
Enhancement of CRD-Based Clone Tracking

Yoshiki Higo, Keisuke Hotta, Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University, JAPAN

{higo,k-hotta,kusumoto}@ist.osaka-u.ac.jp

ABSTRACT
Many researchers have conducted a variety of research related to
clone evolution. In order to grasp how clones have evolved, clones
must be tracked. However, conventional clone tracking techniques
are not feasible to track clones if they moved to another location in
the source code. Consequently, in this research, we propose a new
clone tracking technique. The proposed technique is an enhanced
version of clone tracking with clone region descriptor (CRD) pro-
posed by Duala-Ekoko and Robillard. The proposed technique can
track clones even if they moved to another location. We have im-
plemented a software tool based on the proposed technique, and
applied it to two open source systems. In the experiment, we con-
firmed that the proposed technique could track 44 clone groups,
which the conventional CRD tracking could not track. The accu-
racy of the tracking for those clones was 91%.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineer-
ing

General Terms
Design, Measurement

Keywords
Code clone, clone evolution, tracking clones

1. INTRODUCTION
Code cloning is a common practice in software development

[13]. There are various reasons why clones occur in source code,
for example, rapid implementation of required functionality, reuse
of reliable existing code, and using existing code as templates for
new functionality.

At the same time, there are many previous works saying that the
presence of clones has negative impacts on software development
[1, 11]. For example, if we modify a code fragment that has clones,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWPSE ’13, August 19-20, 2013, Saint Petersburg, Russia
Copyright 13 ACM 978-1-4503-2311-6/13/08 ...$15.00.

139	 	 public	 void	 execute()	 throws	 BuildException	 {	
	 	 	 	 	 	 	 ...	
	
155	 	 　　if	 (command	 !=	 null)	 {	
156	 	 	 	 	 	 log("cmd	 :	 "	 +	 command,	 Project.MSG_INFO);	
157	 	 	 	 	 	 executeCommand(command);	
158	 	 	 	 }	 else	 {	 //	 read	 command	 resource	 and	 execute	 for	 each	 command	
159	 	 	 	 	 	 try	 {	
160	 	 	 	 	 	 	 	 BufferedReader	 br	 =	 new	 BufferedReader(
161	 	 	 	 	 	 	 	 	 	 	 	 	 new	 InputStreamReader(commandResource.getInputStream()));	
162	 	 	 	 	 	 	 	 String	 cmd;	
163	 	 	 	 	 	 	 	 while	 ((cmd	 =	 br.readLine())	 !=	 null)	 {	
164	 	 	 	 	 	 	 	 	 	 log("cmd	 :	 "	 +	 cmd,	 Project.MSG_INFO);	
165	 	 	 	 	 	 	 	 	 	 executeCommand(cmd);	
166	 	 	 	 	 	 	 	 }	
167	 	 	 	 	 	 	 	 FileUtils.close(br);	
168	 	 	 	 	 	 }	 catch	 (IOException	 e)	 {	
169	 	 	 	 	 	 	 	 throw	 new	 BuildException(e);	
170	 	 	 	 	 	 }	
171	 	 	 	 }	

SSHExec.java (revision 581,375)	

surrounded	 by	 try	 block	
for	 JSchException	revision 581,376	

Figure 1: Actual modification that conventional techniques
cannot track clones

we need to check whether each of the clones has to be modified
simultaneously in the same way or not [5]. If clones to be modified
are not modified, unintended inconsistencies occur in source code,
and they may result in failures [8, 17].

By managing clones appropriately, which means maximizing pos-
itive aspects of cloning and minimizing its negative aspects, we can
develop software systems efficiently [19]. In order to conduct and
continue appropriate clone management, we need to have complete
knowledge of clones. In the past, several research efforts have in-
vestigated occurrences and evolution of clones [12, 14, 16, 19].

However, conventional techniques are not feasible to track clones
in the following cases even if they are still duplicated to one other.

• They are moved to other locations in the source code.

