
A Dataset of Clone References with Gaps

Hiroaki Murakami, Yoshiki Higo, and Shinji Kusumoto
Osaka University

1-5 Yamadaoka, Suita, Osaka, Japan
{h-murakm,higo,kusumoto}@ist.osaka-u.ac.jp

ABSTRACT
This paper introduces a new dataset of clone references,
which is a set of correct clones consisting of their locational
information with their gapped lines. Bellon’s dataset is one
of widely used clone datasets. Bellon’s dataset contains
many clone references, thus the dataset is useful for com-
paring accuracies among clone detectors. However, Bellon’s
dataset does not have locational information of gapped lines.
Thus, Bellon’s benchmark does not evaluate some Type-3
clones correctly. In order to resolve the problem, we added
locational information of gapped lines to Bellon’s dataset.
The new dataset is available at “http://sdl.ist.osaka-u.
ac.jp/~h-murakm/2014_clone_references_with_gaps/”.
This paper also shows some examples that the new dataset

and Bellon’s dataset yield different evaluation results. More-
over, we report an experimental result that compares Bel-
lon’s dataset and the new dataset by using three clone de-
tectors that can detect Type-3 clones. Finally, we conclude
that the new dataset can evaluate Type-3 clones more cor-
rectly than Bellon’s dataset.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; E.5 [Data]: Files

General Terms
Design, Measurement

Keywords
Code clone, Software maintenance, Dataset

1. INTRODUCTION
Many software systems have code clones. Code clones are

identical or similar code fragments to one another in source
code. Recent research revealed that some code clones have
negative impacts on software maintenance [2][3]. In order to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 - June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ....$5.00.

find code clones in software systems, many clone detectors
have been developed. Since each clone detector has its own
definition of code clones, different code clones are detected
by different clone detectors from the same source code [7].

Bellon et al. compared six clone detectors in order to
reveal characteristics of them [1]. He made references of
code clones, and compared accuracies among clone detec-
tors. The references represent locational information of code
clones with file name and start/end lines. In his benchmark,
code clones are categorized into the following three types.

Type-1 is an exact copy without modifications (except for
white space and comments).

Type-2 is a syntactically identical copy; only variable, type,
or function identifiers were changed.

Type-3 is a copy with further modifications; statements
were changed, added, or removed.

Programmers often make some changes to code fragments
after cloning [5]. Moreover, cloned fragments often evolve
differently from the original fragments [3]. These facts indi-
cate that there often exists some gaps between the original
code fragments and pasted fragments. Thus, it is important
to find Type-3 clones for software maintenance.

However, Bellon’s Type-3 clones do not have locational
information of gapped lines. In other words, Bellon’s ref-
erences represent code clones only with information of line
numbers. We do not consider that gapped lines in code
clones should be regarded as code clones. Thus, Bellon’s
benchmark does not evaluate some Type-3 clones correctly.
Therefore, we remade the references of code clones with loca-
tional information of gapped lines. Moreover, we conducted
experiments to indicate differences between Bellon’s refer-
ences and the new references by using three clone detectors
that can detect Type-3 clones.

Contributions of this paper are as following.

• We added locational information of gapped lines to
Bellon’s references of code clones and made it public.

• It is revealed that our dataset produces different re-
sults from Bellon’s dataset.

2. BELLON BENCHMARK
Bellon’s benchmark is one of the most famous benchmark

in clone community. He compared six clone detectors from
the perspective of accuracy and performance. He made the
benchmark with the following steps.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MSR’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05...$15.00
http://dx.doi.org/10.1145/2597073.2597133

412



703: final public void dstore_2() { 
704:   countLabels = 0; 
705:   stackDepth -= 2; 
706:      if (maxLocals < 4) { 
707:         maxLocals = 4; } 
708:      try { 
709:         position++; 
710:         bCodeStream[classFileOffset++] = OPC_dstore_2; 
711:      } catch (IndexOutOfBoundsException e) { 
712:         resizeByteArray(OPC_dstore_2); } } 

