
Variable Coverage: A Metric to Evaluate the Exhaustiveness
for Program Specifications Based on DbC

Yuko Muto†, Yukihiro Sasaki†, Takafumi Ohta†, Kozo Okano†, Shinji Kusumoto†, and Kazuki Yoshioka†

†Graduate School of Information Science and Techlology, Osaka University, Japan
{okano, t-ohta, kusumoto}@ist.osaka-u.ac.jp

Abstract - For realizing dependability and maintainabil-
ity of software, Design by Contract is one of useful notions,
which utilizes constraints as contracts between the caller and
the callee routines in programs. Some verifiers for programs
are able to check whether given source code satisfies given
constraints. It is, however, hard to measure the exhaustive-
ness for specification, i.e., how much constraints cover ideal
specification for the source code. This paper proposes Vari-
able Coverage, a simple set of metrics to check the exhaus-
tiveness of specification with source code for Java and other
Object-Oriented programming languages. The proposed cov-
erage observes occurrence of variables in constraints, such
that the variables are also used in the target method/construc-
tor. We applied the metrics to three concrete programs in or-
der to evaluate that Variable Coverage is able to help to find
variables which should have been referred in specifications as
important variables. As a result, we found some shortage of
JML annotations in target programs, which shows the useful-
ness of the proposed metrics.

Keywords: DbC, Coverage, Specification,Testing, Metrics

1 Introduction

Formal methods[1], mathematical techniques for the spec-
ification, development and verification of software and hard-
ware systems, have attracted much attention because they are
said to play important roles for designing software as increas-
ing the size of software. The larger program sizes, the more
frequently software testing misses corner-case. On the other
hand, formal methods have potential for exhaustive checking.
In the industry, some real large projects succeeded ussing for-
mal methods, such as the public transportation systems[2].
Formal methods are classified into three technologies: de-
ductive methods, model checking, model-based simulation or
testing.

Design by Contract (DbC) [3] is a well-known notion to
clarify the responsibility between callers and callees. Java
Modeling Language (JML) [4]–[6] is a specification language
for Java based on DbC. Program based on DbC can be verified
with some techniques, static checking and runtime checking.
For example, ESC/Java2[7] and jml4c[8] are such tools for
Java. For another language, Spec# [9] is a superset of C#, and
the static checker for Spec# developped by Microsoft uses
Boogie[10].

It is, however, hard to determine whether the speficication
is well-written (exhaustive) or not. If the specification is low
exhaustive, the correctness of the program is not clear. Take
runtime checking as an example. A runtime checker pro-

duces a violation when source code and its specification do
not meet. No violation is reported by runtime checkers if the
code has no specification because there is not any constraint
to check. Consequently we cannot anything about the quality
of the source code.

Some papers have studied coverage metrics for hardware
verification. Paper[11] summarizes some coverage metrics
for simulation-based verification such as code coverage, as-
sertion coverage. In order to generate test efficiently, Paper
[12] has proposed functional coverage as the amount of con-
trol behaviors covered by the test suite using abstraction tech-
niques. Nevertheless, there are few coverage metrics which
can be applied to general purpose programming languages at
the implementation level such as JML.

In this paper, we propose Variable Coverage as coverage
metrics for formal specifications at the implementation level.
Variable Coverage consists of the coverage for pre-condition,
post-condition, assignable and invariant.

We have experimented it to apply the three kinds of pro-
grams using a prototype which measures Variable Coverage.
As a result, we found some shortage of JML annotations in
the target programs, which shows the usefulness of our pro-
posed metrics.

The paper is organized as follows. Section 2 provides the
definitions of some words as preliminary, and Section 3 men-
tions the related works. Section 4 will show our proposed
method, Variable Coverage, followed by experiments and dis-
cussion in Sections 5 and 6, respectively. Finally, Section 7
concludes this paper.

2 Preliminaries

This section provides some concepts and the definition of
as preliminaries.

2.1 Design by Contract

Design by Contract (DbC) is a notion proposed by Bertrand
Meyer [3]. In DbC, suppliers (caller routine) and clients (callee
routine) make contracts each other. Clients should satisfy the
pre-conditions, and suppliers should satisfy the post-conditions
under pre-conditions. This mechanism makes it easy to iden-
tify bugs.

Some programming languages support DbC as standard,
others have the specification language separately from the
core grammer of the language. Eiffel[13] supports DbC as
standard. C# and Java have no standard contract system but
some specification languages are proposed separately. Spec#[9]

is a superset of C# to describe contracts. For Java, Java Mod-
eling Language[4] is the de-facto standard specification lan-
guage.

2.2 Constraints

Pre-condition for a routine (method) is a set of boolean con-
straints. It should be true prior to the routine execution.
Clients are responsible to meet pre-condition.

Post-condition for a routine is a set of boolean constraints.
It should be true after the routine execution provided that
its associate pre-condition holds. Suppliers are responsible to
meet post-condition under the pre-condition.

