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Abstract—This paper proposes a novel technique for clustering
commits for understanding the intents of implementation. Such
a classification of commits should be able to assist developers
to understand commits related to particular requirements, for
example, how and why has this function been implemented, or
has this function suffered from any bugs? Our technique adopts
a clustering algorithm on identifier names that are related to
changes in each commit. Such an approch allows us to take the
semantics of each commit into account without commit messages,
and so our approach is robust for the situation where some
commits lack accurate descriptions. We conducted a pilot study
to confirm that our idea answers to our objective. The pilot
study found some good examples that showed the usefulness of
our approach, and there were some undesirable results that gave
some ideas to improve it.

Keywords—Commit Classification, Version Control System,
Mining Software Repositories

I. INTRODUCTION

Version control systems (VCS), such as git or Subversion,
are very helpful for managing software artifacts during soft-
ware evolution. They store changes on software artifacts when
developers commit the changes. In other words, they record
the history of the software systems. Hence, developers can
understand how each function was implemented by reviewing
past changes on its related artifacts, or even can revert past
changes that seem incorrect or inappropriate.

To reap such benefits from VCSs, it is necessary to
understand the intents of implementation in past commits. It
should be beneficial for this objective to cluster commits based
on requirements to which each commit is related. For instance,
suppose a case where a feature was implemented by multiple
commits, and the developer wants to revisit the evolution of the
function. In this case, the developer can know which commits
she/he should review if the commits related to the requirement
“implementing the feature” are classified into the same cluster.
Furthermore, when a developer wants to understand a commit
in the category, the information in the other commits including
the source code changes in them should be helpful.

There are some techniques for clustering commits to under-
stand them. A typical approach is the one based on metadata
of commits including commit messages or committer names.
Commit messages are used because they directly represent
what the commits do. This approach classifies commits via
natural language processing or information retrieval techniques
on the data [1], [2]. These techniques work well if commits
were annotated well by its committers. Hence, it should be

best suited to the objective under the ideal situation where
developers carefully annotate every commit. However, devel-
opers often commit without any messages, or with incomplete
and/or inaccurate messages. If a commit does not have a
commit message, or has a commit message with incomplete
or inaccurate description, the approach will fail to classify the
commit into a proper category.

Another approach is based on syntax differences of source
code in each commit. This approach detects structural differ-
ences from every commit, and classifies commits based on
them [3]. It does not use commit messages, and so it works
well even though some commits lack good commit messages.
However, this approach uses only syntactic information, and
so it might miss semantic information that is valuable for
understanding commits. Hence, this approach will not be
suitable for our objective, which is clustering commits to
understand the intents of implementation in each commit.

This paper proposes a novel approach for clustering com-
mits. Our approach detects identifier names related to changes
in every commit, and classifies every commit via the bag-of-
words model with the identifier names. Our approach does
not use commit messages, which allows it to cover the weak
point of the commit message based approach. Furthermore, it
can consider semantics of commits because identifier names
should provide us with an insight into semantics of changes
occurring in each commit [4].

We implemented our approach as a prototype tool, and
conducted a pilot study with it to discuss the pros and cons of
our approach. The pilot study found some desirable examples
of clustering, which supports the usefulness of our approach.
On the other hand, the pilot study also found some undesirable
examples, but they give us insights to improve our approach.

The remainder of this paper is organized as follows. First
of all, we introduce related work in Section II. Section III
describes our proposed technique. Section IV shows the result
of the pilot study. In addition, we discuss the validity of the
result in Section V. Finally, Section VI concludes this paper.

II. RELATED WORK

Hindle et al. proposed an automated technique to clas-
sify commits into maintenance categories, namely Corrective,
Adaptive, Perfective, Feature Addition, and Non Functional
[1]. Their technique trains the machine learning models with
word distribution of commit messages, names of committers,
and the number of changed files per directory.
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Fig. 1. The process flow of clustering commits

Hattori and Lanza conducted a study on the nature of
commits by classifying them with their size and commit
messages [2]. They reported that the majority of commits
change very few files, and the majority of tiny commits are
not related to development activities including adding a new
feature or testing.

Dragan et al. proposed a technique to classify commits
to understand design changes of software systems [3]. They
were interested in design changes, and so they focused on
method and class level changes. Their technique is based on
method stereotypes [5], which generalize intrinsic or atomic
behavior of the method. They classify commits into some
categories including Structure Modifier and Behavior Modifier,
and they stated that these classifications assist developers in
understanding the extent and impact of changes in the commits.

