
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

submitted to IEICE TRANSACTIONS on Information and Systems

PAPER
An Abstraction Refinement Technique for Timed Automata Based
on Counterexample-Guided Abstraction Refinement Loop

Takeshi NAGAOKA †, Nonmember, Kozo OKANO†, and Shinji KUSUMOTO †, Members

SUMMARY
Model checking techniques are useful for design of high-reliable in-

formation systems. Well-known state explosion, however, might occur in
model checking of large systems. Such explosion severely limits the scala-
bility of model checking. In order to avoid it, several abstraction techniques
have been proposed. Some of them are based on CounterExample-Guided
Abstraction Refinement (CEGAR) loop technique proposed by E. Clarke
et al.. This paper proposes a concrete abstraction technique for timed au-
tomata used in model checking of real time systems. The proposed tech-
nique is based on CEGAR, in which we use a counter example as a guide
to refine the model abstracted excessively. Although, in general, the re-
finement operation is applied to abstract models, our method modifies the
original timed automata, and next generates refined abstract models from
the modified automata. This paper describes formal descriptions of the al-
gorithm and the correctness proof of the algorithm.
key words: Model Checking, Timed Automaton, Model Abstraction, CE-
GAR

1. Introduction

A model checker checks that a given system modeled in a
finite automaton satisfies given specifications by searching
the finite transition system exhaustively. It sometimes has,
however, limitation in scalability. In order to improve the
scalability, model abstraction technique is important[1]–[3].

In verification of real time systems, a timed automaton
has widely been used[7], [8], which can describe behavior of
realtime systems. In a timed automaton, real-valued clock
constraints are assigned to its control state (called a loca-
tion). Therefore, it has an infinite state space represented in
a product of discrete state space made by locations and con-
tinuous state space made by clock variables. In traditional
model checking for a timed automaton, using the property
that we can treat the state space of clock variables as a finite
set of regions; we can perform model checking on timed au-
tomata models. However, the size of such regions increases
exponentially with the number of clock variables; thus an
abstraction technique is also needed.

Paper[1] proposed an abstraction algorithm called CE-
GAR (CounterExample-Guided Abstraction Refinement)
shown in Fig.1. The algorithm is used for abstraction of fi-
nite models[1], [2], hybrid systems[3], timed automata[11]–
[13], and other models. In the CEGAR algorithm, we use a
counter example produced by a model checker as a guide to
refine excessively abstracted models. A general CEGAR al-
gorithm consists of several steps. First, it abstracts the origi-

†Graduate School of Information Science and Technology, Os-
aka University
Machikane-yama 1–3, Toyonaka City, Osaka, 560–8531 Japan

Fig. 1 General CEGAR Algorithm

Fig. 2 Our Proposed Algorithm

nal model (the obtained model is called abstract model) and
performs model checking on the abstract model. Next, if a
counter example (CE) is found, it checks the counter exam-
ple on the concrete model. If the CE is spurious, it refines
the abstract model. The last step is repeated until the valid
output is obtained. In the CEGAR loop, an abstract model
must satisfy the following property; if the abstract model
satisfies given specifications, the concrete model also satis-
fies them.

This paper proposes a new concrete CEGAR algorithm
for a timed automaton. The first step of the algorithm is
abstraction, in which we delete all of time attributes from
the given timed automaton. The obtained automaton is just
a finite automaton preserving the transition relations of the
timed automaton; therefore the obtained finite automaton is,
in general, over-approximated of the original one. We re-
strict the class of the verification properties into reachabil-
ity; thus if an abstract model satisfies a given property then
the concrete model also satisfies the property.

In general, CEGAR algorithms[1]–[3], [11]–[13] di-
rectly transforms an abstract model using counter exam-
ples in the refinement step. Our proposed method, how-

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

ever, doesn’t directly transform an abstract model. It first
transforms the original model using counter examples and
then it creates a new abstract model from it by removing
clock attributes; thus our algorithm indirectly refines the ab-
stract model. The algorithm transforms the original timed
automaton by adding extra transitions and removing some
transitions but it preserves the behavioral equivalence of the
timed automaton and prevents the spurious counter exam-
ples. More concretely, it duplicates locations and transi-
tions so that its abstract model can tell behavioral difference
caused by clock values which affects the counter examples.
Consequently the obtained new abstract model does not ac-
cept the spurious counter example.

As related works, papers[11]–[13] have proposed CE-
GAR based abstraction techniques for timed automata. Al-
though these techniques mainly refine the abstract models
by adding clock variables which have removed by abstrac-
tion, our refinement method modifies the original timed au-
tomata and produces the refined abstract model from the
modified models, instead of adding clock variables.

The rest of the paper is organized as follows. In Sec.
2, some definitions are described. Sec. 3 gives our CEGAR
algorithm and its application to a simple example. Compar-
ison with other related methods is also given. Sec. 4 proves
the correctness of the algorithm. Sec. 5 concludes the paper.

2. Preliminaries

In this section, we give definitions of a timed automaton, a
region automaton which specifies whole states of a timed
automaton with finite clock regions, and others.

2.1 Timed Automaton

Definition 2.1 (Differential inequalities onC). Syntax and
semantics of a differential inequalityE on a finite setC of
clocks is given as follows:
E ::= x − y ∼ a | x ∼ a,
wherex, y ∈ C, a is a literal of a real number constant, and
∼∈ {≤,≥, <,>}.
Semantics of a differential inequality is the same as the or-
dinal inequality.

Definition 2.2 (Clock constraints onC). Clock constraints
c(C) on a finite setC of clocks is defined as follows:
A differential inequalityin onC is an element ofc(C).
Let in1 and in2 be elements ofc(C), in1 ∧ in2 is also a
element ofc(C).