The routine is permitted to assign values to only the vari-
ables specified in Assignable. The constrains provide to de-
tect side effects for developers.

Invariant is a set of boolean constraints. It should be always
true. Depending on the target of constraint, invariants are
divided into class invariant and loop invariant. This paper
deals with only the class invariant.

2.3 Java Modeling Language

Java Modeling Language (JML) is a specification language
based on Design by Contract for Java. JML supports pre-
condition, post-condition, assignable and invariant. We ex-
plain them through class BankAccount, an account for cus-
tomer of a bank, as example.

Figure 1 is the source code of class BankAccount with
JML.

Pre-conditions Keyword@requires is used to express the
pre-condition. In Fig. 1, methods withdraw and
deposit have pre-conditions at lines 12,13 and 20.

Post-conditions Keyword@ensuresmeans the post-condition.
The constructor and methods withdraw, deposit
and getBalance have post-conditions. Line 6 in Fig.
1 means that field balance is 0 after instance cre-
ation.

Assignables @assignable is used to express assignable.
The following @assignable clases, fields which can
be assigned are listed. If every field is prohibited to be
assigned, describe @assignable \nothing like line
28 in Fig. 1. Furthermore, @pure is equivalent to
@assignable \nothing; this is used to make it
short.

Invariants The JML description of invariants is
@invariant. Also, if an attribute awith @non_null,
it is equivalent to @invariant a != null. In Fig.
1, line 4 is invariant clause which means field balance
must be 0 or more at any time.

2.4 Global Variables

Generally, the word “global variables” are not used in object-
oriented programming language. In this paper, as a matter of
convenience, we define global variables as follows.

1 public class BankAccount {
2

3 private int balance;
4 // @invariant balance >= 0;
5

6 // @ensures balance == 0;
7 // @assignable balance;
8 public BankAccount() {
9 this.balance = 0;

10 }
11

12 // @requires amount >= 0;
13 // @requires balance >= amount;
14 // @ensures balance == \old(balance) -

amount;
15 // @assignable balance;
16 public void withdraw(int amount) {
17 this.balance -= amount;
18 }
19

20 // @requires amount >= 0;
21 // @ensures balance == \old(balance) +

amount;
22 // @assignable balance;
23 public void deposit(int amount) {
24 this.balance += amount;
25 }
26

27 // @ensures \result == balance;
28 // @assignable \nothing;
29 public int getBalance() {
30 return this.balance;
31 }
32

33 // @pure
34 public void inquiry() {
35 System.out.println("Balance is " + this.

balance);
36 }
37

38 }

Figure 1: Source Code of Class BankAccount with JML

Definition 2.1 (Global Variables)
When a method m is a member of class c, a global variable g
is defined as:

• g is not a member of c, and

• g is visible from m

Figure 2 shows an example of a global variable. A variable
font of class Config is a global variable for method draw.

3 Related Work

This section introduces some works related to this paper.

3.1 Program Verification

ESC/Java[16], an Extended Static Checker for Java, is the
practical usable checker among early verifiers. Currently, its
successor version, ESC/Java2[17] is widely used, and it sup-
ports JML2.

Supporting the newer Java, Mobius[18] attracts rising at-
tention as a program verification environment (PVE), includ-
ing static checkers, runtime checkers and verifiers. It is pro-
vided as an Eclipse[19] plug-in. ESC/Java2 is also integrated
into Mobius.

1 public class Config {
2 public static Font font;
3 }
4

5 public class Customer {
6 public void draw(Graphics g) {
7 g.setFont(Config.font);
8 g.drawString("An example for a global

variable", 10, 10);
9 ...

10 }
11 }

Figure 2: An Example of a Global Variable

3.2 Verification Coverage

Coverage metrics for formal verification are called verifi-
cation coverage in mainly the field of hardware. Verification
coverage falls into two categories: syntactic coverage and se-
mantic coverage[11]. As syntactic coverage, code coverage
for model-based simulation is the metrics derived from soft-
ware testing[20]. The ratio of executed code during the sim-
ulation is code coverage. As simple coverage, line coverage,
the code of block without control transition.

Coverages depending on control flow graph (CFG), are branch
coverage, expression coverage, path coverage.

For semantic coverage, there are functional coverage and
assertion coverage. Assertion coverage is the measuring method
which users determine variables which to observe. The asser-
tion coverage measures what assertions are covered with a
given set of input sequence[11].

In order to generate test suite and analyze it, paper [12] pro-
posed functional coverage which is the amount of control be-
havior covered by the test suite using abstraction techniques.

3.3 Assertion Density

Assertion density is the number of assertions per line of
code[21]. Without sufficient assertion density, the full ben-
efits of assertions are not realized. Assertions must be veri-
fied, which are behaviors as design intents, i.e., statements for
properties.

4 Variable Coverage

This section defines Variable Coverage, our proposed method.

