
Hey! Are You Committing Tangled Changes?

Hiroyuki Kirinuki, Yoshiki Higo, Keisuke Hotta, Shinji Kusumoto
Osaka University

1-5 Yamadaoka, Suita, Osaka, Japan
{h-kirink,higo,k-hotta,kusumoto}@ist.osaka-u.ac.jp

ABSTRACT
Although there is a principle that states a commit should
only include changes for a single task, it is not always re-
spected by developers. This means that code repositories of-
ten include commits that contain tangled changes. The pres-
ence of such tangled changes hinders analyzing code repos-
itories because most mining software repository (MSR) ap-
proaches are designed with the assumption that every com-
mit includes only changes for a single task. In this paper, we
propose a technique to inform developers that they are in the
process of committing tangled changes. The proposed tech-
nique utilizes the changes included in the past commits to
judge whether a given commit includes tangled changes. If
the proposed technique determines that the proposed com-
mit may include tangled changes, it offers suggestions on
how the tangled changes can be split into a set of untangled
changes.

1. INTRODUCTION
Recently, research areas related to mining software repos-

itories (MSR) have been very active and are attracting sig-
nificant attention [5, 11]. A software repository includes a
variety of historical information on the past activities re-
lated to the software itself, while an MSR contains actions,
techniques, and methodologies for extracting and deriving
useful knowledge that can be used in future maintenance
and development.
Historical code repositories such as CVS, SVN, and Git

are often-mined repositories because they are rich sources
of information that can help developers gain knowledge or
principles that will be useful for software engineering tasks
[6, 15]. Therefore, numerous researchers have been study-
ing methods for mining historical code repositories. Such
research efforts are based in a wide variety of interests, in-
cluding defects [2, 6, 13, 15, 19], changes [1, 3, 4, 12, 18, 20],
and clones [8, 17].
However, despite the generally accepted principle that a

commit should include only changes for a single task, pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

grammers perform commits that include tangled changes,
which are a set of changes for completing two or more tasks.
For example, Murphy-Hill et al. revealed that changes for
refactorings are often committed with changes for other tasks
[16].

Commits that include tangled changes can become obsta-
cles to the efficient activities of other software developments
[7]. Some of those obstacles are presented below:

• First, tangled changes are inappropriate for merging
the code of one branch to another. Merging code
means that the modifications on a branch in the past
are applied to the code of another branch. If a commit
includes only those changes that we want to merge,
it should be possible to perform code-merging opera-
tions efficiently. However, if a commit includes tangled
changes, it is difficult to merge only the changes related
to the specified task. In such cases, we need to choose
one of the two following workarounds:

– manual merging operations without using the merg-
ing function of the version control systems, or

– manual cancelling operations for the merged extra
code after using the merging function.

However, when either choice is selected, it is necessary
to perform manual operations.

• Second, change reversions for a specified task cannot
easily be performed on commits that include tangled
changes. When the reverting function of a version con-
trol system is used, all the changes in the commit are
reverted.

• Third, it is difficult to review delta code on a commit
that includes tangled changes. This means we have to
seek the changes for the specified task in the commit.

In addition to the various software development difficul-
ties mentioned above, the presence of tangled changes also
hinders analyzing code repositories because most MSR ap-
proaches are designed for code repositories that only in-
clude untangled changes. If code repositories include tan-
gled changes, the accuracy of MSR analyses drops. A good
example of such cases can be found in analyses used to iden-
tify evolutionary couplings [18]. An evolutionary coupling
usually refers to a set of software modules, such as source
files, that were changed together. In many approaches, two
or more source files are regarded as having an evolutionary
coupling if they were changed in the same commit. Accord-
ingly, methods of identifying such evolutionary couplings are

obviously designed for code repositories that only include
untangled changes.
Many MSR approaches have preprocessing operations that

are used to eliminate tangled changes in order to eliminate
their negative impacts on analysis results. In such cases,
large commits often become targets for elimination. Herein,
a large commit refers to a commit that includes numer-
ous changed lines or a large number of changed source files.
However, while eliminating large commits can decrease the
negative impacts of tangled changes, such preprocessing is
less than perfect [14].

• Untangled changes can be found in large commits.
Therefore, eliminating all large commits will result in
the unintentional elimination of such untangled changes.

• Tangled changes are sometimes included in small com-
mits, and will not be eliminated by preprocessing that
only target large commits.

In order to avoid the problems caused by tangled changes,
we are researching techniques for avoiding the presence of
tangled changes in code repositories. Currently, our ap-
proach aims at warning developers that they are in the pro-
cess of committing tangled changes. This technique is very
beneficial to them because they can be made aware of po-
tential tangled changes before committing them.
While our research is still in the early stage, in this pa-

per, we show (1) the key idea behind our design approach
for avoiding tangled changes, and (2) experimental results
performed on open source software conducted with a naive
implementation of the approach. The contributions of this
paper are as follows:

• It addresses the importance of untangled changes in
software development activities and code repositories
analyses. It also advances the argument that avoid-
ing committing tangled changes is a reasonable way to
achieve tangled-change-free repositories.