861: final public void fcmpl() { 
862:   countLabels = 0; 
863:   stackDepth--; 
864:   try { 
865:      position++; 
866:      bCodeStream[classFileOffset++] = OPC_fcmpl; 
867:   } catch (IndexOutOfBoundsException e) { 
868:      resizeByteArray(OPC_fcmpl); } } 

…
 

…
 

…
 

* gapped line 

* 
* 
* * 

eclipse-jdtcore/src/internal/compiler/codegen/CodeStream.java 703 712   eclipse-jdtcore/src/internal/compiler/codegen/CodeStream.java 861 868   3   705, 706, 707   863 

…
 

                                                                                                                             clone type         set of gapped line 2 
                                  end line 1                                                                                                                        end line 2        set of gapped line 1 
fine name 1            start line 1                                                                                          file name 2       start line 2                   

Figure 1: An example of the new dataset and correspondent source files

172: return ep; } 
173: expr_ty * 
174: expr_function_new2(e1, e2) 
175:   expr_ty             *e1; 
176;   expr_ty             *e2; { 
177:     expr_ty             *ep; 
178:     expr_function_ty *this; 
179:     ep = expr_private_new(&method); 
180:     this = (expr_function_ty *)ep; 
181:     expr_list_constructor(&this->children); 
182:     expr_list_append(&this->children, e1); 
183:     expr_list_append(&this->children, e2); 
184:     return ep; } 

205: */ 
206: stmt_ty * 
207: stmt_assign_new(name, value) 
208:   expr_list_ty  *name; 
209:   expr_list_ty  *value; { 
210:     stmt_ty             *sp; 
211:     stmt_assign_ty        *this; 
212:     trace(("stmt_assign_new()¥n{¥n"/*}*/)); 
213:     sp = stmt_private_new(&method); 
214:     this = (stmt_assign_ty *)sp; 
215:     expr_list_copy_constructor(&this->name, name); 
216:     expr_list_copy_constructor(&this->value, value); 
217:     trace(("return %8.8lX;¥n", (long)sp)); 
218:     trace((/*{*/"}¥n")); 
219:     return sp; } 

…
 

…
 

…
 

…
 

p }
173: expr_ty *
174: expr_function_new2(e1, e2)
175:  expr_ty            *e1;
176;  expr_ty            *e2; {
177:    expr_ty            *ep;
178:    expr_function_ty *this;
179:    ep = expr_private_new(&method);
180:     this = (expr_function_ty *)ep;
181:    expr_list_constructor(&this->children);
182:    expr_list_append(&this->children, e1);
183:    expr_list_append(&this->children, e2);

206: stmt_ty *
207: stmt_assign_new(name, value)
208:  expr_list_ty  *name;
209:  expr_list_ty  *value; {
210:  stmt_ty            *sp;
211:    stmt_assign_ty       *this;
212:     trace(("stmt_assign_new()¥n{¥n"/*}*/));
213:    sp = stmt_private_new(&method);
214:     this = (stmt_assign_ty *)sp;
215:    expr_list_copy_constructor(&this->name, name);
216:    expr_list_copy_constructor(&this->value, value);* 

* 

* 
* 

clone reference clone candidate * gapped line 

Figure 2: An example of reference-candidate match with gapped line

Step-1: Bellon selected eight software systems as target
systems, and six clone detectors as target detectors.

Step-2: He asked the developers of the clone detectors to
detect code clones from the software systems. Then
the developers sent the locational information of the
detected code clones to Bellon.

Step-3: 2% of the code clones sent from the developers were
randomly selected, then he checked each of them man-
ually whether it was actually code clone or not.

In the remainder of this paper, we use the following terms.
Clone candidates: code clones found by clone detectors.
Clone references: code clones judged by human manually.
In the Bellon’s benchmark, ok and good value are defined.