4.1 Motivation

Formal verification checks consistency between source code
and its constracts based on Class Correctness formula. Pa-
per[11] also states that “Measuring the exhaustiveness of a
specification in formal verification has a similar flavor as mea-
suring the exhaustiveness of the input sequences in simulation-
based verification for hardware.” Applying the idea to soft-
ware, the input sequences of a method/constructor correspond
to variables. Consequently, we propose a coverage metric
which observes variables.

4.2 Policies

We propose a set of metrics which supports these policies:

1. Our metric checks all variables as input and output.
It is oriented from verification coverage.

2. Our metric is simple.
The execution of measuring the coverage requires enough
short time. The metric targets developers who describe
assertions in JML. Our metric should be checked in
short time on a frequent basis when they want to check.

3. Our metric uses only static information.
Using only static information (source code and JML)
without execution trace enables to measure coverage
for a part of incomplete code.

4.3 Constraints Development Process with
Variable Coverage

Quickly measuring Variable Coverage (VC in short) en-
ables to high-frequently measure it. Implementators can im-
prove constraints description by the iterative process:

Step1 Implementators describe assertions

Step2 VC is measured

Step3 Iterate Step1 if implementators find lack of their asse-
tions

We call such an iteration “Quick VC revise.”

4.4 Definition of Variable Coverage

VC consits of four kinds of metrics, including coverage for
pre-condition, post-condition, assignable and invariant. Ta-
bles 1 and 2 show VC metrics for a single constraint and mul-
tiple constraints, respectively .

4.4.1 The Coverage for Pre-conditions

Pre-conditions should check all input variables, i.e., param-
eter of the method, attributes and global variables refered in
the method. Thus, the Coverage for Pre-conditions consists
of Parameters Coverage, and Refered Attributes Coverage.

Definition 4.1 (PrPC)
Let P (m), and Pheld−by−pre(m) be a set of parameters de-
fined in method m, and held by pre-condition in method m,
repsctively. Equation (1) definesPrPC(m), Parameters Cov-
erage for pre-conditions of method m.

PrPC(m) =
| Pheld−by−pre(m) |

| P (m) | (1)

For Fig. 3, | Pheld−by−pre(m) | = | {age} | = 1, and
| P (m) | = | {name, age} | = 2 hold. Hence, we have
PrPC(m) = 1/2.

Definition 4.2 (PrAC)
LetAreferred(m), andAheld−by−pre(m) be a set of attributes
referred in method m, and held by pre-condition in method
m, respectively. Equation (2) defines PrAC(m), Referred
Attributes Coverage for pre-conditions of method m.

PrAC(m) =
| Aheld−by−pre(m) |
| Areferred(m) | (2)

Table 1: Variable Coverage (single-constraint)
Coverage Name Constraint Target Variables Measuring Unit
PrPC Pre-Condition Parameters Method
PrAC Refered attributes Method
PrGC Refered global variables Method
PoRC Post-Condition Return value Method
PoAC Assigned attributes Method
PoGC Assigned global variables Method
AAC Assignable Assigned attributes Method
IAC Invariant Attributes Class

Table 2: Variable Coverage (multi-constraint)
Coverage Name Constraint Target Variables Measuring Unit
PrIAC Pre-condition + invariant Refered attributes Method
PoIAC Post-condition + invariant Assigned attributes Method

1 //@ requires age >= 0;
2 // no requires holds ’name’
3 public Customer(String name, int age){
4 this.name = name;
5 this.age = age;
6 }

Figure 3: An Example to Explain Parameters Coverage for
Pre-condition

Definition 4.3 (PrGC)
Let Greferred(m), and Gheld−by−pre(m) be a set of global
variables referred in method m, and held by pre-condition in
methodm, respectively. Equation (3) defines PrGC(m), Re-
ferred Global Variables Coverage for pre-conditions of method
m.

PrGC(m) =
| Gheld−by−pre(m) |
| Greferred(m) | (3)

4.4.2 The Coverage for Post-conditions

Post-conditions observe output variables which affect the out-
side of method, i.e., return value, attributes and global vari-
ables assigned in the method. Hence, the coverage for post-
condition is composed of Return Value Coverage, Assigned
Attributes Coverage and Assigned Global Variables Cover-
age.

Definition 4.4 (PoRc)
Equation (4) definesPoPC(m), Parameters Coverage for post-
conditions of method m.

PoRC(m) =

{
1 (return value is held by post-condition)
0 (otherwise)

(4)

Definition 4.5 (PoAC)
LetAassigned(m), andAheld−by−post(m) be a set of attributes
assigned in method m, and held by post-condition in method
m, respectively. Equation (5) defines PoAC(m), Assigned

Attributes Coverage for post-conditions of method m.

PoAC(m) =
| Aheld−by−post(m) |
| Aassigned(m) | (5)

Definition 4.6 (PoGC)
Let Gassigned(m), and Gheld−by−post(m) be a set of global
variables assigned in method m, and held by post-condition
in method m, respectively. Equation (6) defines PoGC(m),
Assigned Global Variables Coverage for post-conditions of
method m.