• It proposes a technique for identifying whether the
changes that a developer is about to commit are tan-
gled. If the given changes are identified as tangled, the
technique also suggests how they can be split into a set
of untangled changes.

• It reports a small experiment conducted on an open
source project to confirm its utility. It also provides a
discussion aimed at increasing the detection accuracy
of tangled changes.

2. PROPOSED TECHNIQUE
The key idea behind the proposed technique involves uti-

lizing code change patterns. Our research group has revealed
that some code changes patterns appear repeatedly in dif-
ferent commits [9]. Figure 1 shows an example of this key
idea. If we have a commit “adding null checking”, we can
utilize it to split different commits.
The proposed technique is intended for use just before a

developer commits her/his changes to the repository. The
proposed technique consists of two procedures, creating a
database of templates and checking whether the developer’s
changes are tangled.
In this explanation, we assume that there are already n

revisions in the code repository, and a developer is ready to
commit her/his changes.

target commit	

adding null checking	

“adding null checking” was
a commit pattern extracted
from another commit	

adding null checking	

target commit includes a 	
“adding null checking”	

finding patterns included in
large commits by using small
commits	

Figure 1: Key idea behind the proposed technique

2.1 Template Database Creation
Changes are distilled from every pair of two consecutive

revisions. Figure 2 shows the distillation procedure, which
consists of the following three steps:

STEP 1: Source files changed between revisions r and r+1
(1 ≤ r ≤ n− 1) are parsed and a list of program state-
ments is extracted. Each program statement consists
of a token sequence.

STEP 2: The two program statement lists are compared
with the longest common subsequent algorithm and
differences between them are identified. Each of the
differences is called a pattern, which consists of pre-
code and post-code. If the difference is a code addition,
its pre-code is empty. Similarly, if the difference is a
code deletion, its post-code is empty.

STEP 3: Variable names in the patterns are replaced with
special tokens. Literals and other user-defined vari-
ables such as method names are not replaced.

A pattern set identified from each pair of two consecutive
revision is a template. All the identified templates are
stored in a database.

2.2 Determining if Developer Changes Are Tan-
gled or Not

The proposed technique determines whether a developer’s
changes by using the template database. First, the devel-
oper’s changes are extracted by comparing source files in the
developer’s working directory with the head revision in the
code repository. Then, the proposed technique checks to see
whether any of the templates in the database are subsets of
her/his changes.

• If there is no template that is a subset of the changes,
the proposed technique does not regard the changes as
tangled. The developer can then commit the changes
with confidence that the changes are only for a single
task.

• If there is a template that is a subset of the changes,
the proposed technique provides feedback to the devel-
oper. Using that feedback, she or he then determines
whether the changes are actually tangled. If she/he
determines that the changes are tangled, she/he will
be able to commit the tangled changes separately.

int	 x	 =	 10;	
int	 y	 =	 20;	
if	 (x	 ==	 10)	 {	
	 	 y	 =	 x	 +	 y;	
}	
print(x);	
print(“end”);	

STEP1	

STEP2	

int	 x	 =	 10;	
int	 y	 =	 20;	
int	 z	 =	 30;	
if	 (x	 ==	 10)	 {	
	 	 y	 =	 x	 -‐	 y;	
}	
print(x);	

STEP2	

STEP1	

int	 x	 =	 10	 ;	

int	 y	 =	 20	 ;	

if	 (x	 ==	 10)	 {	

y	 =	 x	 +	 y	 ;	

}

print	 ($1)	 ;	

print	 (“end”)	 ;	

int	 x	 =	 10	 ;	

int	 y	 =	 20	 ;	

if	 (x	 ==	 10)	 {	

y	 =	 x	 -‐	 y	 ;	

}

print	 ($1)	 ;	

int	 z	 =	 30	 ;	

STEP3	 STEP3	

int	 x	 =	 10	 ;	

int	 y	 =	 20	 ;	

if	 (x	 ==	 10)	 {	

y	 =	 x	 +	 y	 ;	

}

print	 ($1)	 ;	

print	 (“end”)	 ;	

int	 x	 =	 10	 ;	

int	 y	 =	 20	 ;	

if	 (x	 ==	 10)	 {	

y	 =	 x	 -‐	 y	 ;	

}

print	 ($1)	 ;	

int	 z	 =	 30	 ;	

add	

change	

delete	

int	 $1	 =	 30	 ;	

