
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

Identifying Cross-Function Side Effects using Static Analysis

Jiachen YANG†, Keisuke HOTTA†, Yoshiki HIGO†, and Shinji KUSUMOTO†

† Graduate School of Information Science and Technology, Osaka University, 1-5, Yamadaoka, Suita-shi,

Osaka, 565-0871, Japan

E-mail: †{jc-yang,k-hotta,higo,kusumoto}@ist.osaka-u.ac.jp

Abstract Side effects are modifications done to the state of the objects in Object-Oriented Programming lan-

guages such as Java. Side effects can happen across the boundary of the functions, therefore they are important

properties that often be neglected by the documentations. In this paper, we studied the side effects of functions by

using a static analysis method to automatically infer the state dependencies for the return value and side effects of

functions. We also present a set of annotations to document these state dependencies. As a result, the annotations

presented in this paper reveals well-defined state interactions between objects. These annotations can be used in

further investigations by both programmers and tools. We have implemented the analysis method targeting Java

bytecode and tested it on vary-sized open source Java software libraries. From our experimental results, we found

that 25–33% of the functions in the evaluated open source Java libraries are pure functions, which indicates that a

large percentage of the functions is suitable for high level refactoring. And we present a case study of equals and

hashCode functions to show the importance of our method in real world programming tasks.

Key words state boundary, state dependency, object-oriented, effect annotation, static analysis

1. Introduction

It is difficult for programmers to use software components

without fully understanding their behavior. The documen-

tation and naming of these components usually focuses on

intent, i.e., what the functions are required to do, but fails

to illustrate their side effects, i.e., how these functions ac-

complish their task [1]. Because of the possible side effects

in API libraries, it is hard to reuse the modularized com-

ponents. In addition, undocumented API side effects may

be changed during software maintenance, making debugging

even more challenging in the future [7]. With the under-

standing of side effects in the software libraries, programmers

can perform high level refactoring on the functional part of

the source code. However, the purity information is usually

missing in external libraries, therefore programmers would

risk introducing bugs with such refactorings.

In this paper, we present an approach to infer a function’s

purity from byte code and automatically document effect an-

notations for later use by programmers and static processing

tools. Programmers can use effect annotations to understand

a function’s side effects, whereas static processing tools can

use them for static checking, optimizing or refactoring.

The contributions of this research include:

• An extended definition of purity as stateless or stateful

in object-oriented(in short, OO) languages such as Java.

• An approach to automatically infer effect annotations,

as well as a concrete implementation for Java bytecode.

• A set of function annotations that document the de-

tails of effects such as return value dependencies or variable

state modifications, for programmers to understand the ef-

fects.

• Experiments on well-known open source software li-

braries with varies size of code bases. In our experiments,

we observed modifier functions that should be pure, revealing

tricks or potential bugs in the implementation.

2. Purity and Effect Annotations

In this section, we firstly discuss our definition of the pu-

rity and side effects. Secondly, we define a set of annotations

to document these informations. Lastly, we discuss the rules

that should be followed by these annotations.

2. 1 Stateless & Stateful Purity of Functions

The notion of purity on functions does not match well

with other OO programming paradigm concepts. In OO

languages, program states are usually encapsulated within

objects, which use well-defined boundary functions called

methods to interact with each other. This is the opposite

of a pure functional paradigm where the states of the pro-

gram are passing through function arguments.

Moreover, we noticed that most objects have a life span

pattern of creation, use and destroy. Many objects will not

— 1 —

change their states after properly created, and the functions

called on them simply query these internal states. We would

like to distinguish these state-querying functions from those

functions that modify the states. Through our research we

have observed that OO libraries can still contain around 25–

33% of functional code that do not modify the program’s

state (e.g., tree traversals).

Based on the above observation, we define a function as

pure if it does not generate side effects such as modifying

the state outside the object. Note that this definition is

slightly different from the traditional definition of pure func-

tions by return value dependencies [6]. Meanwhile, many

existing studies such as [3,5,9] share the same purity defini-

tion with us. To illustrate the difference of two definitions,

we divide the our definition of a pure function into stateless

and stateful functions:

［Definition 1］（Stateless） If the return value of a pure

function is only determined by the state of its arguments.

［Definition 2］（Stateful） If the return value of a pure func-

tion is also determined by the states of member fields or

static fields.