PoGC(m) =
| Gheld−by−post(m) |
| Gassigned(m) | (6)

4.4.3 The Coverage for Assignables

Constraints assignable are written on methods or construc-
tors. Some variables are assigned in the method or construc-
tor, among them attributes have the scope of method outside.
Thus, coverage for assignable includes Assigned Attributes
Coverage.

Definition 4.7 (AAC)
LetAassigned(m), andAheld−by−asgn(m) be a set of attributes
assigned in method m, and held by assignable in method m,
respectively. Equation (7) defines AAC(m), Assigned At-
tributes Coverage for assignable of method m.

AAC(m) =
| Aheld−by−asgn(m) |

| Aassigned(m) | (7)

4.4.4 The Coverage for Invariants

Class invariants are described in a class. The variables owned
by classes are attributes. Hence, coverage for invariants has
Attributes Coverage for invariant.

Definition 4.8 (IAC)
LetA(c), andAheld−by−inv(c) be a set of attributes owned by
class c, and held by invariants in class c, respectively. Equa-
tion (8) defines IAC(c), Attributes Coverage for invariant of

class c.

IAC(c) =
| Aheld−by−inv(c) |

| A(c) | (8)

4.4.5 The Coverage for Pre-conditions and Invariants

Definition 4.9 (PrIAC)
Let assume that Class c owns methodm. Also letAreferred(m),
Ahold−by−pre(m), and Ahold−by−inv(c) be a set of attributes
referred in methodm, held by pre-condition in methodm, and
held by invariants in class c, respectively. Equation (9) defines
PrIAC(m), Referred Attributes Coverage for pre-conditions
and invariants of method m.

PrIAC(m) =
PrIACNR(m)

| Areferred(m) | (9)

, where PrIACNR(m) =
| Areferred(m) ∩ (Aheld−by−pre(m) ∪ Aheld−by−inv(c)) |

4.4.6 The Coverage for Post-conditions and Invariants

Definition 4.10 (PoIAC)
Let assume that Class c owns method m. Let Aassigned(m),
Ahold−by−post(m), andAhold−by−inv(c) be a set of attributes
referred in method m, held by post-condition in method m,
and held by invariants in class c, respectively. Equation (10)
defines PoIAC(m), Assigned Attributes Coverage for post-
conditions and invariants of method m.

PoIAC(m) =
PoIACNR(m)

| Aassigned(m) | (10)

, where PoIACNR(m) =
| Aassigned(m) ∩ (Aheld−by−post(m) ∪ Aheld−by−inv(c)) |

4.4.7 Ignored Variables

Constants are ignored from measuring the coverage because
such variables do not affect on communication among meth-
ods. For example, in Java, the variables decorated by final
modifier are ignored.

5 Evaluation

This section gives the experimental evaluation and the re-
sults.

5.1 Overview

We performed experimentation using our prototype tool in
order to evaluate our proposed coverage metrics. We mea-
sured (1) execution times, and (2) the numeric results of our
proposed coverage. Here is the experimental environment;
Machine is HP Z800 Workstation (Xeon E5607 dual core
2.27GHz, 2.26GHz and main memory 32GB); It was installed
Windows 7 Professional for 64bit with Service Pack 1 and
Java Version 1.7.

5.2 Target Programs

We apply our approach to three programs: Warehouse Man-
agement Program (WMP)[22], HealthCard (HC)[23],[24], and
Syllabus Management System for a university (SMS). Table
3 summerizes the target programs including the size of pro-
grams and available assertion types which the program has.

Table 3: Target Programs
Target Program N Available JML Assertions
WMP 53 requires,ensures,

assignable,invariant
HC 197 requires,ensures,assignable
SMS 562 requires,ensures

N = The number of target methods and constructors

WMP is developped by an ex-member of our research group.
This program has all of requires, ensures, assignables and
invariants, and they are whole passed by the static checker,
ESC/Java2.

HC is a medical appointment application which is written
as a master thesis work by Joao Pestana Ricardo Rodrigues
from University of Madeira. It is based on JavaCard, the plat-
form of IC card devices. In general, the embeded systems
need more strictly quality because it is hard to update their
software. The HealthCard has two versions: running version
and JML version. We utilize JML version as experimental tar-
get because JML version contains more JML description than
running version. HealthCard program has no @invariant
in JML because model is used instead of @invariant.
Thus, in this evaluation, Attributes Coverage for Invariant are
not measured.

SMS is implemented in Java by a software company as an
educational resource for IT Specialist Program Initiative for
Reality-based Advanced Learning (IT Spiral), a national edu-
cational project leading by MEXT. Members of our research
group added only preconditions and postconditions in JML
into the system, and the system produces no violations by
jml4c, a runtime checker.