Definition 2.3 (Timed Automaton). A timed automatonA
is a 6-tuple(A,L, l0, C, I, T), where
A: a finite set of actions;
L: a finite set of locations;
C: a finite set of clocks;
l0 ∈ L: an initial location; and
T ⊂ L × A × 2c(C) × R × L,
where2c(C) is a set of clock constraints, called guards;

R = 2C : a set of clocks to reset;
and I ⊂ (L → 2c(C)): a mapping from locations to clock
constraints, called location invariants.

A transition t = (l1, a, g, r, l2) ∈ T is denoted by
l1

a,g,r−→ l2. A map ν : C → R≥0 is called a clock as-
signment. We can extend the domain ofν into a set ofC
as follows: ν ∈ RC

≥0. We define(ν + d)(x) = ν(x) + d
for d ∈ R≥0. r(ν) = ν[x 7→ 0], x ∈ r is also defined for
r ∈ 2C . By N , a set of wholeν is denoted.

Definition 2.4 (Semantics of Timed Automaton). For a
given timed automatonA = (A,L, l0, C, I, T), let a set
of whole states ofA beS = L × N . The initial state ofA
shall be given as(l0, 0C) ∈ S.
For a transition l1

a,g,r−→ l2 (∈ T), the following two tran-
sitions are semantically defined. The first one is called an
action transition, while the latter one is called a delay tran-
sition.

l1
a,g,r−→ l2, g(ν), I(l2)(r(ν))

(l1, ν) a⇒ (l2, r(ν))
,

∀d′ ≤ d I(l1)(ν + d′)

(l1, ν) d⇒ (l1, ν + d)

Definition 2.5 (A semantic model of Timed Automaton).
For timed automatonA = (A,L, l0, C, I, T), an infinite
transition system is defined according to the semantics of
A , where the model begins with the initial state. ByT (A),
the semantic model ofA is denoted.

2.2 Region Automaton

For a given timed automatonA , we can introduce a corre-
sponding clock regionCR(A) [4], [5]. By [u], an element
(a region) inCR(A) is denoted. For[u] ∈ CR(A), g([u])
andI([u]) represent that any point in[u] satisfies a guardg
and invariantI, respectively. Also byr([u]), applying clock
resettingr onto [u] is denoted, wherer([u]) = [u][x 7→ 0],
andx ∈ r.

Definition 2.6 (Region Automaton). A region automaton
Ar = (A,Lr, lr 0, Tr) of a given timed automatonA =
(A,L, l0, C, I, T) is defined as follows.Lr ⊂ L×CR(A),
lr 0 = (l0, [0C]), where[0C] satisfiesI(l0),
Tr ⊂ Lr × A × Lr,
Tr consists of

(l , [u])
a⇒ (l ′, [v]) iff (l , u)

d⇒ (l, u′) ∈ T (A) for d ∈ R≥0

∧ (l , u′)
a⇒ (l ′, v) ∈ T (A) for a ∈ A

∧ u ∈ [u] ∧ v ∈ [v].

2.3 DBM (Difference Bound Matrix)

In [7], [10], a data structure DBM(difference bound matrix)
is introduced to manage a set of differential inequalities of
two clocks over a finite clock setC.

We represent DBM as a set of some elements in the
clock regionCR(A). Therefore a set of states of a region

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP
3

automatonAr = (Lr, lr 0, Tr, A), can be represented in
(l , D) = {(l , [u]) | [u] ∈ D} using the corresponding DBM
D. Paper[7] gives operation functions on DBM, such asup,
and and other functions, which represent elapsing time, in-
tersection of time spaces and so on, respectively. There is
a minimum set of differential inequalities which can repre-
sent DBM D [7]. Such a set is denoted byIneqset(D).
Ineqset(D) can be obtained by reduction operations on
DBM. A set of every region which satisfies an invariantI(l)
of locationl is denoted by(l , DInv).

2.4 General CEGAR Algorithm

Model abstraction sometimes over-approximates an orig-
inal model, which may produce spurious counter exam-
ples. They are not actually counter examples in the orig-
inal model. Paper [1] gives an algorithm called CEGAR
(Counterexample-Guided Abstraction Refinement) (Fig.1).

In the algorithm, at the first step (called Initial Abstrac-
tion), it over-approximates the original model. Next, we per-
form model checking on the abstract model. In this step, if
the model checker reports that the model satisfies a given
specification, the original model also satisfies the specifica-
tion, because the abstract model is an over-approximation
of the original model. If the model checker reports that the
model does not satisfy the specification, however, we have
to check whether a counter example produced is spurious
counter example or not in the next step (called Simulation).
In the Simulation step, if we find the counter example is
valid, we stop the loop. Otherwise, we have to refine the ab-
stract model to eliminate the spurious counter example, and
repeat these steps until valid output is obtained.

3. Our CEGAR Algorithm for Timed Automaton

Our proposed algorithm generates an abstract modelM̂
from a given timed automatonA by applying an abstrac-
tion functionh, and performs model checking on̂M . M̂
is in fact a finite automaton. If a counter exampleT̂ (rep-
resented as a path on the abstract model) is found during
model checking, we concretizêT by applying inverse func-
tion h−1.The concretized one is a set of paths. We denote it
by T (which is a set of paths onA). At Simulation Step, it
checks whether each path inT is feasible onA or not. If
every path inT is infeasible, the next step shall refine the
model so that the counter examplêT becomes infeasible.
Our algorithm does not directly refinêM but it modifiesA
and then obtains a new abstract mode by applyingh to the
modified timed automaton. Figure 2 shows flow of our CE-
GAR algorithm.