2. 2 Lexical State Accessors and Side Effects

The main purpose of this research is to reveal the side ef-

fects of functions. Therefore, we need to define what is an

effect and what is a side effect of a function.

［Definition 3］（Effect） We define the effects of a function as

the modifications to the states of the program, including the

return value.

［Definition 4］（Side Effect） We define the side effects of a

function as the modifications to the states of the objects or

performing I/O operations.

The effects of a function are all the side effects including

the return value. According to the single response principle

in [4], a function should have exactly one effect, either calcu-

lating a value and return it, or doing one kind of modification

to the state of the program. Disobeying this practice usually

leads to problematic, unmaintainable coding style.

［Definition 5］（Lexical State Accessor） We define a lexical

state accessor to be any variable that is directly accessible

within a function’s lexical scope before the execution.

In statically-typed object-oriented languages such as Java,

lexical state accessors of a function include the possible this

pointer, the arguments, the member fields within the same

class, and the static fields in any arbitrary classes. Note

that local variables defined inside a function are excluded in

the definition of lexical accessors, because they do not exist

outside the function’s body. We focus on lexical variables

because they can be easily identified and understood from

the function definition by programmers.

All possible modifications to the state of a program are

class Tree extends Comparable {

@Depend(dependThis=true ,

dependFields= {"Tree Node.r", "int Leaf.f",

"Tree Node.l"}

from = {"int Leaf.freq()","int Node.freq()"})

int freq() { return 0; }

@Depend(dependThis=true ,

dependArguments= {"Tree tree"},

dependFields= {"Tree Node.r", "int Leaf.f",

"Tree Node.l"})

int compareTo(Tree t) { return freq() - t.freq(); }

}

class Leaf extends Tree {

char v; int f;

@Field(type=int.class , owner=Leaf.class ,

name="f", dependArguments= {"int fr"})

@Field(type=char.class , owner=Leaf.class ,

name="v", dependArguments= {"char va"})

Leaf(int fr, char va) { f = fr; v = va; }

@Depend(dependThis=true ,

dependFields= {"int Leaf.f"})

int freq() { return f; }

}

class Node extends Tree {

Tree l, r;

@Field(type=Tree.class , owner=Node.class ,

name="l", dependArguments= {"Tree le"})

@Field(type=Tree.class , owner=Node.class ,

name="r", dependArguments= {"Tree ri"})

Node(Tree le , Tree ri) {

f = le.f + ri.f;

l = le;

r = ri;

}

@Depend(dependThis=true ,

dependFields= {"Tree Node.r", "Tree Node.l"})

int freq() { return l.freq() + r.freq(); }

}

class Main{

@Depend(dependArguments= {"int[] chrs"})

Tree build(int[] chrs) {

PriQueue q = new PriQueue ();

for(int i = 0;i < chrs.length; i = i + 1){

if (chrs[i] > 0){

q.offer(new Leaf(chrs[i], (char)i));

}

}

for (;q.size() > 1;) {

q.offer(new Node(q.poll(),q.poll()));

}

return q.poll();

}

void main(String [] args) {

String test = "this is an example";

int[] chrs = new int [256];

for(int i = 0;i < test.length (); i = i + 1){

char c = test.getChar(i);

chrs[c] = chrs[c]+1;

}

Tree tree = build(chrs);

}

}

Figure 1 Annotated Huffman Algorithm

achieved by accessing the aforementioned lexical state acces-

sors. There are two forms of modification: changing the

values of these accessors directly, or modifying indirectly

though the use of lexical state accessors. These modifica-

tions are considered to be the side effects of executing the

function. Additional side effects include calling system rou-

tines to perform I/O operations directly or transitively.

2. 3 Effect Annotations

We introduce a set of function annotations to indicate the

effects that can arise during invocation. For each function,

several annotations can be prepended, each representing a

side effect that for example modifies one member field. The

proposed annotations express the effects such as direct or

— 2 —

transitive modifications to lexical state accessors, with the

possible data dependency between these effects and other

lexical state accessors from the function. The data dependen-

cies are captured in annotation records such as dependThis,

dependArguments, dependFields and dependStatic, with

detailed information such as types and owner classes of the

fields. Although the this pointer is not a mutable variable

in the context of a target function, it is possible to compare

the identity by using this pointer to other pointers or expose

this pointer as return value of the function, hence the this

pointer is included in data dependency.

