters are made by weighted vocabulary
similarities. They showed that vocabulary-based clustering was
more accurate than structure-based clustering in the context of re-
modularization in their experiment.

Hotta et al. compared fine-grained and unit-level clone detec-
tions [16]. They developed a unit-level detection tool that detects
similar blocks such as an if statement or for statements in Java
source code. They evaluated the tool by using the four Java soft-
ware projects included in Bellon’s benchmark [3]. They revealed
the unit-level detection had enough accuracy, but did not have high
recall compared to fine-grained detectors. They conducted experi-
ments for each of the projects and they did not target across-project
clones.

9. CONCLUSION
In this paper, we investigated the relationships between struc-

tural similarity, vocabulary similarity, and method name similarity
of Java methods with consideration of their positional relationship,
which has four categories: within-file, within-directory, within-project,
and across-project. Our experimental targets were two different
sets of open source projects. For each of the datasets, we measured
the three similarities on approximately 14 million method pairs.

As a result, we found the following. (1) Method names do not
always reflect functional code similarity. If there are a small num-
ber of methods that have a given name, the methods are likely to
include functionally similar code. (2) Existing hash-based clone
detection techniques at the file-level, method-level and block-level
miss many instances of copy-and-pasted code between different
projects. (3) In cases where we use structural similarity for detect-
ing similar code, we obtain many false positives. However, most
of the false positives are avoidable by using vocabulary similarity
in addition to structural similarity. (4) Using vocabulary similar-
ity for detecting similar code is not suitable for method pairs in the
same file because such method pairs use many of the same program
elements such as private methods or private fields. Their high vo-
cabulary similarity is due to using the same program elements, not
due to using the same words.

We also showed some directions for future research based on the
experimental results. They include the following: (A) techniques
for pulling up similar methods to the common parent classes, (B)
detecting semantic clones, and (C) identifying code reuse between
different projects.
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