• They are changed consistently in a large way.

Figure 1 shows an actual clone that Duala-Ekoko et al.’s technique
cannot track. The hatched part is the clone. In revision 581,376,
a try-block for catching JSchException was added outside of the
clone. In their technique, blocks are tracked based on the nesting
structure. Hence, their technique cannot regard that the else-block
after the modification corresponds to the else-block inside the new
try-block. As a result, the clone is considered to have disappeared.

There are different kinds of approaches for tracking clones. For
example, tracking clones by monitoring clipboard activity is a rea-
sonable choice to manage clones [18]. Monitoring clipboard allows
us to know when and where code was copied and pasted. However,
we have to use a monitoring tool during software development and
maintenance for tracking code clones.

Tracking clones is a fundamental technique in the field of soft-
ware evolution, and it is used in a variety of research related to soft-
ware evolution. Consequently, accurate and scalable clone tracking

techniques are essential for such research. In this paper, we propose
a new technique for clone tracking.

In this paper, we evaluate the accuracy of clone tracking of the
proposed technique, and we show its application result for reveal-
ing why clones disappear during software evolution.

The major contributions of this paper are as follows:

• We have proposed a new technique for clone tracking. The
proposed technique can track clones even if they are moved
to another location in the source code.

• We have developed a clone tracking system based on the pro-
posed technique. The system includes hash-based incremen-
tal clone detection function for realizing rapid clone detec-
tion. Currently, the system can handle Java source code and
SVN repositories; however, it is not difficult to extend it to
handle other programming languages and other repositories.

• We have compared the accuracy of tracking clones between
the proposed technique and a conventional technique, which
was proposed by Duala-Ekoko and Robillard [4]. We checked
manually 44 clones that only the proposed technique could
track, and we found that 40 out of them were correct track-
ing. We also investigated 61 clones that the proposed tech-
nique could not track, and we found that 56 out of them had
actually disappeared.

• We have applied the proposed technique to OSS for revealing
why clones disappear during software evolution. This is the
first study focusing on reasons for clone disappearance.

The remainder of this paper is organized as follows: Section 2
describes related research; Section 3 explains the proposed tech-
nique, and Section 4 introduces a software tool that we have imple-
mented; in Section 5, we evaluate the accuracy of clone tracking
with the proposed technique; Section 6 shows an experimental re-
sult that the proposed technique was applied to open source systems
for revealing why clones disappear; Section 7 discusses threats to
validity of the experiment; Section 8 concludes this paper.

2. RELATED WORK
There are many studies that have investigated how clones evolve

[2, 3, 10, 14, 15]. They empirically reveal phenomena and charac-
teristics related to clone evolution. Their reports focus on investi-
gating how clones have evolved, not on tracking clones themselves.
The tracking techniques that they used were not feasible in the case
where the code is moved. That means, in their investigations, track-
ing clones might not have been so accurate. If the proposed tech-
nique had been used in their investigations, the results might have
changed.

Currently, there are several techniques for tracking clones. They
can be classified into three categories. Techniques in the first cat-
egory detect clones from every revision, then they link clones be-
tween every pair of consecutive revisions [3, 6, 14]. Those tech-
niques use various heuristics for linking clones. If the amount of
modification is not small, linking clones does not work well.

Techniques in the second category detect clones from the initial
revision, then track the clones using change histories stored in soft-
ware repositories [2, 15, 20]. However, those techniques do not
consider clones that appear during the target period, so that they
are not tracked.

Techniques in the third category are hybrid approaches between
the first category and the second one [4]. Those techniques seek
to merge approaches so as to complement the weak points of tech-
niques in each category.