$1	 =	 $2	 +	 $1	 ;	 $1	 =	 $2	 -‐	 $1	 ;	

print	 (“end”)	 ;	

change	

add	

delete	

a template	

a pattern	

Figure 2: Steps of the proposed technique

3. CASE STUDY
In order to investigate how often the proposed technique

identifies tangled changes, we conducted an experiment on
open source software, jEdit. In this experiment, we used the
first 2,000 revisions as our target because manual verification
was required to determine whether each of the identified
positives were actually tangled changes.
Specifically, we checked whether changes between the two

revisions r and r + 1 were tangled by using the templates
extracted from the previous revisions. Each of the commits
that the proposed technique regarded as potentially tangled
were then checked manually. The proposed technique identi-
fied 63 commits as possible candidates for containing tangled
changes. Table 1 summarizes the results.
Logging and condition checking such as null checking were

83	 	 	 	 void	 parse(final	 boolean	 showParsingMessage)	
84	 	 	 	 {	
85	 +	 	 	 	 if(!buffer.isLoaded())	
86	 +	 	 	 	 	 	 return;	
87	 	 	
88	 	 	 	 	 	 if(SideKickPlugin.isParsingBuffer(buffer))	
89	 	 	 	 	 	 	 	 return;	
90	 +	 	 	 	 else	
91	 +	 	 	 	 	 	 SideKickPlugin.startParsingBuffer(buffer);	
92	 	 	
93  	 	 	 	 	 this.showParsingMessage	 =	 showParsingMessage;	
91	 -‐	 	 	 	 VFSManager.runInAWTThread(new	 Runnable()	
92	 -‐	 	 	 	 {	
93	 -‐	 	 	 	 	 	 public	 void	 run()	
94	 -‐	 	 	 	 	 	 {	
95	 -‐	 	 	 	 	 	 	 	 if(SideKickPlugin.isParsingBuffer(buffer))	
96	 -‐	 	 	 	 	 	 	 	 	 	 return;	
97	 -‐	 	 	 	 	 	 	 	 else	
98	 -‐	 	 	 	 	 	 	 	 	 	 SideKickPlugin.startParsingBuffer(buffer);	
94	 	 	
95	 	 	 	 	 	 ErrorSource.unregisterErrorSource(errorSource);	
96	 	 	 	 	 	 errorSource.clear();	
97	 	 	
98	 	 	 	 	 	 //{{{	 check	 for	 unknown	 file	
99  　　　　if(parser	 ==	 null)	

return if buffer is not loaded	

shifting to single-thread
parsing from multi-thread
parsing	

Figure 3: Tangled changes detected by the proposed
technique

often included in the suspected tangled changes. Figure 3
shows an example of the suspected tangled changes that were
detected. In this commit, there are two kinds of changes:

• shifting to single-thread parsing from a multi-thread
one

• adding if-statement for checking whether the buffer is
loaded

The log of this commit is “fix bad bug”. The commit log
refers only to the buffer checking. This indicates that, when
a developer committed the changes, he/she forgot that two
kinds of changes were being performed. Checking whether
the changes being readied for commitment are tangled is
a reasonable level of support for such a developer. Addi-
tionally, one-stop checking before committing changes allows
code repositories to avoid including tangled changes.

In table 1, we can see that various kinds of changes can
become tangled. The refactorings, such as rename and code
move, that were included in tangled changes, are called floss
refactorings [16].

Table 1: Manual investigation result (each number
in a cell refers to the number of commits categorized
in the specified modification type)

Modification Type T M U Total
Logging 7 2 0 9

Condition checking 12 5 4 21
GUI 1 0 0 1

Field declaration 0 4 0 4
Method declaration 1 0 0 1

Local variable initialization 0 1 13 14
Code move (refactoring) 2 0 0 2
Rename (refactoring) 2 0 0 2

Boolean value substitution 0 1 6 7
Adding “else return null” 2 0 0 2

Total 27 13 23 63
T: Tangled, M: Maybe, U: Untangled

There are two commits that included adding “else return
null”. This change is used for handling unexpected situa-
tions. The aforementioned condition checking and this error
handling are the kinds of bugs that occur when developers
forget to write code to handle unexpected situations. These
often-occurring error handlings are also sometimes included
in tangled changes.
On the other hand, a number of the candidate tangled

changes turned out to be false positives. Many of these
were categorized into local variable initialization and boolean
value substitution. Since variable declaration statements and
substitution statements are often-used instructions in the
Java programming language, our pattern-based approach
tends to identify them as tangled changes, even if they are
not. The authors think there are two ways to prevent such
false positives:

• The first way is to utilize data dependencies between
the instructions and other changed instructions. If
they are connected with other changed instructions,
they are not to be regarded as tangle changes.