The proposed algorithm checks a propertyAG
∨

e∈E¬e,
whereE (⊂ L) of a timed automatonA is a set of error lo-
cations of the target system. The property means there is no
path to locations inE from the initial state. Please note that
any counter example of such a property can be represented
in a finite length of sequence without loops. Therefore, here-
after, we assume that counter examples are finite sequences

without loops.

3.1 Abstract Model

Definition 3.1 defines the abstraction functionh on Lr of a
region automatonAr.

Definition 3.1 (Abstraction Functionh). For a region au-
tomatonAr = (A,Lr, lr 0, Tr) of a given timed automaton
A , an abstraction functionh : Lr → Ŝ is defined as fol-
lows:

∀lr i, lr j ∈Lr. h(lr i) = h(lr j) ⇐⇒ Loc(lr i) = Loc(lr j),

whereLoc : Lr → L is a function which retrieves a lo-
cation attribute from a state ofAr. The inverse function
h−1 : Ŝ → 2Lr of h is also defined as in a usual manner.

The abstraction functionh defined in Definition 3.1
maps any state ofLr which belongs to the same location
into the same abstract state. Otherwise they are mapped into
the different states. This means that there is a one-to-one
correspondence between the location set ofA and the ab-
stract state set̂S. Therefore, the abstraction functionh can
be extended its domain as in Definition 3.2.

Definition 3.2 (Extension of Abstraction Functionh). Ab-
straction functionh : L → Ŝ of a timed automatonA =
(A,L, l0, C, I, T) is defined as follows:

∀li, lj ∈ L. h(li) = h(lj) ⇐⇒ li = lj .

Similarly, the inverse functionh−1 : Ŝ → L of h is also
defined.

Symbols decorated with ‘ˆ ’ represent those of an ab-
stract model (i.e. Ŝ represents a state set of an abstract
model). Definition 3.3 gives an abstract modelM̂ of a given
timed automatonA using the abstraction functionh defined
in Definition 3.2.

Definition 3.3 (Abstract Model). An abstract model
M̂ = (Ŝ, ŝ0, →̂) of a given timed automatonA =
(A,L, l0, C, I, T) using the abstraction functionh defined
in Definition 3.2 is defined as follows:

• Ŝ = {h(l) | l ∈ L)},
• ŝ0 = h(l0), and
• →̂ = {(l̂1, a, l̂2) | (l1, a, g, r, l2) ∈ T}.

Definition 3.4 (Counter Example). A counter example on
M̂ is a sequence of states ofŜ. A counter examplêT of
lengthn is represented in̂T = ⟨ŝ0, · · · , ŝn⟩.

A set T of a run sequences onA obtained by con-
cretizing a counter examplêT = ⟨ŝ0, · · · , ŝn⟩, is defined as
follows:

T = {(l0
a1,g1,r1−→ l1

a2,g2,r2−→ · · · an,gn,rn−→ ln)|
(li = h−1(si) for 0 ≤ i ≤ n) ∧
((li−1, ai, gi, ri, li) ∈ T for 1 ≤ i ≤ n)}.

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Abstraction
InputsA , h

{h = abstraction function}
Ŝ := ∅, →̂ := ∅ {M̂ = (Ŝ, ŝ0, →̂)}
foreach l ∈ L do

Ŝ := Ŝ ∪ {h(l)}
end for
ŝ0 := h(l0)
foreach (l1, a, g, r, l2) ∈ T do

→:=→ ∪{(h(l1), h(l2))}
end for
return M̂

Fig. 3 Abstraction

Simulation
InputsA , t = (l0

a1,g1,r1−→ l1
a2,g2,r2−→ · · · an,gn,rn−→ ln(ln = e))

R0 := (l0, D0) {D0 = {0C}}
D := up(D0) {Any elapsing time}
D := and(D, I(l0)) {Add Invariant ofl0}
for i := 1 to n do

Ri :=Reach(A , Ri−1, (li−1, ai, gi, ri, li))
if Ri = ∅ then

return false
end if

end for
return true

Fig. 4 Simulation

Reach
InputsA , R = (l , D), (l1, a, g, r, l2)

D := and(D, g) {add guards of transitions}
D := reset(D, r) {reset the clocks}
D := and(D, I(l2)) {add Invariant ofl2}
D := up(D) {Any elapsing time}
D := and(D, I(l2)) {add Invariant ofl2}
return (l2, D)

Fig. 5 Reach

3.2 Initial Abstraction

Initial Abstraction generates an abstract modelM̂ from a
timed automatonA using the abstraction functionh. Figure
3 shows the algorithm of Initial Abstraction.

3.3 Simulation

For a setT of concretized counter example sequences ob-
tained fromT̂ on M̂ , Simulation performs the algorithm in
Fig.4 on each sequencet ∈ T . Reachability from the first
location oft to the last location oft is checked in Simulation
using a procedure Reach in Fig.5. Reach uses some opera-
tion functions of DBM. The DBM operation “up” applies
time elapsing to the DBM, and “and” imposes a differential
inequality to the DBM[7]. In the algorithm, we extend the
domain of the operation “and” to clock constraints. When
the algorithm in Fig.4 returns false, the counter exampleT̂ is
judged as a spurious counter example. Bytunable, the con-
crete path input is denoted. The next step refines the abstract
model withtunable.