<CRD> ::= <file> <class> <CM> [<method>]	
<method> ::= <signature> <block>*	
<block> ::= <btype> <anchor> <CM>	
<btype> ::= ‘for’ | ‘while’ | ‘do’ | ‘if’ | ‘else’ | ‘switch’ |	
 ‘try’ | ‘catch’ | ‘finally’ | ‘synchronized’	

(a) Definition

public class DeleteManager {	
 …	
 public void delete (int n) {	
 …	
 for(int i = n ; i < delete.size() ; i++) {	
 …	
 if (delete.get(i) instanceof ElementNode) {	
 // some code	
 }	
 … 	

A

(b) Source Code

packagename.DeleteManager.java,DeleteManager,5	
delete(int),5	
for,delete.size(),4	
if,delete.get(i) instanceof ElementNode,2	

(c) Example
Figure 2: Clone Region Descriptor

However, even those techniques are not feasible to track clones
in the case that clones are moved to other locations in the source
code. Moreover, they take much time to track clones because they
analyze all the files to detect clones for every of the target revisions.

In this research, we would like to track clones through several
thousand or more revisions, so that rapidity of tracking is important.
Consequently, we develop a new clone tracking technique, which
can complete tracking from several thousand of revisions within a
couple of hours. The proposed technique uses CRDs (Clone Re-
gion Descriptor) which were proposed by Duala-Ekoko and Robil-
lard [4]. In the proposed technique, we measure the similarity of
CRD among revisions whereas they used exact matches of CRD. In
the proposed technique, even if CRDs of two consecutive revisions
are not exactly the same, they are linked if they are similar to one
another. Linking clones with looser conditions allows them to be
tracked even if they are moved to another location in source code.

3. TRACKING CLONES
Herein, we propose a new technique for tracking clones. The

primary requirements for tracking clones are accuracy and speed.

• In order to achieve high speed tracking, we use an incre-
mental hash-based clone detection. In an incremental detec-
tion, only the updated files are analyzed in every revision [7].
Higo et al. reported that the average number of updated files
was only 3.53 in their experiment [9]. Hence, incremental
detection is much more rapid than non-incremental one.

• In order to achieve high accuracy tracking, clones are tracked
based on the similarity of their CRDs. The original CRD-
based tracking proposed by Duala-Ekoko and Robillard links
clones between a pair of consecutive revisions if and only if
their CRDs are exactly the same. However, the condition is
too strict to track code clones if they are moved to another
location in source code. Consequently, we allow clones to be
tracked even if their CRDs are different to a certain extent.

Our technique consists of two procedures, hash generation and
clone linking, each of which is described briefly as follows.

	 1:	 public	 void	 quicksort(int[]	 array,	 int	 left,	 int	 right){	
	 2:	 	 	 	 	 if	 (left	 <=	 right)	 {	
	 3:	 	 	 	 	 	 	 	 	 int	 p	 =	 array[(left+right)	 /	 2];	 	
	 4:	 	 	 	 	 	 	 	 	 int	 l	 =	 left;	 	
	 5:	 	 	 	 	 	 	 	 	 int	 r	 =	 right;	 	

	 6:	 	 	 	 	 	 	 	 	 while(l	 <=	 r)	 {	 	
	 7:	 	 	 	 	 	 	 	 	 	 	 	 	 while(array[l]	 <	 p){	
	 8:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 l++;	 	
	 9:	 	 	 	 	 	 	 	 	 	 	 	 	 }	 	
10:	 	 	 	 	 	 	 	 	 	 	 	 	 while(array[r]	 >	 p){	 	
11:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 r--;	 	

12:	 	 	 	 	 	 	 	 	 	 	 	 	 }	 	
13:	 	 	 	 	 	 	 	 	 	 	 	 	 if	 (l	 <=	 r)	 {	 	
14:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 int	 tmp	 =	 array[l];	 	
15:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 array[l]	 =	 array[r];	 	

16:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 array[r]	 =	 tmp;	 	
17:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 l++;	 	
18:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 r--;	 	
19:	 	 	 	 	 	 	 	 	 	 	 	 	 }	
20:	 	 	 	 	 	 	 	 	 }	 	