For example, the annotated version of the source code of

the Huffman algorithm is represented in Figure 1. The effect

annotations are intended to be used by both programmers

and tools that process the program, as a contract describing

the given function. This contract can be viewed as a compli-

mentary to the function signature and exception specifica-

tion that imposes restrictions on the implementation of the

function.

3. Automatic Inference of Effect Annota-

tions

Asking developers to manually annotate effect annota-

tions is tedious, error-prone, and infeasible for third party

libraries. In this section, we present our approach to auto-

matically inferring effect annotations.

The analyzer identifies function targets by using a class

diagram and call graph. The class diagram records the in-

heritance relationship of classes (including interfaces) and

the overriding relationship between functions in a class hi-

erarchy. The call graph records the invocation instructions

inside the function, which points to another function defined

in the class diagram.

3. 1 Data and Control Analysis

Our analyzer traverses all of the functions in the class dia-

gram, inferring possible effects including side effects. We cap-

ture only the dependencies of lexical state accessors, which

are defined in in Subsection 2. 2, during these three analysis

stages:

• data flow analysis estimates the return value depen-

dency.

• reference alias analysis identifies possible modifi-

cations to lexical state accessors that are side effects.

• control flow analysis supports data dependence cal-

culations on conditional branches.

There are three kinds of lexical state accessors as defined

in Section 2. 2, which are the static fields (shortened as S)

of a class, the member fields (shortened as F) of an object,

and the arguments (shortened as A) passed to the function.

［Definition 6］（Data Dependency Set） We define a data de-

pendency as the value of a lexical state accessor before a

function executes, and a dependency set (DS) as the set of

data dependencies such that DS ⊂ {x|x ∈ S ∪ F ∪A}.
The above definition of dependency set is used in both our

data flow analysis and reference alias analysis. The differ-

ence between the dependency sets used in these two analyses

is that we only consider reference type dependencies in refer-

ence alias analysis, and value type dependencies in data flow

analysis. All dependencies suitable in reference alias analy-

sis are also suitable in data flow analysis, but not vice versa.

We define two dependency sets used in these two stages of

analysis as:

• reference dependency (rd) is a DS of the possible

reference aliases.

• value dependency (vd) is a DS that affects the

value.

Our analyzer interprets the code, follow the instructions

in the given function, and applies the aforementioned three

analysis. The analyzer begins its interpretation by breaking

the code of a given function into statement blocks using con-

trol flow analysis, where we define a block to be a sequence

of statements. The block can be associated with a value

of its condition if it is nested in an if or while statement.

Next, the analyzer interprets the each block ’s instructions to

evaluate the value dependencies and obtain a list of effects.

During the interpretation stage, each value is represented as

a triplet of its static type, a reference-dependency set, and a

value dependency set (V = (type, rd, vd)).

At the beginning of the interpretation of the given func-

tion, the argument values are assigned with value and ref-

erence dependencies of themselves. Next we interpret each

instructions of the function by following the transfer func-

tions in Table 1. The input of a transfer function is V before

the execution of the instruction, and the output is a new V

after the execution. Besides the reference and value depen-

Table 1 Transfer Functions for Values and Instructions

Type Code Pattern RD VD

vn new τ ∅ ∅
vp x {x} {x}
vl y ∅ ∅
vt this.field {field} {field}
vs Class.field {field} {field}
vf V .field Vrd Vvd

vu op V ∅ V

vb V1 op V2 ∅ V1vd ∪ V2vd

va V1[V2] V1rd V1vd ∪ V2vd

vc (τ)V Vrd Vvd

assign V1 = V2 V1rd V2vd

return return V ∅ ∅
merge V1rd ∪ V2rd V1vd ∪ V2vd

— 3 —

dency sets in this table, the static types of these values should

also be calculated as defined in the language specifications.

Note that the “merge” instruction in this table merges the

branches of statements during the interpretation. Besides

the instructions listed in the table, there is another impor-

tant kind of instructions, the function invocations, described

in Section 3. 2. During interpretation, possible function ef-

fects are collected when processing assignment instructions.

We initially mark two kinds of dependencies: modification be-

havior for reference dependencies and return statement for

value dependencies. Both dependencies are merged with the

value dependency set for the current block.