Fig. 6 Counter Example

Fig. 7 Refined Model

3.4 Refinement of Abstract Model

In this step, we have to generate a refined abstract model
which does not admit the spurious counter example (we
call it the spurious CE free model for a given CE). When
a counter example is judged as a spurious counter example
for a concretized pathtunable, there is a Bad Statêlb in the
abstract model (Fig.6). A Bad Statel̂b is the abstract state
that the state setsB1(= (lb, D1)) andB2(= (lb, D2)) are
merged (mapped into the same state). The state setB1 has
the states which are reachable from the initial state but un-
reachable to the next locationlnext. On the other hand, the
state setB2 has the states which are unreachable from the
initial state, but reachable tolnext. In general, refinement al-
gorithm should divide the statêlb into more than two states
as the state setB1 and the state setB2 are mapped into dif-
ferential states. Dividing of a state space of a timed automa-
ton usually needs subtraction operation of DBM. However,
DBM is not closed under subtraction operation[10]; there-
fore, applying such an approach is difficult.

We propose another approach, in which we duplicate
the state setB1 on the concrete model instead of dividing
a bad state. Also we perform other transformation on the
concrete model so that the states inB2 become unreachable
from the initial state obviously (without considering clock
constraints). Next, we produce the spurious CE free model
by applying the abstraction function to the transformed con-
crete model.

The algorithm of Refinement in Fig.8 consists of three

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP
5

sub algorithms, called duplication of states, duplication of
transitions, and removal of transitions, shown in Fig.9, 10,
and 11, respectively. The state setB1 is obtained on the way
in the Simulation algorithm. At the line 6 in Fig.4, when
Ri = ∅ is true,B1 corresponds to a previous reachable set
Ri−1.

In the algorithm ‘DuplicateState’, we generate the state
setB′

1 = (l ′b, D1) as the duplication ofB1. In the timed au-
tomaton level, this transformation generates just a new lo-
cation l ′b, and the locationl ′b has an invariantIneqset(D1)
which representsD1.

The algorithm ‘DuplicateTransition’ generates a tran-
sition (lprev, a, g, r, l ′b) as a duplication of the transition
(lprev, a, g, r, lb). Also, we duplicate transitions which are
feasible from the states in(lb, D1). Due to this transforma-
tion, we can establish bi-simulation relations between the
states in(lb, D1) and their duplications in(l ′b, D1)[15].

The algorithm ‘RemoveTransition’ removes the tran-
sition (lprev, a, g, r, lb) if the following condition is satis-
fied; the state set which is reachable from(lprev, Dinv)
through (lprev, a, g, r, lb) equalsB1. In such a case, be-
cause we can assume the transition(lprev, a, g, r, lb) equals
(lprev, a, g, r, l ′b), we can remove the transition. Otherwise,
we cannot remove the spurious counter example with only
one-time application of a Refinement algorithm. In such a
case, the following CEGAR loops will find the same spu-
rious counter example, and we apply Refinement algorithm
for it again. In Sec.4, we prove that applying Refinement al-
gorithm for the same spurious counter example several times
can remove it from the abstract model.

The operation “relation(D, D′)” returns a relation be-
tweenD, D′ such as⟨D ⊆ D′, D ⊇ D′⟩.

Figure 7 shows a refined model. Dotted arrows in the
figure denote transitions which are removed through Refine-
ment algorithm.

For states to duplicate, transitions to duplicate and tran-
sitions to remove, the following lemmas hold. Proofs of
them are obtained from algorithm straightforward way, and
is omitted due to paper space.

Lemma 3.1 (States to Duplicate). Let B1 = (lb, D1) and
duplication of a locationlb bel ′b. A set of states to duplicate,
of a region automaton is(l ′b, D1).

Duplication of transition duplicates the following kinds
of transitions: “transitions fromlprev to lb,” and “ transitions
not only fromlb but also enable from(lb, D1).”

Lemma 3.2 (Transitions to Duplicate). For a region au-
tomatonAr = (A,Lr, lr 0, Tr), B1 = (lb, D1), states to
duplicate(l ′b, D1), and a transitioneb = (lprev, a, g, r, lb)
in a counter example, transitions to duplicate of a region
automaton is:

Tr d = {(lprev , [v])
a⇒ (l ′b, [v

′]) |∀(lprev , [v]) ∈ (lprev , DInv).

∀(lb, [v
′]) ∈ (lb, D1).(lprev , [v])

a⇒ (lb, [v
′]) ∈ Tr}

∪{(l ′b, [v])
a⇒ (l , [v′]) |∀a ∈ A.∀(lb, [v]) ∈ (lb, D1).

∀(l , [v′]) ∈ Lr.(lb, [v])
a⇒ (l , [v′]) ∈ Tr}.

Refinement
InputsAi, h, B1 = (lb, D1), eb = (lprev , a, g, r, lb)

{eb = a transition tolb}
Ai+1 := Ai

Ai+1 := DuplicateState(Ai+1, B1) {Duplication of States}
Ai+1 := DuplicateTransition(Ai+1, B1, eb)

{Duplication of Transitions}
Ai+1 := RemoveTransition(Ai+1, B1) {Removal of Transitions}
M̂i+1 :=Abstraction(Ai+1, h)

return M̂i+1

Fig. 8 Refinement

DuplicateState
InputA , B1 = (lb, D1)

l ′b := newLoc() {Generate a new locationl ′b}
L := L ∪ {l ′b}
I(l ′b) := Ineqset(D1) {A set of inequalities representingD1}

Fig. 9 Duplication of States

DuplicateTransition
InputsA , B1 = (lb, D1), eb = (lprev , a, g, r, lb)

{eb = a transition tolb}
T := T ∪ {(lprev , a, g, r, l ′b)}

{Duplicate a transitioneb to aBadState}
foreach (l1, a′, g′, r′, l2) ∈ T such thatl1 = lb do

if Reach(A , (lb, D1), (l1, a′, g′, r′, l2)) ̸= ∅ then
T := T ∪ {(l ′b, a

′, g′, r′, l2)}
{duplicate transitions fromlb only enable from ((l ′b, D1).)}

end if
end for

Fig. 10 Duplication of Transitions

RemoveTransition
InputsA , B1 = (lb, D1), eb = (lprev , a, g, r, lb)