21:	 	 	 	 	 	 	 	 	 quickSort(array,	 left,	 r);	 	
22:	 	 	 	 	 	 	 	 	 quickSort(array,	 l,	 right);	 	 	
23:	 	 	 	 	 }	
24:	 }	 	

public	 void	 quicksort	 (int[]	 array	 int	 left	 int	 right	,	 ,) {

(if	 left	 <=	 right) {

int	 p = array	 [(left	 + right) / 2 ;	

int	 l	 = left	 ;	

int	 r = ;	right	

while	 (l	 <=	 r) {

while	 (array	 [l	

]

] < p) { l	 ++	 ;	 }

while	 (array	 [r] > p) { r --	 ;	 }

if	 (l	 <=	 r) {

int	 tmp	 = array	 [l] ;	

array	 [l] = array	 [r] ;	

array	 [r] = tmp	 ;	

l	 ++	 ;	 r --	 ;	

}

}

quicksort	 (array	 ,	 ,) ;	

quicksort	 (array	 ,	 left	 ,	 r) ;	

l	 right	

}

} token of block start	

token of block end	

STEP1	

ST
EP

2	

STEP3	

ST
EP

4	

STEP5	

(if	 <=) {

int	 = [(+) / 2 ;	

int	 = ;	

int	 $ = ;	

]

WHILEl<=r	

quicksort	 (,	 ,) ;	

quicksort	 (,	 ,) ;	

}

while	 (<=) { WHILEarray[l]<p	 WHILEarray[r]>p	 IFl<=r	 }

while	 ([] <) { ++	 ;	 }

while	 ([] >) { --	 ;	 }

if	 (<=) {

int	 = [] ;	

[] = [] ;	

[] = ;	

++	 ;	 --	 ;	 }

public	 void	 quicksort	 (int[]	 int	 int	,	 ,)

{ IFleft<=right	 }

$ $ $

$ $

$ $ $ $

$ $

$

$

$

$

$

$

$

$ $

$

$

$

$

$

$

$

$

$ $

$ $ $

$

$

$

$

$

$

$

$

$

1-24	

2-23	

6-20	

7-9	

10-12	

13-19	

(if	 <=) {

int	 p = array	 [(left	 + right) / 2 ;	

int	 l	 = left	 ;	

int	 r = ;	right	

]

WHILEl<=r	

quicksort	 (array	 ,	 ,) ;	

quicksort	 (array	 ,	 left	 ,	 r) ;	

l	 right	

}

while	 (l	 <=	 r) { WHILEarray[l]<p	 WHILEarray[r]>p	 IFl<=r	 }

while	 (array	 [l] < p) { l	 ++	 ;	 }

while	 (array	 [r] > p) { r --	 ;	 }

if	 (l	 <=	 r) {

int	 tmp	 = array	 [l] ;	

array	 [l] = array	 [r] ;	

array	 [r] = tmp	 ;	

l	 ++	 ;	 r --	 ;	 }

public	 void	 quicksort	 (int[]	 array	 int	 left	 int	 right	,	 ,)

{

left	 right	

IFleft<=right	 }

special token	

1-24	

2-23	

6-20	

7-9	

10-12	

13-19	

publicvoidquicksort(int[]$,int$,int$){IFleft<=right}	

if($<=$){int$=$[($+$)/2];int$=$;int$=$;WHILEl<=rquicksort($,$,$);quicksort($,$,$);}	

while($<=$){WHILEarray[l]<pWHILEarray[r]>pIFl<=r}	

while($[$]<$){$++;}	

while($[$]>$){$--;}	

if($<=$){int$=$[$];$[$]=$[$];$[$]=$;$++;$--;}	

10	

20	

30	

40	

50	

60	

1-24	

2-23	

6-20	

7-9	

10-12	

13-19	

ID	 FileID	 CRD	 Hash	

1	

:	
:	