• The second way is to utilize repeated code structures.
In the Java programming language, there are many
repeated instructions such as switch-case statements,
else-if statements, and repeated variable declaration
statements [10]. If two or more templates are included
in a repeated code, they are related to each other, even
if they have no data dependence.

By using the two heuristics mentioned above, it should be
possible to eliminate most of the false positives detected in
our experiments.

4. CONCLUSION
In this paper, we discussed how tangled changes can hin-

der software development and code repository analysis. Then,
as a method for preventing tangled changes, we proposed
a technique to identify whether a developer’s changes are
tangled. Using this proposed technique, developers can be
made aware that their changes are potentially tangled and
can be given the opportunity to commit the tangled changes
separately.
We applied the proposed technique to open source soft-

ware, jEdit. Currently, our technique is limited to naive
implementation that does not include any heuristics. The
experimental result showed that almost half of the identified
changes were actually tangled, but that the others were not.
We also discussed how we could improve the proposed tech-
nique based on the experimental result and suggested two
heuristics that can be used to eliminate false positives.
In the future, we intend to implement our system with

other techniques that will improve its tangled change detec-
tion accuracy. Two potential techniques involve using data
dependencies between program statements and considering
repeated structures in source code.

Acknowledgment
This study has been supported by Grants-in-Aid for Scien-
tific Research (S) (25220003), Grant-in-Aid for Exploratory
Research (24650011) from Japan Society for the Promo-
tion of Science, and Grand-in-Aid for Young Scientists (A)
(24680002) from the Ministry of Education, Culture, Sports,
Science and Technology.

5. REFERENCES
[1] M. Askari and R. Holt. Information theoretic

evaluation of change prediction models for large-scale
software. In Proc. of MSR2006.

[2] C. Boogerd and L. Moonen. Evaluating the Relation
between Coding Standard Violations and Faults within
and across Software Versions. In Proc. of MSR2009.

[3] G. Canfora, L. Cerulo, and M. D. Penta. Identifying
Changed Source Code Lines from Version
Repositories. In Proc. of MSR2007.

[4] E. Giger, M. Pinzger, and H. C. Gall. Can We Predict
Types of Code Changes? An Empirical Analysis. In
Proc. of MSR2012.

[5] A. E. Hassan. The Road Ahead for Mining Software
Repositories. In Proc. of ICSM2008.

[6] H. Hata, O. Mizuno, and T. Kikuno. Bug Prediction
Based on Fine-Grained Module Histories. In Proc. of
ICSE2012.

[7] S. Hayashi and M. Saeki. Recording finer-grained
software evolution with ide: an annotation-based
approach. In Proc. of IWPSE-EVOL2010.

[8] Y. Higo, K. Hotta, and S. Kusumoto. Enhancement of
crd-based clone tracking. In Proc. of IWPSE2013.

[9] Y. Higo and S. Kusumoto. How often do unintended
incosistencies happend? –deriving modification
patterns and detecting overlooked code fragments–. In
Proc. of ICSM2012.

[10] A. Imazato, yui Sasaki, Y. Higo, and S. Kusumoto.
Improving process of source code modification
focusing on repeated code. In Proc. of PROFES2013.

[11] H. Kadgi, M. L. Collard, and J. I. Maletic. A survey
and taxonomy of approaches for mining software
repositories in the context of software evolution. Wiley
JSME2007.

[12] H. Kagdi, J. I. Maletic, and B. Sharif. Mining software
repositories for traceability links. In Proc. of
ICPC2007.

[13] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto,
B. Adams, and A. E. Hassan. Revisiting Common Bug
Prediction Findings Using Effort-Aware Models. In
Proc. of ICSM2010.

[14] N. Kusunoki, K. Hotta, Y. Higo, and S. Kusumoto.
How much do code repositories include peripheral
modifications? In Proc. of IWESEP2013.

[15] R. Moser, W. Pedrycz, and G. Succi. A Comparative
Analysis of the Efficiency of Change Metrics and
Static Code Attributes for Defect Prediction. In Proc.
of ICSE2008.

[16] E. Murphy-Hill, C. Parnin, and A. P. Black. How we
refactor, and how we know it. IEEE TSE2012.

[17] F. Rahman, C. Bird, and P. Devanbu. Clones: What
is that Smell? In Proc. of MSR2010.

[18] A. T. Ying, G. C. Murphy, R. Ng, and M. C.
Chu-Carroll. Predicting Source Code Changes by
Mining Change History. IEEE TSE2004.

[19] H. Zhang. An Investigation of the Relationships
between Lines of Code and Defects. In Proc. of
ICSM2009.

[20] T. Zimmermann, P. Weißgerber, S. Diehl, and
A. Zeller. Mining Version Histories to Guide Software
Changes. IEEE TSE2005.