Although the objectives of the existing research differ
from each study, all of these techniques share the common
avenue, classifying commits, for their objectives. Our objective
also differs from the ones of the above studies, which is
to cluster commits based on their related requirements. To
achieve our objective, we should consider the semantics of
commits. In addition, we should not use commit messages
for practical use in a non-ideal situation where some commits
lack commit messages. Hence, we propose a novel approach
which considers the semantics of source code changed in each
commit by analyzing identifier names affected by the changes.

There exists a large body of work that applies information
retrieval techniques to the field of software engineering, which
includes the work of Maletic and Marcus [6]. They proposed a
technique to cluster software components with latent semantic
indexing. Although their work and ours aim at different goals,
but they are similar in that both of them use information
retrieval technique on software artifacts.

III. PROPOSED METHOD

In this section, we will discuss our proposed method
to classify the commits into clusters that correspond to the
requirements.

The inputs of our method are the software repositories
organized by the VCSs. The outputs are the commits in the
repositories that have been classified by the different intents
correspond to the requirements. We classify the commits based
on the modifications on the source files, i.e. the occurrence of
identifiers in the source code between the revisions. We do not
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take other information such as commit messages or committers
into account currently.

The flow of processing of our proposed method consists of
the following three steps, as shown in the Figure 1.

STEP 1 Obtains the syntax differences of each commits from
the source code repository. The result has finer granularity than
the line-based differences which can be easily obtained from
the VCSs.

STEP 2 Extracts the identifier names from the syntax dif-
ferences which are obtained from the Step 1. Further, we
divide the identifier names into English words and count the
occurrence of each word, to generate a feature vector of the
syntax difference.

STEP 3 Applies a clustering algorithm on the commits using
the feature vectors to form the clusters that correspond to the
requirements. We consider each resulted cluster as a group of
commits to implement a single intent of a requirement.

We treat all the operations in the commit as the modifica-
tions to the contents of the files. In other words, we consider
the addition of a new file as the modification of adding all
the contents to an empty file, and the removal of an existing
file as the modification of deleting all the contents from the
file. Further, we consider the rename operation on a file as no
modifications to the contents of the file. As a result, instead
of tracking each operation recorded in the commit, we only
process one kind of the operation, i.e. the modification of the
file contents.

In the following subsections, we will discuss each step in
detail.

A. (STEP 1) The Extraction of the Syntax Differences

Firstly, we obtain a list of modified source code files in
each commit. For each modified file, we utilize the approach
of Change Distilling [7] to get the syntax difference in the
revisions of the commit. The output of the Change Distilling
is a list of the modifications, of each corresponding to either
a statement or an expression fragment from the source code.

We illustrate the extraction using an example with the
source code modifications, which are shown in the Figure 2.
The extracted modifications will be three syntax differences,
which are private int logCounts, !IS LOGGED and
log (messages).
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Fig. 3. An example of modifications to the source code

class Logger {
- private int log;
+ private int logCounts;
public void checkLog() {
if (IS_LOGGED) {
if (IIS_LOGGED) {
log (messages) ;

}

Syntax Differences

private int logCounts;
1IS_LOGGED
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| —

log(messages);
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Fig. 2. An example of syntax differences extracted from a commit.

B. (STEP 2)The Extraction of the Identifier Names and the
Generation of Feature Vector

Secondly, we extract the identifier names from each syntax
difference. Previous study [8] suggested that the structural
information will aid to the information retrieval, therefore we
also extracted the method name and class name that contains
the syntax difference, in addition to the identifier names. If the
syntax difference appeared inside a method body, the names of
the methods and the classes that contain the syntax difference
are extracted as well. For the syntax difference appeared
outside a method body, the class name is extracted, in addition
to the modified identifier names. These syntax differences
outside a method body often represent the modifications to the
declarations of the methods or fields. The additional method
and class names will be treated as appearing once in the syntax
differences.

In the previous example of Figure 2, we extract the
identifier names from the three syntax differences. For the
syntax difference private int logCounts, we extract
the variable name logCounts together with its class name
Logger. Finally, we will get a set of identifier names:
logCounts, Logger, IS_LOGGED, Logger, checkLog,
log, messages, Logger and checkLog.

Next, we generate the feature vectors for clustering. This
step involves the following 4 sub-steps:

STEP 2A Divide the identifier names into English words.

STEP 2B Lemmatize the English words into their root words.
The extracted root words will be referred as feature words in
our following discussion.

STEP 2C Count the occurrences of each feature word.

STEP 2D Convert the occurrences of the feature words into a
feature vector.

1) (STEP 2A) Divide Words: We divide the identifier
names extracted in STEP 1 into English words, assuming they
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are named in the camel case or snake case. The camel case
is a naming convention that each word begins with a capital
letter, such as getYourName. The snake case is another
naming convention that words are separated with underscore
character, such as MAX_COUNTS. Furthermore, we convert the
divided words into lower case to help the further process. For
example, given the identifier names convertedName and
MAX_COUNTS, we divide them into converted name and
max counts, respectively.