StartLine	 EndLine	 StartRevision	 EndRevision	

2	

3	

4	

5	

6	

1	

1	

1	

1	

1	

1	

………	

………	

………	

………	

………	

………	

10	

20	

30	

40	

50	

60	

1	

2	

6	

7	

10	

13	

24	

23	

20	

9	

12	

19	

1	

1	

1	

1	

1	

1	

………	

………	

………	

………	

………	

………	

Figure 3: Intuitive example showing how hash values are measured from source code

HASH GENERATION A hash value is calculated from every block
in source files in every revision. If two or more blocks in a re-
vision have the same hash value, they are regarded as clones.
All the hash values are stored into a database with their loca-
tional information such as file path, start line, end line, and
revision. Also, a CRD [4] is measured for every block, and it
is also stored into the database.

CLONE LINKING Cloned blocks in every revision are linked to
blocks in the next revision based on the similarity of their

CRDs. Then, their hash values are checked: if two blocks
having the same hash value (hr) in revision r have also the
same hash value (hr+1) in revision r+1, they are regarded as
keeping a clone relationship during r and r+ 1 even if hr+1
is different from hr.

In the remainder of this section, firstly we introduce CRDs in
Subsection 3.1. Secondly, we describe procedure “hash genera-
tion” in Subsection 3.2. Finally, procedure “clone linking” is de-
scribed in Subsection 3.3.

3.1 Clone Region Descriptor
A Clone Region Descriptor (CRD) is an abstract description of

location of a clone region in a software system. A CRD is specified
independently of the line number of the text in the source files. Fig-
ure 2 shows the definition and an example of a CRD1. Figure 2(a)
shows the definition of CRD in the extended Backus-Naur form.
Figure 2(c) shows an example of CRD, which represents block “A”
in Figure 2(b). In the technique proposed by Duala-Ekoko and Ro-
billard [4], if a block in revision r has exactly the same CRD as a
block in revision r+1, they are regarded as the same block. On the
other hand, we used the similarities of CRDs for clone tracking.

3.2 Hash Generation
The input of this procedure is a repository for a target system.

The output is hash values of all the structural blocks in all the source
files of all the target revisions. There are five steps in this proce-
dure. Figure 3 shows how source files are handled at each step.

STEP1 (Syntactic Analysis) Performing syntactic analysis for in-
put source files. Every source file is transformed into a se-
quence of tokens. At the same time, the start token and the
end token of every block are identified. Only lexical analysis
alone is not sufficient for identifying start and end tokens.

STEP2 (Splitting) Every subsequence corresponding to a block is
extracted from the sequences of the source files. A special
token is put into every of the extracted positions. A special
token includes the following information:

• the type of the block (e.g., if, while, for),

• a conditional predicate, if the block is conditional one,

• its parameters, if the block is a method or a constructor.

STEP3 (Normalization) By using type information extracted in
STEP1, variable names and literals are replaced with special
tokens. Invoked method names and type names are not nor-
malized.

STEP4 (Building block texts) A character sequence is built from
every token sequence. A hash value is calculated from every
one of the character sequences.

STEP5 (Persisting hash values) The hash values of all the blocks
are stored into a database. At the same time, the file path,
start line, end line, revision number, and the CRD of every
block are stored.

The critical point for the procedure “hash generation” is STEP2,
which is a set of operations in which every one of the sub-blocks
in a block is extracted, then a small marker is put into every of the
extracted positions. Those operations allow us to identify blocks
including duplication as clones even if their sub-blocks are not du-
plicated. If a block is totally duplicated to another block, their hash
values and all the hash values of their sub-blocks become the same.

3.3 Clone Linking
The input for this procedure is the output of the procedure “hash

generation”, namely hash values of all the blocks in all the target
revisions. In this procedure, blocks in every revision are linked to
blocks in the next revision.

Hash values of blocks are used for identifying clone relation-
ships in every revision. Blocks having the same value are regarded

1These figures shows the same example used in the literature [4].

as clones. In the remainder of this paper, we call a group of blocks
having the same value an Equivalent Block Group (in short, EBG).