{eb = a transition tolb}
Prev := (lprev , DInv)

{a set of every region satisfying an invariant oflprev}
R :=Reach(A , P rev, eb) {obtain regions oflb reachable fromPrev}
if relation(R, B1) = ⟨true, true⟩ then

{whenR = B, relation(R, B1) returns⟨ true, true⟩.}
T := T \ {(l , a, g, r, lb)}

end if

Fig. 11 Removal of Transitions

Lemma 3.3(Transitions to Remove). For a region automa-
ton Ar = (A, Lr, lr 0, Tr), B1 = (lb, D1), states to dupli-
cate(l ′b, D1), and a previous locationlprev of a location in a
counter example, transitions to remove of a region automa-
ton is:

Tr r = {(lprev , [v])
a⇒ (lb, [v

′]) |∀(lprev , [v]) ∈ (lprev , DInv).

(lprev , [v])
a⇒ (lb, [v

′]) ∈ Tr}.

The algorithm of Removal of Transitions removes tran-
sitions only when a set of states reachable fromlprev is the
same as a set(lb, D1) of Bad States. Therefore, for every
(lprev, [v]) a⇒ (lb, [v′]) ∈ Tr r, (lb, [v′]) ∈ (lb, D1) holds.
It means that every transition inTr r has its duplication in
Tr d.

3.5 Example

Here, we give an example of applying our abstraction
method to Light Switch model[7]. The model is shown in
Fig12, and it is composed of a switch model (left side of the

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Fig. 12 Light Switch model

Fig. 13 Parallel composed model

Fig. 14 Initial abstract model

figure) and a user model (right side of the model). Hereafter,
we assume that locations(dim, idle) and(bright, idle) of
the two models are error locations.

In order to apply our method to these models, first, we
have to produce a parallel composition of the models. Fig-
ure 13 shows the composition. Transitions with no label in
the figure are assumed to be labeled with an actionτ . The
property which we want to check is:

AG¬((dim, idle) ∨ (bright, idle)). (1)

For the property (1) and the model of Fig13, the model
checker UPPAAL[9] outputs a result of “valid”. This means
the model of Fig13 satisfies the property (1).

Fig. 15 First refinement

Here, we show an example of applying our abstraction
method to the model.

As a first step, we produce an initial abstract model
from the parallel composition. In this step, we apply Initial
Abstraction which removes clock variablesx andy from the
composition. Figure 14 shows the initial abstract model.

Next, we perform model checking on the abstract
model, and the model checker outputs a counter ex-
ample ⟨(off, idle), (dim, relax), (bright, idle)⟩. This
counter example corresponds to a path from(off, idle) to
(bright, idle) in the original automaton.

The path in the concrete model in Fig.13 correspond-

ing to this counter example is(off, idle)
τ,true,{x,y}−→

(dim, relax)
τ,x≤10∧y>10,∅−→ (bright, idle) only. Therefore,

we reproduce the path on the concrete model. When we sim-
ulate this path on the original automaton, however, a tran-
sition from (dim, relax) to (bright, idle) is unable. The
reason is as follows; a reachable clock state space of the
(bright, idle) always satisfiesx = y, and it does not satisfy
the guard conditionx ≤ 10 ∧ y > 10. Therefore, we can
conclude that the counter example is spurious. At the same
time, we can obtain the state set((dim, relax), D1)(D1 is a
set of regions which satisfyx = y) asB1, and the transition
((off, idle), τ, true, {x, y}, (dim, relax)) aseb.

In the refinement step, first, we duplicate the loca-
tion (dim, relax) on the timed automaton. (a duplicate of
(dim, relax) is denoted by(dim, relax′)). Please note that
we duplicate states only reachable from the initial state, and
the reachable state space of(dim, relax) always satisfies
x = y. Consequently, we have to add an invariantx = y to
the duplicated location(dim, relax′). Next, we duplicate
a transitioneb, and the duplication of this transition is that
from (off, idle) to (dim, relax′). Also, we duplicate tran-
sitions from(dim, relax) except that being unable from the
state space which satisfiesx = y. In this example, we dupli-
cate a transition from(dim, relax) to (off, idle) (and the
duplicated transition from(dim, relax′) to (off, idle) is
depicted in Fig.17), but we don’t duplicate a transition from
(dim, relax) to (bright, idle) which is infeasible fromB1.
Finally, we remove a transition between(off, idle) and
(dim, relax). We can remove the transition because there
is a corresponding transition(off, idle) to (dim, relax′).
Figure 15 represents the refinement guided by this counter
example. Finally, we produce a refined abstract model from
the refined timed automaton.

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP
7

Fig. 16 Second refinement

Fig. 17 Timed automaton generated in the final loop

Fig. 18 Abstract model generated in the final loop

After the refinement, we perform model check-
ing again, and we obtain another counter example
⟨(off, idle), (dim, t), (off, study), (dim, idle)⟩. For this
counter example, Simulation decides it is spurious, and the
refinement is performed in the same way. Figure 16 depicts
the second refinement.

The third time model checking proves that the model
satisfies the property. The timed automaton and abstract
model generated in the final loop are presented in Fig17 and
Fig18 respectively.