We add the standard libraries (e.g.,java.lang.Object)
with JML descriptions[17] into target programs. Thus, into
the class which inherits a class or implements a interface, the
contracts of its superclass or interface are added. For exam-
ple, the contracts of java.lang.Object#toString()
are added into all methods toString(). As well, the re-
sults of coverage do not include the methods of the standard
libraries. Furthermore, we excluded abstract classes, inter-
faces, test classes and the main method because they should
not have necessarilly contracts.

5.3 Results of Execution Times

Table 4 shows the results of execution times. We measured
threr excecution times for each program; it shows the average
of them.

Table 4: Execution Times
Target Program Execution Time
WMP 9.3 sec
HC 16.0 sec
SMS 14.0 sec

5.4 Results of Variable Coverage

Tables 5, 6, and 7 show the results of coverages for pre-
conditions, for post-conditions, and for assignable, respec-
tively.

Table 5: Results of Coverage for Pre-conditions
Target Program PrPC PrAC PrIAC
WMP 99.17% 9.09% 96.97%
HC 79.22% 46.24% NA
SMS 41.82% 2.77% NA

Table 6: Results of Coverage for Post-conditions
Target Program PoRC PoAC PoIAC
WMP 100.00% 94.12% 100.00%
HC 84.11% 48.39% NA
SMS 99.68% 99.38% NA

Table 8 shows the results of coverage of invariant for Ware-
house Management System.

6 Discussion

This section discuses the experimental results and the threats
to validity.

6.1 Warehouse Management Program

The following method does not cover Parameter Coverage
for pre-conditions:
StockManagement.Request#

Request(java.lang.String, int,

StockManagement.Customer, java.util.Date,

byte).
We found that parameterrqst is not covered by requires

in source code of the constructor Request. The byte-type
parameter rqst means the request state instead of Enum, as
SHORTAGE=0, SATISFYED=1, DELIVERED=2, WAIT=3.
Threfore, constraints of class Request in JML lack because
its attribute rqst must be any of 0 to 3.

Table 6 shows that every return value is held by its post-
conditions. No problem was found when we read the source
code and JML.

For Assigned Attributes Coverage for Post-condition, the
following meshod does not cover it:
StockManagement.ReceiptionDesk#

ReceiptionDesk().
Developers who described the souce code and JML seemd

to recognize the shortage of post-condition, because there is

Table 7: Results of Coverage for Assignable
Target Program AAC
WMP 100.00%
HC 41.94%
SMS NA

Table 8: Results of Coverage for Invariant (Warehouse Man-
agement Program)

Class Name P IAC
ContainerItem 3 / 3 100.00%
Customer 3 / 3 100.00%
Item 2 / 2 100.00%
ReceiptionDesk 2 / 2 100.00%
Request 4 / 6 66.67%
StockState NA NA
Storage 3 / 3 100.00%

P=The number of attributes held by invariants / the Number
of attributes

a comment “ensures are included in invariants” in the source
code (Fig. 4).

1 //ensures are included in invariants.
2 //@ public behavior
3 //@ assignable tequestList, storage;
4 public ReceiptionDesk() {
5 tequestList = new LinkedList();
6 storage = new Storage();
7 }

Figure 4: Constructor ReceptionDesk which is Not Covered
by Post-conditions

In the source code of class ReceptionDesk (Fig. 5),
attributes requestList and storage are held by invari-
ants.

Also, the result of Assigned Attributes Coverage for Post-
condition and Invariant is 100%. Even if Assigned Attributes
Coverage for Post-condition is low, we can conclude that the
source code does not have the problem because the value
of Assigned Attributes Coverage for Post-condition is high.
Hence, VC helps us to clarify that source code has no prob-
lem.

Like the case of class ReceptionDesk, it is hard to know
the reason why post-conditions are omitted in a general case.
One solution is the designer should describe a comment or
some keyword when the post-conditions are included in the
class invariants.

Table 7 shows that all assigned attributes are held by assignables.
Therefore, we can see that every assignable is described rightly
in Warehouse Management Program.

Table 8 shows that Attributes Coverage for Invariant of
most of classes have 100%, but the coverage of class Request
is 66%. Class Request has six attributes but the two of
all are not held by invariant constraints. We found that at-
tributes deliveringDate and requestState in class
Request, are the cause. deliveringDate is defined as
java.util.Date type field which means the date of de-

public class ReceiptionDesk {
private /*@ spec_public non_null @*/ List

requestList;
private /*@ spec_public non_null @*/ Storage

storage;
//@ public invariant \typeof(requestList) ==

\type(Request);
...

}

Figure 5: Invariants in Class ReceptionDesk

Table 9: Extracted Results of Coverage for HealthCard

T N PrPC PrAC PoRC PoAC AAC
(1) 197 79.22 % 46.24 % 84.11% 48.39% 41.94 %
(2) 38 82.61% 42.86 % 88.89% NA NA

T=The Type of Targets
N=The Number of Targets
(1):All methods and constructors
(2):Except for constructors, setters and getters

livering. Any field of type java.util.Date except for
deliveringDate in class Request has a constraint “the
field is not null.” Thus, the implementor has no idea about the
constraints of deliveringDate becausedeliveringDate
can be null before delivering. The same is true respect to field
requestState. Figure 6 shows our suggested revised ver-
sion of constraints for them based on the results.