2) (STEP 2B) Lemmatization: Next, for each divided
words, we remove its prefix and suffix and lemmatize them
into their root words in English!. For the previous example,
we will convert converted and counts to their root words
convert and count, respectively.

An example combining STEP 2A and 2B is shown in
Figure 3. In this example, we extract from 4 identifier
names, namely convertedName, convertYourName,
SERVERS_FOR_SENDING and sendToMailServer, and
get a list of words convert, name, your, server,
for, send, to, mail from the lemmatization, to be
used as the feature words.

3) (STEP 2C) Count the Occurrence of Each Feature Word:
In this step, we count the occurrence of each word in the
extracted feature words. We ignore the occurrence of the
stop words of English’? during this step. The stop words are
those words that frequently appear, but bring little semantic
meaning. We ignore them to avoid negative influences on
the classification. As far as the example in the Figure 3 is
concerned, we have convert twice, name once, server
twice, send twice and mail once.

4) (STEP 2D) Convert to Feature Vector: Lastly, we con-
vert the counted occurrences into a feature vector. For each
commit, we define the feature vector as a Bag-Of-Words
(referred as BOW) vector that takes the normalized occurrence
of feature words as its features.

As a result, the number dimensions of the total BOW
vector will be the number of unique words that appeared in
the identifier names from all the syntax differences of all
the commits. A value of 0 in the vector indicates that the
corresponding word does not appear in the syntax difference
of the commit.

For example, in commit A the feature words a, b appear
once for each, and in commit B the feature words b, c appear

'We used the WordNetLemmatizer defined in python library
http://www.nltk.org/

2We used the list of English stop words defined by python library
http://scikit-learn.org/



twice for each. If we arrange the BOW vector in the order of
a, b, c,then the BOW feature vector for commit A and B
will be (1, 1, 0) and (0, 2, 2) respectively.

C. STEP 3 Apply the Clustering Algorithm

Lastly, we cluster the commits using the feature vectors
obtained from STEP 2D. Among all available clustering algo-
rithms, we considered the following 2 requirements, and then
choose the Repeated Bisection [9]:

e No need to specify the expected number of clusters. In
our approach, it is difficult to approximate the number
of different requirements, i.e. the number of expected
clusters. Therefore, we can not use the algorithms that
need to specify the number of expected clusters.

e  High scalability. For those long lasting projects, it is
quite possible that there is a huge amount of commits
recorded in their repositories. Therefore, we need a
clustering algorithm with high scalability.

Besides Repeated Bisection, there are several algorithms that
do not need to specify the number of clusters. Some of
the algorithms are costly in terms of computing complexity,
which require a long time for processing a large amount of
data. Repeated Bisection fulfilled both requirements as it is
faster than other algorithms that do not require the number of
clusters [9]. Finding and experimenting with other clustering
algorithms will be a future work of this study.

IV. PILOT STUDY

In this section, we will describe the experiments that we
have done as our pilot study. We applied our proposed method
on several software repositories and clustered the commits to
confirm whether there exists clusters that correspond to the
requirements.

A. Confirm the Clustering Result

In this experiment, we applied four open source software
(referred as OSS) repositories, and observed the resulted
number of clusters.

We selected four targets that are written in Java and
organized by Git, with relatively large number of commits
(more than 5000) in their repositories.

In Table I, we show the clustering result for each target
repository. These repositories contain the commits that have
no modifications to the source code files, therefore we fil-
tered these commits and count the target commits that have

Uhttps://lucene.apache.org/solr/
Zhttp://jenkins-ci.org/
3http://www.wildfly.org/

“http://jruby.org/
TABLE 1. CLUSTERING RESULT
Projects # of Total Commits | # of Target Commits | # of Clusters
Lucene/Solr® 11,159 7,341 919
Jenkins CI* 17,640 8,452 1,102
WildFly5 14,280 10,247 1,204
JRuby?® 20,531 13,142 1,487
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Fig. 4. The Distribution of the Number of Commits for Each Cluster

modifications in the source code. In Figure 4, we show the
distribution of the number of commits for each resulted cluster
in a boxplot. The X-axis of this figure is the four software
projects. We can see from this figure that the median number
of the commits are around 6 or 7 for every project.