In this procedure, The proposed technique identifies correspond-
ing blocks between revisions r and r+ 1 based on the similarities
of their CRDs. If block br in revision r and block br+1 in revision
r+1 satisfy all the conditions, br+1 is regarded as the correspond-
ing block of block br.

CONDITION1 The type of br+1 is the same as the one of br.

CONDITION2 If br and br+1 are conditional blocks, their condi-
tions are the same except variable names, method names and
literals in them.

CONDITION3 If br and br+1 are methods or constructors, their
names are the same or their parameters are the same.

CONDITION4 In revision r+1, the CRD of br+1 has the highest
similarity with one of br.

CONDITION5 In revision r, the CRD of br has the highest simi-
larity with that for br+1.

The CRD similarity between blocks br and br+1 are measured
by Levenshtein Distance (in short, LD). If the two blocks have the
identical CRDs, the LD between them becomes 0, which is the min-
imum value. If the two blocks have completely different CRDs, the
LD takes on its maximum value. If we consider the similarity of
two CRDs, we can track clones even if they were moved.

Figure 4 shows examples of a revision history and the result of
clone linking based on it. In Figure 4(a), the following modifica-
tions are performed.

• Method b2 in file B. java was changed (r1 → r2)

• Method a1 in file A. java was changed (r2 → r3)

• Method b1 in B. java was changed (r2 → r3)

• Method b2 in B. java was moved to file C. java (r2 → r3)

• Method c1 in C. java was deleted (r2 → r3)

• Method b1 in B. java was changed (r3 → r4)

In Figure 4(b), each kind of objects has the following meanings.

• Every circle is a block. Its number is the hash value.

• Every arrow means a link of two blocks between consecutive
two revisions.

• Every rectangle means an EBG. All the blocks in a rectangle
have the same hash value.

Blocks a1 and b1 are modified between revisions r2 and r3, so
that each of them has different hash values between the revisions.
Even after the modification, they have the same hash value, which
means that they continue to be duplicated in revision r3. However,
between revisions r3 and r4, only block b1 is modified, and the two
blocks have different hash values in revision r4. Hence, the EBG
consisting of a1 and b1 is regarded as disappeared in revision r4.

Blocks a2 and c1 have the same hash value in revisions r1 and
r2, which means they become clones in the revisions. However,
in revision r3, block c1 itself disappears. In this case, the EBG
consisting of a2 and c1 is regarded as disappeared in revision r3.

Blocks b2 and c2 have the different hash values in revision r1.
Block b2 is modified between revisions r1 and r2, so that they have
the same hash value in revision r2. Even block b2 was moved to
another file in revision r3, it can be tracked. This is because the
proposed technique tracks cloned blocks based on similarities of
their CRDs.