For definitions of ok and good value, refer to the literature
[1]. These two values decide whether every clone candidate
matches any of clone references or not. The ok value means
intuitively the overlapping ratio of a clone candidate and a
clone reference. The more ok value increases, the more the
overlapping part of a clone candidate and a clone reference
becomes large. Meanwhile, the good value is much more
restrictive for a candidate-reference match.

3. DATASET
We made a new dataset by adding locational information

of gapped lines to Bellon’s dataset. The new dataset is avail-
able at our website1. Furthermore, we put file format of our
clone references on the same website. Fig. 1 illustrates an
example of our clone reference and the correspondent source
files. The left source file has three gapped lines (lines 705,
706 and 707), and the right one has a single gapped line
(line 863). If our clone references are used in accuracy eval-
uation, the evaluation can take into account gapped lines in
code clones.

On the other hand, Bellon’s clone references represents
code clones with file name and start/end lines. Thus, Bel-
lon’s benchmark does not evaluate some Type-3 clones cor-
rectly. If our clone references are used in accuracy evalua-
tion, ok and good value may be changed from the case of
Bellon’s clone references. Our clone references can evalu-
ate Type-3 clones more correctly than Bellon’s clone refer-
ences because our clone references introduce information of
gapped lines into evaluation of code clones.

Herein, we explain the case that ok value gets changed.
Fig. 2 shows that there are two clone pairs. One clone

1http://sdl.ist.osaka-u.ac.jp/~h-murakm/2014_
clone_references_with_gaps/

413



18 

9 

34 

18 

30 

38 

0

10

20

30

40

NiCad Scorpio CDSW

Bellon's references our references

(a) ok

6 

2 

5 6 

13 

5 

0

5

10

15

NiCad Scorpio CDSW

Bellon's references our references

(b) good

Figure 3: Experimental results for netbeans

12 

26 

12 12 
9 

20 

0

10

20

30

NiCad Scorpio CDSW

Bellon's references our references

(a) ok

7 

13 

0 

7 
5 

0 
0

5

10

15

NiCad Scorpio CDSW

Bellon's references our references

(b) good

Figure 4: Experimental results for ant

542 604 

1,013  

542 
422 

1,208  

0

500

1000

1500

NiCad Scorpio CDSW

Bellon's references our references

(a) ok

402 

254 

27 

403 

147 

27 
0

100

200

300

400

500

NiCad Scorpio CDSW

Bellon's references our references

(b) good

Figure 5: Experimental results for jdtcore

pair is one of clone references, and the other is one of clone
candidates that our clone detector CDSW [6] detected. If ok
value is calculated for this example by using Bellon’s clone
references, ok value is obtained as follows:

ok = min(max(
7

8
,
7

11
),max(

7

10
,
7

11
))

= 0.7

On the other hand, in the case of using our clone references,
ok value is obtained as follows:

ok = min(max(
6

7
,
6

10
),max(

6

7
,
6

10
))

� 0.857

In this way, ok value is changed if our clone references are
used. Accordingly, the evaluation scale (e.g. recall, precision
and F -measure) are might be changed.

4. EXPERIMENT
The purpose of this experiment is to reveal differences of

evaluation results yielded by Bellon’s clone references and
the new clone references. In this experiment, we compared
the number of detected clone references based on a thresh-
old. We used 0.7 as the threshold, which was the same value
used in Bellon’s benchmark.
In this experiment, we chose the clone detectors shown in

Table 1 as targets for the comparison. All of them can detect

593 

392 350 

593 

388 
494 

0

200

400

600

800

NiCad Scorpio CDSW

Bellon's references our references

(a) ok

290 

135 

50 

290 

127 

50 

0

100

200

300

400

NiCad Scorpio CDSW

Bellon's references our references

(b) good

Figure 6: Experimental results for swing

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

NiCad Scorpio CDSW

0
10
0

20
0

30
0

(a) netbeans

●●

●

●

NiCad Scorpio CDSW

0
50

10
0

15
0

(b) ant

Figure 7: Variabilities of gapped lines

Type-3 clones. All the clone detectors were used in their
default configurations. We used four Java systems shown in
Table 2 as targets software systems. The Java systems were
also used in Bellon’s experiments.