3. 2 Effects from Function Invocations

We refer to the function containing an invocation as a

caller, and the function being called as a callee. When the

analyzer sees a function invocation instruction during in-

terpretation, it generates possible effects by examining the

date flow across the invocation boundaries. Fortunately, this

cross-function analysis is possible with the generated effect

annotations on the callee, so that we do not need to examine

the codes of the caller and callee at the same time. When

the effect annotations on the callee are not available during

analysis of a caller, the analyzer simply ignores the invoca-

tion, pretends callee has no effects, and then refreshes the

result when the annotations on the callee become available.

All of the invocation instructions share the same form as

Vobj.function(Varg). All side effects on static fields are

transferred from callee to caller. If there are argument ef-

fects generated on the callee function, i.e., when the callee is

modifying the state of a passed argument, then the analyzer

will generate a modification behavior on the reference de-

pendencies of corresponding position, as if the modification

occurs inside the caller function.

The Vobj is the object that owns the function, which

could be this, ClassName or a certain dynamically calculated

value during the interpretation. Static member functions on

ClassNames are guaranteed not to generate modification side

effects on member fields. If a reference dependency of Vobj

is this, all the modification side effect annotations on mem-

ber fields will be copied, otherwise a single modification ef-

fect on the reference dependency of the current Vobj will be

recorded. This behavior of analyzer follows the definition of

lexical state accessors described in Section 2. 2, to distinguish

between directly and transitively accesses of these accessors.

Finally, if the interpreted invocation expression returns a

value, we need to determine the reference and value depen-

dency of its return value. The reference dependency of the

invocation expression is the reference dependency of return

value from callee, and the value-dependency of this expres-

sion is the merged value dependencies of all Vargs.

With the effect annotations on the functions, we can sim-

ply determine whether a function is a pure function, and

further, whether it is stateful or stateless. A function that

has no modification annotations is considered to be a pure

function. A pure function whose return value depends only

on arguments is considered to be a stateless pure function.

3. 3 Iteration to a Fix-point of Class Diagram

A function’s effect annotations depend on the annotations

of its callees as well its overriding functions, potentially caus-

ing a function to be analyzed several times. In addition, re-

cursive functions may also be analyzed multiple times. We

continue analyzing until the effect annotations are inferred.

We set a flag in each function on the class diagram to indi-

cate whether the effects for this function need to be inferred

or updated.

Firstly, we initialize all functions in the class diagram with

effects as ∅. Next we mark the flags for all of these functions

as “need to be analyzed”. Then, for each function whose flag

is marked, the analyzer:

（ 1） Merges the effects with the result of the data anal-

ysis on this function.

（ 2） Clears the flag on this function.

（ 3） If the effects have changed since last analysis, marks

the flags of all functions that depend on this function.

We continue the iteration until none of the functions in the

class diagram are marked, which means the reach of a fix-

point of the analysis.

4. Experiments

We evaluated our analyzer on real world software compo-

nents in terms of accuracy, performance, and the distribution

of different kinds of effects in different scale of software com-

ponents.

4. 1 Distribution of Effect Annotations

To show the distribution of purity and side effects of

the functions in real world software components, we experi-

mented on 4 target software projects, listed in Table 2. These

experiments were executed on an octa-core Xeon E5520 CPU

with a 16GB heap size limitation. purano is the implementa-

tion of the analyzer presented in this paper, which includes a

modified version of the ASM library. Both htmlparser, tom-

cat and argouml are well-known open source Java libraries

Table 2 Experiment Target and Analysis Performance

Software
All

Classes

User

Classes

User

Functions

Time

(sec.)
Pass

purano 3,541 232 2,120 215 19

htmlparser 4,843 158 1,621 344 22

tomcat 6,658 763 8,662 665 23

argouml 11,234 2,544 20,274 2,217 28

— 4 —

package javax.swing.text;

public class DefaultCaret extends Rectangle ... {

/* Compares this object to the specified object.

* The superclass behavior of comparing

* rectangles is not desired , so this is changed

* to the Object behavior.

*/

public boolean equals(Object obj) {

return (this == obj);

}

}

Figure 2 A Special Design in DefaultCaret

package java.io;

public final class FilePermission ... {

public boolean equals(Object obj) {

if (obj == this) return true;

if (!(obj instanceof FilePermission))

return false;

FilePermission that = (FilePermission) obj;

return (this.mask == that.mask) &&

this.cpath.equals(that.cpath) &&

(this.directory == that.directory) &&

(this.recursive == that.recursive);

}

public int hashCode () {

return 0;

}

}

Figure 3 A Potential Problem in FilePermission

and we use their latest stable binary distributions. Based on

the analysis times in Table 2, we determine that the perfor-

mance of our analyzer is reasonable within a daily program-

ming environment, although it could be further optimized by

caching the result of the standard libraries.