b1{	
	 	 	 	 …	
}	
b2{	
	 	 	 	 …	
}	

revision r1	 revision r2	 revision r3	 revision r4	

A.java	

B.java	

c1{	
	 	 	 	 …	
}	
c2{	
	 	 	 	 …	
}	

a1{	
	 	 	 	 …	
}	
a2{	
	 	 	 	 …	
}	

a1{	
	 	 	 	 …	
}	
a2{	
	 	 	 	 …	
}	

a1 was changed	

b1{	
	 	 	 	 …	
}	
b2{	
	 	 	 	 …	
}	

b1{	
	 	 	 	 …	
}	

c2{	
	 	 	 	 …	
}	
b2{	
	 	 	 	 …	
}	

b2 was
changed	

b2 was
moved to

C.java	

c1 was deleted	

b1{	
	 	 	 	 …	
}	

b1 was
changed	

C.java	

b1 was
changed	

b1 was added	

(a) Revisions

10	

10	

40	

50	

10	

10	

40	

20	

20	

20	

30	

40	 40	

40	 40	

60	

60	

60	

60	

60	

60	

60	

n	 block whose hash value is n	

tracing result between two revisions	

block a1	

block b1	

block a2	

block c1	

block b2	

block c2	

block whose hash value is n	

revision r1	 revision r2	 revision r3	 revision r4	

(b) Tracking result
Figure 4: An example of clone tracking

4. IMPLEMENTATION
We developed a software tool, CTEC2, based on the proposed

technique. Currently, CTEC handles only Java language. However,
it is not difficult to expand it to other programming languages be-
cause it performs only lexical and syntactic analyses as language
dependent procedures. CTEC is written in Java and the language
dependent procedure was implemented using Java Development
Tools. Currently, CTEC uses method java.lang.String.hashCode()
to generate hash values for blocks in the source code.

CTEC uses SQLite as its database module because of its ease of
use. If we use another SQL database system such as PostgreSQL
or the Oracle database, the speed of analysis would improve. How-
ever, we think that the speed with SQLite is sufficient.

In CTEC, for the two procedures “hash generation” and “clone
linking” are implemented as independently. “Hash generation”
registers hash values of blocks in the target revisions into an SQL-
based database. “Clone linking” identifies a corresponding block in
the next revision for every cloned block in every revision.