3.6 Related works

As related works, papers[11]–[13] have proposed CEGAR
based abstraction techniques for timed automata. In the ap-
proach of [11], they perform abstraction by removing all
clock variables from timed automata, and refine the ab-
stract model by removing transitions which are always im-
possible. However, they can remove such transitions only
when it is guaranteed that such removal preserves under-
approximation, otherwise they have to restore clock vari-
ables to the abstract models. The technique of [12] is based
on bounded model checking using SAT. In this approach,
they refine propositions representing models using spurious
counter examples. The technique of [13] limits the model
to PLC automata, a sub class of timed automaton. Al-
though these techniques mainly refine abstract models by
adding clock variables which have been removed by abstrac-
tion, our refinement approach modifies transition relations
of models so that the abstract models partially contain real
time behavior. The refinement approach of adding clock
variables is more effective in that it can remove more spu-
rious counter examples. Adding clock variables, however,
may decrease the efficiency of abstraction. On the other
hand, because our approach does not add clock variables,
we expect our abstraction reduces more state space of the
model using traditional techniques on space reduction for
ordinal finite automata.

4. Correctness Proof

As mentioned in Section 3, the proposed algorithm checks a
propertyAG

∨
e∈E ¬e, whereE (⊂ L) of a timed automaton

A is a set of error locations of the target system. In other
words, we treat only reachability problem. As mentioned
in Section 3, any counter example of such a property can
be represented in a finite length of sequence without loops.
Therefore, we assume that counter examples are finite se-
quences without loops.

Paper [2] gives a theorem on a conservative class of ab-
stractions which attempts to preserve semantics of automata
against state reductions under the condition that it checks
only a propertyAG p for a propositionp. From the theorem,
we can derive the following theorem.

Theorem 4.1.For a timed automatonA = (A,L, l0, C, I, T)
and a setE of error locations. Let the abstract model
and a set of error states of the abstract model beM̂and
Ê = {h(e) | e ∈ E}, respectively. The following statement
always holds.

M̂ |= AG
∨
ê∈Ê

¬ê ⇒ A |= AG
∨
e∈E

¬e (2)

Proof. Let a concrete model and its abstract model ab-
stracted byh beM andM̂ , respectively. For a propositionp,
if an abstraction functionh satisfies the following for every
s ∈ S:

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Fig. 19 Relations among models

h(s) |= p ⇒ s |= p (3)

thenM̂ |= AG p ⇒ M |= AG p holds from Theorem 1 in
Paper [2].

Here we assume thatp =
∨

ê∈Ê ¬ê for M̂ , and
p =

∨
e∈E ¬e for A . In addition, an abstraction func-

tion defined in Definition 3.2 maps each location inA to
a stateM̂ and the mapping is one-to-one mapping. Thus,
∀l ∈ L. h(l) = ê ⇐⇒ l = e holds. As a result, the ab-
straction functionh satisfies the statement 3; Theorem 4.1
is proved.

Next, we prove the correctness of our abstraction tech-
nique; first, we prove the correctness of our refinement algo-
rithms ‘duplicateState,’ ‘duplicateTransition,’ ‘removeTran-
sition.’ Figure 19 represents the relations among the timed
automata generated by each algorithm. Second, we prove
that repeating our refinement algorithm can remove a spuri-
ous counter example correctly.

Lemma 4.1 (Bi-simulation equivalence among timed au-
tomata). Let denote byAi andAi+1 a timed automaton be-
fore and after applyingi + 1-th application of Refinement ,
respectively.Ai is bi-simulation equivalent toAi+1.

Proof of Lemma 4.1 is given in Appendix.
For an abstract model̂M and a spurious counter exam-

ple onM̂ , we use the term ‘the spurious CE free model,’
if the refined abstract model of̂M doesn’t have the spurious
counter example (which may have potentially other spurious
CE’s).

Lemma 4.2. For the spurious CE and an abstract modelM̂ ,
at mostn times repetition of Refinement produces the spu-
rious CE free model, wheren is the length of the spurious
counter example.

The proof of this lemma is given by showing induc-
tively that for a sub-sequence starting froml0 to lk (1 ≤
k ≤ n) of the spurious counter example, at mostk times
application of the Refinement algorithm refines the abstract
model correctly with respect to the sub-sequence. The detail
is given in [15].

Lemma 4.3(Termination). The CEGAR loop terminates.

The sketch of proof is as follows. In the worst case,
the states of abstract model are divided as fine as product
of clock region and locations. They are both finite. One
time application of Refinement always divides state space.
Consequently, the loop terminates.

Theorem 4.2(Correctness). If a counter example is spuri-
ous, at mostn times repetition of Refinement in Fig.8 pro-
duces a spurious CE free model. CEGAR loop will termi-
nate.

Proof. From Lemma 4.1, Refinement preserves bi-simulation
equivalence. From Lemma 4.2, at mostn times repetition
of Refinement produces a refined spurious CE free model.
Lemma 4.3 shows loop’s termination.

5. Conclusion

This paper proposes a model abstraction technique for timed
automata based on the CEGAR algorithm. In general, most
CEGAR based algorithms obtain refined abstract models
from the previous abstract models by modifying some trans-
formations. In our algorithm, however, the refined model
is obtained indirectly; we transform the original timed au-
tomaton preserving the equivalence and from it we generate
an abstract model by eliminating clock attributes.

This paper gives a formal description and correctness
proof of our algorithms.

As a preliminary experiment, we have applied our ab-
straction technique to some examples, including Gear Box
controller[14], and we have obtained the encouraging result
on memory consumption.

Future work contains applying subtraction opera-
tion[10] in order to divide a bad state into a reachable state
and unreachable one instead of duplicating it, during refine-
ment of an abstract model. Comparison its efficiency with
the method proposed in this paper is also considered.