The purity of functions of the experimental result is listed

in Table 3. From the annotation output, we find that around

25–33% of the functions in these software projects were

marked as stateless or stateful pure functions. We manu-

ally confirmed the generated result for purano to make sure

it matched our expectation.

4. 2 A Case Study: Purity of equals and hashCode

Different programmers may use our tool for their own us-

ages. Therefore, we conducted a case study to illustrate one

possible usage of our study. We examined the inferred an-

notations on two functions, namely equals and hashCode.

These two functions are related with the value equality of

objects in Java, and they are used by collection classes such

as HashMap. The programmer must ensure that the return

values of these functions reflect their value equalities, and

hence these return values should depend on the state of the

objects. Therefore, we expect these functions to be state-

ful pure functions if they contain member fields. The purity

types of these two functions are listed in Table 4. We can

see from the distribution that nearly 70% of these functions

were annotated as stateful pure, as expected.

To further understand the result, firstly we focused on the

existence of stateless pure functions in Table 4 by manu-

ally examining their source code. Most of these functions

are defined interfaces or abstract classes. There were also 2

equals and 6 hashCode functions defined in classes without

member fields. There were 9 equals that compare referential

identities defined in classes with member fields. These were

used in unusual cases when comparing by referential iden-

tity rather than value identity is desired. An example of this

kind of special design can be found in DefaultCaret.equals,

shown in Figure 2, where the author explicitly documented

in the Javadoc as “The superclass behavior of comparing

rectangles is not desired, so this is changed to the Ob-

ject behavior”. In addition, most of these classes are inner

classes in Java with their names containing a “$” charac-

ter. These inner classes are supposed to be used internally,

where programmers control the creation of all objects. We

found 3 hashCode functions that return a constant, whereas

their corresponding equals functions compared the states

of member fields. An example is shown in Figure 3, that

FilePermission.hashCode will always return 0. The user

of these classes must be aware of their respective behaviors,

in order to avoid putting them in a HashSet or HashMap, or

comparing them using equals. With the introduction of ef-

fect annotations as documentation, the user of these classes

can notice the special behavior.

Next we examined the functions in Table 4 that gener-

ate side effects. Most of these functions cached the result

of calculations inside the object, similar to functions on the

white-list. Some classes such as Date and Calendar normal-

ized their internal representation before comparing equal-

ity or calculating the hash code. Classes used in reflection

at runtime, such as java.lang.reflect.Class, used a lazy

loading technique to optimize general performance, which is

a variant of caching technique.

5. Related Work

Many previous efforts on combining pure functional style

into an object-oriented paradigm concentrate on introduc-

ing immutable restrictions on existing type systems, as in

functional programming languages. Tschantz, et al. [10]

Table 4 Purity of equals (as e) and hashCode (as h)

Software All
Pure Functions

Side Effects
Stateless Stateful

purano
e 335 13 (3.9%) 237 (70.7%) 85 (25.4%)

h 316 25 (7.9%) 224 (70.9%) 67 (21.2%)

htmlparser
e 290 19 (6.6%) 198 (68.3%) 73 (25.2%)

h 284 23 (8.1%) 199 (70.1%) 62 (21.8%)

tomcat
e 407 23 (5.7%) 277 (68.1%) 107 (26.3%)

h 399 30 (7.5%) 268 (67.4%) 101 (25.3%)

argouml
e 358 24 (6.7%) 239 (66.8%) 95 (26.5%)

h 344 28 (8.1%) 248 (72.1%) 68 (19.8%)

— 5 —

Table 3 Percentage of Effect Annotations

Software
Pure Functions

Side Effects
Modifying

Stateless Stateful Member Fields Static Fields Arguments

purano 319 (15.0%) 203 (9.6%) 1,598 (75.4%) 1,425 (67.2%) 1,054 (49.7%) 430 (20.3%)

htmlparser 286 (17.6%) 257 (15.9%) 1,078 (66.5%) 718 (44.3%) 782 (48.2%) 145 (8.9%)

tomcat 894 (10.3%) 1,782 (20.6%) 5,986 (69.1%) 4,684 (54.1%) 4,318 (49.8%) 1,238 (14.3%)

argouml 4,239 (20.9%) 1,486 (7.3%) 14,549 (71.8%) 8,345 (41.2%) 12,824 (63.3%) 3,902 (19.2%)

proposed Javari as a new programming language that adds

readonly and other keywords into Java syntax to indicate

the reference immutably of variables. Based their work,

Quinonez [2] proposed an analyzer called Javarifier to auto-

matically infer reference immutability in Javari syntax. All

these type-system-based approaches require syntax modifi-

cation of the source code. Although they can be applied in

newly developed projects, it is much more difficult for these

approaches to be adopted in legacy libraries, and existing

tools such as IDE support need to be extended to accept

their new syntax.