Fig. 3, Fig. 4, Fig. 5 and Fig. 6 show experimental results
for each target software system. Each graph represents the
number of detected clone references whose ok and good val-
ues exceed the threshold. In the case of NiCad, the number
of the detected clone references was hardly changed. CDSW
increased the number of the detected clone references in half
the cases. Scorpio produced interesting results. By using our
clone references for evaluation, the number of the detected
clone references was increased in the case of netbeans. On
the other hand, in the case of the others, the number of the
detected clone references was decreased.

Fig. 7 shows variabilities of gapped lines in clone can-
didates among the target clone detectors for netbeans and
ant. NiCad has narrow variability, meanwhile Scorpio and
CDSW have wider one. Fig. 3, Fig. 4 and Fig. 7 reveal that
our clone references has a strong effect on clone detectors

Table 1: Clone detectors used in this experiment

Developer Clone detector Detection method
Roy NiCad [8] text-based
Higo Scorpio [4] PDG-based

Murakami CDSW [6] statement-based

Table 2: Target software systems

Name Language # Files Lines of code
netbeans Java 101 14,360

ant Java 178 34,744
jdtcore Java 741 147,634
swing Java 538 204,037

414



 1: package org.eclipse.jdt.internal.core; 
 
14: public class BasicCompilationUnit implements ICompilationUnit { 
15:   protected char[] contents; 
 
34:       try { 
35:        return Util.getFileCharContent(new File(new String(fileName)),  
                  this.encoding); 
36:     } catch (IOException e) { } 
37:     return new char[0]; } 
38:   public char[] getFileName() { 
39:     return fileName; } 
40:   public char[] getMainTypeName() { 
41:     return mainTypeName; } 
42:   public char[][] getPackageName() { 
43:     return null; } 
44:   public String toString(){ 
45:     return "CompilationUnit: "+new String(fileName);  } } 

 1: package org.eclipse.jdt.internal.compiler.batch; 
 
 9: public class CompilationUnit implements ICompilationUnit { 
10:   public char[] contents; 
 
29:     try { 
30:       return Util.getFileCharContent(new File(new String(fileName)),  
                 encoding); 
31:     } catch (IOException e) { } 
32:       return new char[0]; } 
33:   public char[] getFileName() { 
34:     return fileName; } 
35:   public char[] getMainTypeName() { 
36:     return mainTypeName; } 
37:   public char[][] getPackageName() { 
38:     return null; } 
39:   public String toString() { 
40      return "CompilationUnit[" + new String(fileName) + "]";   } } 

* 

* 

* 

* 

  

  

clone reference clone candidate * gapped line 

9: public class CompilationUnit implements ICompilationUnit {
10:   public char[] contents;

29:     try {
30:       return Util.getFileCharContent(new File(new String(fileName)),

              encoding);
31:     } catch (IOException e) { }
32:      return new char[0]; }
33:   public char[] getFileName() {
34:     return fileName; }
35:   public char[] getMainTypeName() {
36:     return mainTypeName; }
37:   public char[][] getPackageName() {
38:     return null; }
39:   public String toString() {
40      return "CompilationUnit[" + new String(fileName) + "]";   } }

14: public class BasicCompilationUnit implements ICompilationUnit {
15:   protected char[] contents;

34:      try {
35:       return Util.getFileCharContent(new File(new String(fileName)),
                 this.encoding);

36:     } catch (IOException e) { }
37:     return new char[0]; }
38:   public char[] getFileName() {
39:    return fileName; }
40:   public char[] getMainTypeName() {
41:     return mainTypeName; }
42:   public char[][] getPackageName() {
43:     return null; }
44:   public String toString(){
45:     return "CompilationUnit: "+new String(fileName); } }