1 public class Request implements Comparable {
2 private /*@ spec_public non_null @*/ Date

receiptionDate;
3 private /*@ spec_public non_null @*/ String

itemName;
4 private /*@ spec_public @*/ int amount;
5 private /*@ spec_public non_null @*/

Customer customer;
6

7 private byte requestState;
8 private Date deliveringDate;
9 //@invariant

10 (requestState != delivered &&
deliveringDate == null) ||

11 (requestState == delivered &&
deliveringDate != null);

12 ...
13 }

Figure 6: Class Request with JML We Suggest

6.2 HealthCard

From the manual inspection we conclude that the JML as-
sertion for HealthCard is described in the following way. No
constructors has JML description because JML description is
on interface. Setters and getters have no JML description. We
discuss constructors, setters and getters later. Table 9 includes
the results of HealthCard except for constructors, setters and
getters.

According to Table 9, the following methods have no pre-
condition with their parameters though they are setters/getters

nor constructors:

• commons.CardUtil#byte[] clone(byte[])

• commons.CardUtil#void cleanField(byte[])

• commons.CardUtil
#boolean validateObjectArrayPosition
(java.lang.Object[], short)

• commons.CardUtil
#short countNotNullObjects
(java.lang.Object[])

The parameters of the methods are array type, and any
caller or any callee dose not guarantee that each of the pa-
rameters is not null. We found the shortage of JML descrip-
tions by applying Variable Coverage. In addition, the meth-
ods do not check whether their parametera are null or not in
their body. NullPointerException is thrown when the
parameter array is null. It shows that these methods have
potential bugs.

Also, there is a method with comments in natural language
instead of constraints in JML. Figure 7 shows the source code
of method
validateObjectArrayPosition of class CardUtil
. Line 1 in the figure indicates that the developers know the
lack of JML descriptions. We consider, as future work, that it
is possible to infer contracts from useful comments.

1 //Returns false if position points to a null
value or if position is out of bounds.

2 //@ assignable \nothing;
3 public /*@ pure @*/ static boolean

validateObjectArrayPosition (Object[]
array, short position) {

4 if(position < 0 || position >=
countNotNullObjects(array))

5 return false;
6 else
7 return true;
8 }

Figure 7: Comments Instead of Contracts

For Referred Attributes Coverage for Pre-condition, the re-
sults of 23 methods are not full coverage. For methodstoString
ocuppying 8 of 23, they are eliminated from the results be-
cause their source code have the comments, “Testing code.”

One behalf of other 15 methods, we explain a method
validateAllergyPosition. It does nothing other than
calling utility method
validateObjectArrayPosition of class CardUtil
(Fig. 8).

1 public boolean validateAllergyPosition(short
position){

2 return CardUtil.validateObjectArrayPosition(
this.allergies, position);

3 }

Figure 8: Source Code of Method validateAllergyPosition

It is preferable that contract violations are produced at pre-
vious step than later because it makes easy to identify bugs.
Thus, methods validateAllergyPosition
and validateVaccinePosition should be written more
JML descriptions.

For Return Value Coverage for Post-condition, in analogy
with pre-conditions, the following methods have no post-conditions
in spite they are setters/getters nor constructors:

• commons.CardUtil#byte[] clone(byte[])

• commons.CardUtil
#short countNotNullObjects
(java.lang.Object[])

• commons.CardUtil
#boolean validateObjectArrayPosition
(java.lang.Object[],short)

The JML descriptions of the methods can be improved. For
method clone, we suggest the post-conditions
@ensures \result != null. Also, we have the idea
like Figure 9 for methodvalidateObjectArrayPosition,
from its comment “//Returns false if position points to a null
value or if position is out of bounds.”:

/*@ ensures
(\result == false) ==>
(array == null ||
position <= 0 || position >=

countNotNullObjects(array))
@*/

Figure 9: Post-condition of Method validateObjectArrayPo-
sition which We Recommend

For method countNotNullObjects,
we suggest @ensures \result >= 0;.

About Assigned Attributes Coverage for Post-condition, the
result is not available because there are no methods which as-
sign to the attributes.

There are no methods which assign the attributes except for
constructors, setters and getters.

In general, constructors and setters tend to change the at-
tributes. Although every getter does not change the attributes,
its return value is used by other methods. In order to guaran-
tee the behavior of the class, constructors, setters and getters
should have JML desciriptions.

We recommend for developers to describe the JML descip-
tion of constructors, setters and getters like Figure 10. To set-
ters, developers should write pre-condition which means that
parameters equals attributes assigned. To getters, develop-
ers should write post-condition which means that return value
equals attributes returned.