References

[1] E M. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. Helmut: “
Counterexample-guided abstraction refinement for symbolic model
checking,” Journal of the ACM, vol.50(5), pp752-794, 2003.

[2] E M. Clarke, A. Gupta, J. Kukula, and O. Strichman: “SAT based
Abstraction-Refinement using ILP and Machine Learning Tech-
niques,” In Proc. of the 14th Int. Conf. on Computer Aided Veri-
fication, vol.2404, pp.695-709, 2002.

[3] E M. Clarke, A. Fehnker, Z. Han, J Ouaknine, O. Stursberg, and M.
Theobald: “Abstraction and Counterexample-guided Refinement in
Model Checking of Hybrid Systems,” In Int. Journal of Foundations
of Computer Science, vol.14(4), 2003.

[4] R. Alur: “Techniques for Automatic Verification of Real-Time Sys-
tems,” PhD thesis, Stanford University, 1991.

[5] R. Alur, C. Courcoubetis, and D. L. Dill: “Model-checking for real-
time systems,” In Proc. of the 5th Annual Symposium on Logic in
Computer Science, IEEE, pp.414-425, 1990.

[6] S. Das, D. L. Dill, and S.Park : “Experience with predicate abstrac-
tion,” In Proc. of the 11th Int. Conf. on Computer Aided Verification,
vol.1633, pp.160-171, 1999.

NAGAOKA et al.: AN ABSTRACTION REFINEMENT TECHNIQUE FOR TIMED AUTOMATA BASED ON CEGAR LOOP
9

[7] J. Bengtsson, and W .Yi: “Timed Automata: Semantics, Algorithms
and Tools,” In Lectures on Concurrency and Petri Nets, vol.3098,
pp.87-124, 2004.

[8] F. Wang, K. Schmidt, G D. Huang, F. Yu, B Y. Wang: “Formal Ver-
ification of Timed Systems: A Survey and Perspective,” In Proc. of
the IEEE, vol.92, No.8, pp.1283-1307, 2004.

[9] G. Behrmann, A. David, and K G. Larsen: “A Tutorial on UP-
PAAL,” In Proc. of the 4th Int. School on Formal Methods for
the Design of Computer, Communication, and Software Systems,
vol.3185, pp.200-236, 2004

[10] A. David, J. Hakansson, K G. Larsen, and P. pettersson: “Model
Checking Timed Automata with Priorities using DBM Subtraction,”
In Proc. of the 4th Int. Conf. on Formal Modelling and Analysis of
Timed Systems, pp.128-142, 2006

[11] H. Nakajima and Y. Kameyama: “Improvement on Real-Time
Model Checking using Abstraction-Refinement (In Japanese),” In
Transactions of Information Processing Society of Japan, vol.45,
No.SIG12 (PRO23), pp.11-24.

[12] S. Kemper, and A. Platzer: “SAT-based Abstraction Refinement for
Real-time Systems,” In Proc. of the Third Int. Workshop on Formal
Aspects of Component Software, vol.182, pp.107-122, 2006.

[13] H. Dierks, S. Kupferschmid, and K G. Larsen: “Automatic Abstrac-
tion Refinement for Timed Automata,” In Proc. of the 5th Int. Conf.
on Formal Modelling and Analysis of Timed Systems, vol.4763,
pp.114-129, 2007.

[14] M. Lindahl, P. Pettersson, and W. Yi: “Formal Design and Analysis
of a Gear Controller,” In Proc. of the 4th International Workshop on
Tools and Algorithms for the Constraction and Analysis of Systems,
vol.1384, pp.281-297, 1998.

[15] T. Nagaoka, K. Okano, and S. Kusumoto: “Abstraction of Timed
Automata Based on Counterexample-Guided Abstraction Refine-
ment Loop,” IEICE Technical Report, vol.107, No.505, pp.103-108,
2008.

Appendix: Proof of Lemma 4.1

Proof. For region AutomataAr = (A,Lr and lr 0, Tr)
and A ′

r = (A′, L′
r, l ′r 0, T

′
r), we define the following bi-

simulation relation∼ recursively.

• For lr 1 ∈ Lr andl′r 1 ∈ L′
r, if there is a bi-simulation

relationlr 1 ∼ l′r 1, the following conditions are satis-
fied.
for all a ∈ A andlr 1

a⇒ lr 2 ∈ Tr, there exists a transi-
tion l′r 1

a⇒ l′r 2 ∈ T ′
r such aslr 2 ∼ l′r 2 holds, and for

all a ∈ A andl′r 1
a⇒ l′r 2 ∈ T ′

r, there exists a transition
lr 1

a⇒ lr 2 ∈ Tr such aslr 2 ∼ l′r 2 holds.
• For initial states, iflr 0 ∼ l′r 0 holds, under the bi-

simulation relation∼, Ar and A ′
r are bi-simulation

equivalent.

Let denote byAr i and Ar i+1 their region automa-
ton for Ai andAi+1, respectively. In a similar way,A 1

i ,
A 1

r i, A 2
i , A 2

r i, A 3
i (= Ai+1), A 3

r i(= Ar i+1) are defined,
where the superfix means a sub algorithm of the Refinement.
Therefore the superfixes1, 2, and3 stand for after applying
Duplication of States, Duplication of Transitions, and Re-
moval of Transition, respectively.

Here, we will prove thatAi is bi-simulation equivalent
to Ai+1 by proving bi-simulation equivalence over the each
pair of region automata (before and after applying each al-
gorithm). For the state setB1 = (lb, D1), we denote the

duplicate state set byB′
1 = (l′, D1).