There are studies of automatic purity analyzers on un-

modified syntax. Sălcianu, et al. present a purity analyzer

for Java in [9], which uses an inter-procedural pointer anal-

ysis [8] and escape analysis to infer reference immutability.

Similar to our approach, they verify the purity of functions,

but their pointer and escape analysis relies on a whole pro-

gram analysis starting from a main entry point, which is not

always available for software libraries. JPure [5] eliminated

the need for reference immutability inference by introducing

pure, fresh and local annotations, which lead to a more

restrictive definition of purity, and loses the exact informa-

tion for effects. Both studies focus on analyzing of purity

only, and does not expose effects information outside their

toolchain. Compared with these studies, our approach uses

lexical state accessor analysis, which will hopefully combine

the modularity of JPure by illuminating the need for inter-

procedure analysis, and the flexibility of reference immutabil-

ity with the availability of effect information. Also neither

of these two studies further classify the pure functions into

Stateless and Stateful as we do.

6. Future Work and Conclusions

The current implementation of our analyzer works on Java

bytecode rather than source code. analysis tool at Besides

all the advantages described, this target language decision

is made to ease the early development, because it is easy to

generate bytecode from source code by a compiler but not

vice versa. However, targeting source code format is still im-

portant for integrating as an IDE plugin. We plan to add a

source code analyzer in the future.

Moreover, we plan to further evaluate the usability of these

effect annotations, by programmers as well as by analysis

tools. The format of these annotations needs to be more

readable and understandable to be used by programmers.

We will also further investigate the applications of these ef-

fect annotations other than identification of pure functions.

To conclude, in this paper we presented a study on the

purity and side effects of the functions in OO languages such

as Java, helping programmers to understand the software li-

braries. We proposed a method to automatically infer the

purity and side effect information from Java bytecode. We

implemented and experimented the proposed method on real

world Java software libraries, and found that around 25–33%

of all the function of the Java libraries is made of pure func-

tions. We compared the accuracy of distribution of pure

functions with existing study. And we demonstrated how

programmers will use our method to understand the behav-

ior of library APIs by a case study.

Acknowledgment

This work was supported by MEXT/JSPS KAKENHI

25220003, 24650011, and 24680002.

References

[1] B. Goetz. Java theory and practice: I have to docu-

ment that? http://www.ibm.com/developerworks/java/

library/j-jtp0821/index.html, 2002.

[2] Q. J. Javarifier: Inference of reference immutability in

Java. PhD thesis, Massachusetts Institute of Technology,

2008.

[3] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary de-

sign of jml. Technical report, Technical Report 96-06p, Iowa

State University, 2001.

[4] R. C. Martin. Clean code: a handbook of agile software

craftsmanship. Prentice Hall, 2008.

[5] D. J. Pearce. Jpure: a modular purity system for java. In

Compiler Construction, pages 104–123. Springer, 2011.

[6] S. L. Peyton Jones and P. Wadler. Imperative functional

programming. In Proceedings of the 20th ACM SIGPLAN-

SIGACT symposium on Principles of programming lan-

guages, pages 71–84. ACM, 1993.

[7] C. Raymond. The importance of error code backwards

compatibility. http://blogs.msdn.com/b/oldnewthing/

archive/2005/01/18/355177.aspx, 2005.

[8] A. Sălcianu. Pointer analysis and its applications for Java

programs. PhD thesis, Citeseer, 2001.

[9] A. Sălcianu and M. Rinard. Purity and side effect analy-

sis for java programs. In Verification, Model Checking, and

Abstract Interpretation, pages 199–215. Springer, 2005.

[10] M. Tschantz and M. Ernst. Javari: Adding reference im-

mutability to Java, volume 40. ACM, 2005.

— 6 —