6.3 Syllabus Management System

The parameters of 207 methods are not held by pre-conditions;
144 of them are setters, and 63 are others. As an instance of
setters, Figure 11 shows the source code of method
setJugyouKamoku of class
JikanwariJugyouKamokuDTO.

public class Person {
private String name;

//@requires name != null;
//@ensures this.name == name;
public Person(String name) {
this.name = name;

}

//@requires name != null;
//@ensures this.name == name;
public void setName(String name) {
this.name = name;

}

//@ensures \result == this.name;
//@assignable this.name;
public String getName() {
return this.name;

}

}

Figure 10: Source Code with JML of Setter and Getter We
Recommend

When parameter jugyouKamoku is null,
the attribute jugyouKamoku is set to null.

If method setJugyouKamoku are called again, the null
reference is occured at line 2. Thus, pre-condition should
have the constraints for parameter jugyouKamoku which
means jugyouKamoku != null.

1 //@ ensures this.jugyouKamoku.equals(
jugyouKamoku);

2 public void setJugyouKamoku(final JugyouKamoku
jugyouKamoku) {

3 this.jugyouKamoku = jugyouKamoku;
4 }

Figure 11: An Example for Setter of Syllabus Management
System

Only the following method does not have full coverage for
Return Value Coverage for Post-Condition:
service.UserServiceImpl#

boolean authenticate(java.lang.String,

java.lang.String, entity.UserKubun)

The methodauthenticate of class UserServiceImpl
returns true or false depending on its parameters. We
found no post-condition in its source code; It is hard to dis-
tinguish from forgetting constraints. Therefore, for such a
method, we recommend to write explicitly these contract to
alternate from oversights:
ensures \result == true|false;.

For Assigned Attributes Coverage for Post-condition, the
result of the below method is not held by post-conditions:
entity.Soshiki # void add(entity.Soshiki)

Figure 12 shows the source code of the method
add of class Soshiki. Post-condition at Line 3 calls get-
ter method getKaiSoshiki. From The source code of the
getter (Figure 13), the getter just returns the attribute
kaiShoshiki without changing it. We recommend to de-
scribe

ensures this.kaiSoshiki.contains(soshiki);
instead of line 3.

1 //@ requires soshiki != null;
2 //@ ensures this.getKaiSoshiki().contains(

soshiki);
3 public void add(final Soshiki soshiki) {
4 if (getKaiSoshiki() == null) {
5 this.kaiSoshiki = new LinkedHashSet<

Soshiki>();
6 }
7 soshiki.setJouiSoshiki(this);
8 getKaiSoshiki().add(soshiki);
9 }

Figure 12: Source Code of Method add of Class Soshiki

1 //@ ensures (this.kaiSoshiki != null) ? (this.
kaiSoshiki.size() == \result.size()) && (
\forall Soshiki s; this.kaiSoshiki.
contains(s); \result.contains(s)) : \
result == null;

2 // anotation OneToMany(cascade = CascadeType.
ALL, targetEntity = Soshiki.class,
mappedBy = "jouiSoshiki")

3 public Set<Soshiki> getKaiSoshiki() {
4 return this.kaiSoshiki;
5 }

Figure 13: Source Code of Method getKaiSoshiki of Class
Soshiki

Calling the setter of the attribute in the methods is the same
as assigning the attribute. For example, line 5 at Figure 14 is
equivalent to assigning the attribute SESSION. Assigned At-
tributes Coverage should be extend to target calling the setter
of the attribute additionally.

1 public static Session currentSession() {
2 Session s = SESSION.get();
3 if (s == null) {
4 s = SESSION_FACTORY.openSession();
5 SESSION.set(s);
6 }
7 return s;
8 }

Figure 14: Example for the Unmonitored Case of Assigning
to An Attribute

7 Conclusion

This paper proposed Variable Coverage, a set of metrics for
the exhaustiveness of specification with source code based on
Design by Contract. Our proposed coverage observes some
variables depending on constraints. We applied our approach
to three programs in order to evaluate that Variable Coverage
is able to help to find variables which should have been re-
ferred in specifications as important variables. As a result, we
found some shortage of JML annotations in target programs,
which shows the usefulness of our proposed metrics.

Future work includes to infer the constraints to describe.
The first idea is suggesting constraints to describe from the
comments in the source code. The second idea is using the
modifiers of method; static methods should not have assignable
clause except for static variables, which means no attributes
are permitted to assign, because static methods do not change
the internal state (i.e., attributes). Such a modifier helps to
generate helpful assertions.

Acknowledgments

This work is being conducted as a part of Grant-in-Aid for
Scientific Research C(21500036) and S(25220003).

REFERENCES

[1] Edmund M. Clarke and Jeannette M. Wing. Formal
Methods: State of the Art and Future Directions. ACM
Computing Surveys, 28(4):626–643, December 1996.

[2] Jean-Raymond Abrial. Formal Methods in Industry. In
Proceeding of the 28th international conference on Soft-
ware engineering - ICSE ’06, page 761, New York, New
York, USA, May 2006. ACM Press.