1) Example of Desirable Clustering Result: Firstly we will
show an example from the properly clustered commits. We
show one cluster from the analysis of commits of Lucene/Solr
in the Table II. This cluster consists of four commits. For the
three commits with ID 7 e4a64f5, 5adc910 and c5a985e, we
found the commit messages of them mentioned the same issue
ID SOLR-4275 8 that corresponds to a single implementation
requirement. We show the top 5 weighted words of this
cluster in Table IIl. The weight of the words are calculated
by the Repeated Bisection algorithm. By viewing the syntax
difference and the commit message of the commit a3e95d0,
we confirmed that it is related to the implementation of the
offset used in class TokenTokenizer. Further, a bug that
introduced by this commit was fixed by the commit c5a985e.
From the timestamp of the commit a3e95d0, we can confirm
that it was committed 2 years before the other 3 commits.
Therefore, we can confirm the intent of the commit a3e95d0
was implementing the requirement while the intents of the

"The source code and other information of these commits can be accessed
from https://github.com/apache/lucene-solr/commit/ID
8http://issues.apache.org/jira/browse/SOLR-4275

TABLE II. DESIRABLE CLUSTERING RESULT (LUCENE/SOLR)
D Modified Files Timestamp Associated Issue ID
eda64f5 TestTrie.java 6 Jan 2013 SOLR-4275
5adc910 | TestTrie.java 6 Jan 2013 SOLR-4275
c5a985e TrieTokenizerFactory.java | 6 Jan 2013 SOLR-4275
a3e95d0 | TrieTokenizerFactory.java | 20 Jan 2011 None
TABLE III. ToP 5 WEIGHTED WORDS OF THE CLUSTER IN TABLE II

Word Weight from Repeated Bisection

trie 0.75257

tokenizer | 0.471848

ofs 0.235517

step 0.228368

prec 0.17303




commits e4a64f5, 5adc910 and c5a985e are fixing the issues
of the same requirement. To summarize, these four commits in
the same cluster have the same intent to implement the same
requirement.

2) Example of Undesirable Clustering Result: Next we will
show an example from the undesirable clustered commits. We
show one cluster from the analysis of commits of Jenkins CI
in the Table IV, which consists of three commits.

Firstly we discuss the two commits with ID b3553d6 and
7d0Obacl that modifies TOUtils. The purpose of this class
was to provide the utilities about the input and output opera-
tions in the software. Therefore, it consists of a group of static
member functions that are independent in features. Therefore,
we considered that the implementations of these static methods
related to different intents. By viewing the syntax differences
in commit b3553d6 and 7dObacl, we confirmed that they are
implementing different static methods. Therefore, we consid-
ered that they are implemented for different requirements.

Secondly we viewed the syntax difference of commit
a545a39 and found that it is modifying the access level of
the inner classes of the class Launcher, which can also be
confirmed from the commit message. Because the implemen-
tations of these inner classes are performing IO operations,
they are grouped with the other 2 commits.

As the discussion showed, the commits in Table IV were
implementing different requirements. Therefore, this cluster
was undesirable for our purpose, which is to group the commits
with the same implementation intent.

V. VALIDITY OF THE RESULT

We discuss the validity of our result in this section.

A. Validity of the Proposed Method

Firstly, we assumed that the identifier names in the commits
can reflect the implementation intent. Therefore, our method
can generate undesirable result when the identifier names are
inadequate. Secondly, we assumed that the commits are the
minimum units to divide the implementation. The existing
study suggested that a commit can contain multiple implemen-
tation contents with different intents. Previous studies [10],
[11] in our research group have focused on identifying and
dividing these tangled commits. They are the enabler of this
research.

B. Validity of the Discussion

In the discussion we considered the requirements that
are distributed among multiple source files by showing the
percentage of the simultaneous modification clusters in the
software repositories, in order to check the effectiveness of our
approach. However, we did not manually check the resulted
clusters to verify whether they are really corresponding to

TABLE IV. UNDESIRABLE CLUSTERING RESULT (JENKINS CI)
ID Modified File | Commit Message
b3553d6 | IOUtils.java added a convenience method
7d0Obacl I0Utils.java doh
a545a39 Launcher.java | for serialization work these interfaces need to be public

a single implementation intent. Therefore, it is necessary to
study the precision of the identified simultaneous modification
clusters in our further research.

VI. CONCLUSION

This paper proposed a technique to classify commits into
requirements to understand the intents of implementation. It
used a clustering algorithm with identifier names that are
affected by changes in each commit. This approach allows
us to consider the semantics of commits without commit
messages, and so the proposed technique will work well even
though some commits do not have enough descriptions.

We conducted a small pilot study on open source projects
with a prototype tool. The pilot study confirmed the usefulness
of our approach, and gave us some insights to improve the
proposed technique.

As future work, we are going to improve the accuracy of
classification of the proposed technique by other clustering
algorithms or by improving word extraction from identifiers.
In addition, we are going to seek other information that can
be extracted from source code and can contribute to improve
the accuracy of classification.
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