Let Tr d andTr r be a set of transitions to be added in
A , a set of transitions to be removed inA , that to be a set
of transitions be added inAr and that to be removed inAr,
respectively.

i) Ar i andA 1
r i

Ar i is obviously bi-simulation equivalent toA 1
r i over

the bi-simulation relation∼. We omit the proof of it.

ii) A 1
r i andA 2

r i

Let considerAr i = (Lr i, lr i 0, Tr i, Ai), andA 2
r i =

(L2
r i, l

2
r i 0, T

2
r i, A

2
i). Obviously,T 2

r i = T 1
r i ∪ Tr d holds.

BecauseT 1
r i ⊂ T 2

r i holds, forl1r i ∈ L1
r i and l2r i ∈

L2
r i, such that a bi-simulation relationl1r i ∼ l2r i holds,

there exists a transitionl2r i
a⇒ l2′r i ∈ T 2

r i where a relation
l1r i

a⇒ l1′r i ∈ T 1
r i is satisfied for anya ∈ A1

i . Consequently,
the bi-simulation relationl1′r i ∼ l2′r i also holds.

Let consider converse. Forl1r i ∈ L1
r i andl2r i ∈ L2

r i

such that the bi-simulation relationl1r i ∼ l2r i holds, there
exists some transitions such thatl2r i

a⇒ l2′r i ∈ T 2
r i is satis-

fied. For such transitions, we consider the following cases.

1. The casel2r i
a⇒ l2′r i ∈ T 1

r i holds.

In this case,l1r i
a⇒ l1′r i ∈ T 1

r iexists, and the bi-
simulation relationl1′r i ∼ l2′r i holds.

2. The casel2r i
a⇒ l2′r i ∈ Tr d holds. (a case in which the

transition is duplicated)

In this case,l2r i or l2′r i is in duplicated state setB′
1 =

(l′b, D1). If l2r i ∈ B′
1 holds, as mentioned in Lemma 3.2,

there is a transition which is the source transition for dupli-
cation. Therefore, ifl2′r i /∈ B′

1 holds,l1′r i ∼ l2′r i also holds.
If l2′r i ∈ B′

1 holds, l2′r i is a duplicate ofl1′r i, andB′
1 is fi-

nite. Consequently, from the definition of∼, l1′r i ∼ l2′r i also
holds.

If l2′r i ∈ B′
1 holds, as mentioned in Lemma 3.2, there

is a transition that is the source transition for duplication.
Therefore,l2′r i is a duplicate ofl1′r i, andB′

1 is finite. Conse-
quently, from the definition of∼, l1′r i ∼ l2′r i holds.

For initial states,l1r i 0 ∼ l2r i 0 also holds. Therefore,
there is the bi-simulation relation∼ betweenA 1

r i andA 2
r i.

iii) A 2
r i andA 3

r i

Let considerA 3
r i = (L3

r i, l
3
r i 0, T

3
r i, A

3
i). Obviously,

T 3
r i = T 1

r i \ Tr r holds.
For l2r i ∈ L2

r i and l3r i ∈ L3
r i such thatl2r i ∼ l3r i

holds,l2r i
a⇒ l2′r i ∈ T 2

r i holds for anya ∈ A2
i . For such a

transition, we consider the following cases.

1. The case in whichl2r i
a⇒ l2′r i /∈ Tr r holds.

In this case,l2r i
a⇒ l2′r i ∈ T 3

r i holds. Therefore,l3r i
a⇒

l3′r i ∈ T 3
r i exists, and the bi-simulation relationl2′r i ∼ l3′r i

holds.

2. The case in whichl2r i
a⇒ l2′r i ∈ Tr r holds.

10
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

As mentioned in Lemma 3.3, because the transitions
to remove have corresponding duplications, there is a du-
plication of l2r i

a⇒ l2′r i, such thatl3r i
a⇒ l3′r i ∈ T 3

r i, and
l2′r i ∼ l3′r i holds.

Let consider converse, becauseT 3
r i ⊂ T 2

r i holds, for
all a ∈ A2

i such thatl2r i
a⇒ l2′r i ∈ T 2

r i, there exists a tran-
sition l2r i

a⇒ l2′r i ∈ T 2
r i. Consequently, the bi-simulation

relationl2′r i ∼ l3′r i holds.
For initial states,l2r i 0 ∼ l3r i 0 also holds. Therefore,

there is the bi-simulation relation∼ betweenA 2
r i andA 3

r i.
From the facts i), ii) and iii), we can conclude thatAr i

and Ar i+1 are bi-simulation equivalent, and alsoAi and
Ai+1 are.

Takeshi Nagaoka received the M.I. degree
in Computer Science from Osaka University in
2007. He currently belongs in a doctoral course.
His research interests include abstraction tech-
niques in model checking, especially timed au-
tomaton.

Kozo Okano received the BE, ME, and Ph.D
degrees in Information and Computer Sciences
from Osaka University, in 1990, 1992, and 1995,
respectively. Since 2002 he has been an asso-
ciate professor in the Graduate School of Infor-
mation Science and Technology, Osaka Univer-
sity. In 2002, he was a visiting researcher of the
Department of Computer Science, University of
Kent at Canterbury. In 2003, he was a visiting
lecturer at the School of Computer Science, Uni-
versity of Birmingham. His current research in-

terests include formal methods for software and information system design.
He is a member of IEEE, IEICE of Japan and IPS of Japan.

Shinji Kusumoto received the BE, ME, and
DE degrees in information and computer sci-
ences from Osaka University in 1988, 1990, and
1993, respectively. He is currently a professor in
the Graduate School of Information Science and
Technology at Osaka University. His research
interests include software metrics and software
quality assurance technique. He is a member of
the IEEE, the IEEE Computer Society, IPSJ, IE-
ICE, and JFPUG.