[3] Bertrand Meyer. Applying ‘Design by Contract’. IEEE
Computer, 25(10):40–51, 1992.

[4] Gary T Leavens, Albert L Baker, and Clyde Ruby. JML:
A Notation for Detailed Design. Behavioral Specifica-
tions of Businesses and Systems, pages 175–188, 1999.

[5] Patrice Chalin, Perry R. James, and George Karabotsos.
JML4: Towards an Industrial Grade IVE for Java and
Next Generation Research Platform for JML. In Natara-
jan Shankar and Jim Woodcock, editors, Proceeding
VSTTE ’08 Proceedings of the 2nd international con-
ference on Verified Software: Theories, Tools, Experi-
ments, volume 5295 of Lecture Notes in Computer Sci-
ence, pages 70–83, Berlin, Heidelberg, October 2008.
Springer.

[6] David R. Cok. OpenJML: JML for Java 7 by extending
OpenJDK. In Proceeding NFM’11 Proceedings of the
Third international conference on NASA Formal meth-
ods, pages 472–479, April 2011.

[7] David R. Cok and Joseph R Kiniry. ESC/Java2: Uniting
ESC/Java and JML. In International Workshop on Con-
struction and Analysis of Safe Secure and Interoperable
Smart Devices CASSIS 2004, volume 3362 of Lecture
Notes in Computer Science, pages 108–128. Springer,
2004.

[8] Amritam Sarcar. A New Eclipse-Based JML Com-
piler Built Using AST Merging. In 2010 Second World
Congress on Software Engineering, pages 287–292.
IEEE, December 2010.

[9] Mike Barnett, K. Rustan M. Leino, and Schulte. The
Spec# Programming System: An Overview. In Gilles
Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis
Lanet, and Traian Muntean, editors, Construction and
Analysis of Safe, Secure, and Interoperable Smart De-
vices, volume 3362 of Lecture Notes in Computer Sci-
ence, pages 49–69, Berlin, Heidelberg, 2005. Springer.

[10] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine,
Bart Jacobs, and K. Rustan M. Leino. Boogie: A Mod-
ular Reusable Verifier for Object-Oriented Programs.
In 4th International Symposium, FMCO 2005, volume
4111 of Lecture Notes in Computer Science, pages 364–
387, 2006.

[11] Hana Chockler, Orna Kupferman, and Moshe Vardi.
Coverage Metrics for Formal Verification. International
Journal on Software Tools for Technology Transfer, 8(4-
5):373–386, April 2006.

[12] Dinos Moundanos, Jacob A. Abraham, and Yatin V.
Hoskote. Abstraction Techniques for Validation Cov-
erage Analysis and Test Generation. IEEE Transactions
on Computers, 47(1):2–14, 1998.

[13] Bertrand Meyer. Eiffel : The Language (Prentice Hall
Object-Oriented Series). Prentice Hall, 1991.

[14] Charles Antony Richard Hoare. An Axiomatic Basis for
Computer Programming. Communications of the ACM,
12(10):576–580, October 1969.

[15] Bertrand Meyer. Object-Oriented Software Construc-
tion (2nd Edition). Prentice Hall, 2 edition, 2000.

[16] Cormac Flanagan, K. Rustan M. Leino, Mark Lillib-
ridge, Greg Nelson, James B. Saxe, and Raymie Stata.
Extended Static Checking for Java. ACM SIGPLAN No-
tices, 37(5):234, May 2002.

[17] KindSoftware. ESC/Java2.
[18] Joseph Kiniry, Patrice Chalin, Clément Hurlin, Bertrand

Meyer, and Jim Woodcock. Integrating Static Checking
and Interactive Verification: Supporting Multiple The-
ories and Provers in Verification. In Bertrand Meyer
and Jim Woodcock, editors, VERIFIED SOFTWARE:
THEORIES, TOOLS, EXPERIMENTS, volume 4171 of
Lecture Notes in Computer Science, pages 153–160.
Springer, Berlin, Heidelberg, 2008.

[19] Eclipse Foundation. Eclipse.
[20] Serdar Tasiran and Kurt Keutzer. Coverage Metrics for

Functional Validation of Hardware Designs. IEEE De-
sign & Test of Computers, 18(4):36–45, 2001.

[21] Harry Foster, David Lacey, and Adam Krolnik.
Assertion-Based Design. Springer, second edition, May
2004.

[22] Masayuki Owashi, Kozo Okano, and Shinji Kusumoto.
Design of Warehouse Management Program in JML
and Its Verification with ESC/Java2 (in Japanese). The
Transactions of the Institute of Electronics, Information
and Communication Engineers D, 91(11):2719–2720,
2008.

[23] Ricardo Miguel Soares Rodrigues. JML-Based formal
development of a Java card application for managing
medical appointments. University of Madeira, 2009.

[24] Ricardo Miguel Soares Rodrigues. HealthCard.