Figure 8: A clone reference that becomes to be undetected when our clone references are used for evaluation

that detect Type-3 code clones having many gapped lines.
Fig. 8 shows one of examples of clone references that

becomes to be undetected when our clone reference is used
for evaluation. The left source file has 40 lines of clone
reference (lines 1-40), and 32 lines of clone candidate (lines
9-40), and 2 gapped lines (lines 30, 40). The right source file
has 45 lines of clone reference (lines 1-45), and 32 lines of
clone candidate (lines 14-45), and 2 gapped lines (lines 35,
45). In this case, good value was calculated as follows when
Bellon’s clone references were used.

good = min(
32

40
,
32

45
)

� 0.711

On the other hand, good value is calculated as follows when
our clone references are used.

good = min(
30

38
,
30

43
)

� 0.697

In this case, good value fell below 0.7 when our clone ref-
erences were used. Thus, these clone candidates did not
match any of clone references in good value evaluation. In
this way, not all Type-3 clones increase their ok/good values
when our clone references are used.
The experimental result is summarized as follows. All the

target clone detectors achieved different results. Some de-
tectors yielded almost unchanged results, and others made
changes significantly. These results rely on the amount of
gapped lines in code clones. Thus, an evaluation using the
locational information of gapped lines will be a new evalua-
tion of Type-3 clones.

5. CONCLUSION
This paper introduces a new dataset containing locational

information of code clones with their gapped lines. Further-
more, we explained the example that the evaluation results
are changed when our dataset was used. Lastly, the exper-
iment proved that our dataset achieved different outcomes
from Bellon’s dataset by using some clone detectors. We
hope that our dataset will diversify an evaluation of Type-3
clones.
In the future, we are going to conduct strictly experiments

using the new dataset. If our dataset is used for evaluating
Type-3 clones, more accurate results would be obtained.

6. ACKNOWLEDGMENTS
This study was supported by Grants-in-Aid for Scientific

Research (S) (25220003), Grant-in-Aid for Exploratory Re-
search (24650011) from the Japan Society for the Promo-
tion of Science, and Grant-in-Aid for Young Scientists (A)
(24680002) from the Ministry of Education, Culture, Sports,
Science and Technology.

7. REFERENCES
[1] S. Bellon, R. Koschke, G. Antniol, J. Krinke, and

E. Merlo. Comparison and evaluation of clone detection
tools. IEEE Trans. on Software Engineering,
31(10):804–818, October 2007.

[2] N. Bettenburg, W. Shang, W. M. Ibrahim, B. Adams,
Y. Zou, and A. E. Hassan. An empirical study on
inconsistent changes to code clones at release level. In
Proc. of the 16th Working Conference on Reverse
Engineering, pages 85–94, October 2009.

[3] N. Göde and R. Koschke. Frequency and risks of
changes to clones. In Proc. of the 33rd International
Conference on Software Engineering, pages 311–320,
May 2011.

[4] Y. Higo and S. Kusumoto. Code clone detection on
specialized pdgs with heuristics. In Proc. of the 15th
European Conference on Software Maintenance and
Reengineering, pages 75–84, March 2011.

[5] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in oopl. In Proc. of the 3rd International
Symposium on Empirical Software Engineering, pages
83–92, August 2004.

[6] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and
S. Kusumoto. Gapped code clone detection with
lightweight source code analysis. In Proc. of the 21st
International Conference on Program Comprehension,
pages 93–102, May 2013.

[7] C. K. Roy and J. R. Cordy. A survey on software clone
detection research. Technical Report No. 2007-541,
Queen’s University, 2007.

[8] C. K. Roy and J. R. Cordy. Nicad: Accurate detection
of near-miss intentional clones using flexible
pretty-printing and code normalization. In Proc. of the
16th International Conference on Program
Comprehension, pages 172–181, June 2008.

415