2The name came from an abbreviation of CRD-based Tracker for
Evolution of Clones

ID	

0	

1	

2	

3	

FileID	 CRD	 Hash	 StartLine	 EndLine	 StartRevisio
n	

EndRevision	

A.java	 A.a1	 10	 1	 10	 r1	 r4	

A.java	 A.a2	 40	 11	 20	 r1	 r4	

B.java	 B.b1	 10	 1	 10	 r1	 r4	

B.java	 B.b2	 50	 11	 20	 r1	 r4	

4	

5	

C.java	 C.c1	 40	 1	 10	 r1	 r4	

C.java	 C.c2	 60	 11	 20	 r1	 r4	

After analyzing revision r1	

After analyzing revision r2	

ID	

0	

1	

2	

3	

FileID	 CRD	 Hash	 StartLine	 EndLine	 StartRevisio
n	

EndRevision	

A.java	 A.a1	 10	 1	 10	 r1	 r4	

A.java	 A.a2	 40	 11	 20	 r1	 r4	

B.java	 B.b1	 10	 1	 10	 r1	 r1	

B.java	 B.b2	 50	 11	 20	 r1	 r1	

4	

5	

C.java	 C.c1	 40	 1	 10	 r1	 r4	

C.java	 C.c2	 60	 11	 20	 r1	 r4	

6	

7	

B.java	 B.b1	 10	 1	 10	 r2	 r4	

B.java	 B.b2	 60	 11	 20	 r2	 r4	

After analyzing revision r3	

ID	

0	

1	

2	

3	

FileID	 CRD	 Hash	 StartLine	 EndLine	 StartRevisio
n	

EndRevision	

A.java	 A.a1	 10	 1	 10	 r1	 r2	

A.java	 A.a2	 40	 11	 20	 r1	 r2	

B.java	 B.b1	 10	 1	 10	 r1	 r1	

B.java	 B.b2	 50	 11	 20	 r1	 r1	

4	

5	

C.java	 C.c1	 40	 1	 10	 r1	 r2	

C.java	 C.c2	 60	 11	 20	 r1	 r2	

6	

7	

B.java	 B.b1	 10	 1	 10	 r2	 r2	

B.java	 B.b2	 60	 11	 20	 r2	 r2	

8	 A.java	 A.a1	 20	 1	 10	 r3	 r4	

9	

10	

A.java	 A.a2	 40	 11	 20	 r3	 r4	

B.java	 B.b1	 20	 1	 10	 r3	 r4	

11	

12	

C.java	 C.c2	 60	 1	 10	 r3	 r4	

C.java	 C.b2	 60	 11	 20	 r3	 r4	

ID	

0	

1	

2	

3	

FileID	 CRD	 Hash	 StartLine	 EndLine	 StartRevisio
n	

EndRevision	

A.java	 A.a1	 10	 1	 10	 r1	 r2	

A.java	 A.a2	 40	 11	 20	 r1	 r2	

B.java	 B.b1	 10	 1	 10	 r1	 r1	

B.java	 B.b2	 50	 11	 20	 r1	 r1	

4	

5	

C.java	 C.c1	 40	 1	 10	 r1	 r2	

C.java	 C.c2	 60	 11	 20	 r1	 r2	

6	

7	

B.java	 B.b1	 10	 1	 10	 r2	 r2	

B.java	 B.b2	 60	 11	 20	 r2	 r2	

8	 A.java	 A.a1	 20	 1	 10	 r3	 r4	

9	

10	

A.java	 A.a2	 40	 11	 20	 r3	 r4	

B.java	 B.b1	 20	 1	 10	 r3	 r3	

11	

12	

C.java	 C.c2	 60	 1	 10	 r3	 r4	

C.java	 C.b2	 60	 11	 20	 r3	 r4	

13	 B.java	 B.b1	 30	 1	 10	 r4	 r4	

After analyzing revision r4	

Figure 5: An example of Database Updating

Currently, we cannot find late propagation with CTEX because
it tracks only duplicated blocks. If a block becomes unduplicated,
it is removed from the set of tracking blocks. If we change CTEC
to track not only duplicated blocks but also unduplicated blocks,
we can find late propagation. However, tracking all the blocks will
consume much more time.

The remainder of this section describes each of these two proce-
dures, respectively.

4.1 Hash Generation
In order to achieve high scalability, we adopted an incremen-

tal hash generation. The following is an explanation of “proce-
dure for the 1st revision” and “procedure for the 2nd or later revi-
sions”. In this explanation, we assume that the target revisions are
{r1,r2, · · · ,rn}.

In the procedure for the 1st revision, all the blocks in all the
source files in r1 are stored into an SQL database. Note that col-
umn “EndRevision” of all the blocks are set to rn, which is the last
revision of the target.

Table 1: Overview of Target Software
Software Start revision (date) End revision (date) # of target revisions LOC of start revision LOC of end revision
ArgoUML 15,880 (2008-10-04) 19,794 (2011-11-17) 2,222 329,170 362,604

Ant 268,587 (2001-02-05) 904,537 (2010-01-30) 5,143 57,124 211,855

In the procedure for the 2nd or later revision, blocks in only
source files modified, added, and deleted in rk (2 ≤ k ≤ n) are
stored into the database. If the database already includes blocks
in the files, their columns “EndRevision” are updated to rk−1. Note
that if a file is modified, all the values for the blocks in the files are
recalculated and stored again.

Herein, we explain how these procedures work with a simple
example shown in Figure 5. This example shows how the database
is updated for revisions shown in Figure 4. Figure 5 shows the
database content after the procedure for every revision. Gray cells
mean that they have just been inserted or updated. Note that, in this
example, column “FileID” contains file names for ease to explain.
However, in the actual implementation, column “FileID” includes
IDs for source files. We have another database table for mapping
file name and its ID.

In the procedure for revision r1, which is the first revision of the
target, all the source files are analyzed and their blocks are stored
into the database. Note that column “EndRevision” of their blocks
is r4, which is the last revision of the target.

In the procedure for revision r2, file B.java is reanalyzed, and
all of its blocks are stored into the database. The database already
has blocks in file B.java, and so their columns “EndRevision” are
updated to r1. This update operation is performed for only blocks
whose “EndRevision” are r4.

In revision r3, files A.java, B.java, and C.java are modified. The
procedure for those files in revision r3 is performed as well as the
procedure for file B.java in revision r2.

4.2 Clone Linking
In order to link cloned blocks in every revision to corresponding

blocks in the next revision (rk and rk+1), we need to obtain EBGs
in revision rk. Obtaining EBGs in revision rk is performed by the
following two steps.

STEP1 obtaining records (blocks) satisfying the following formula.
This operation means obtaining all the blocks existing in rk.

(StartRevision ≤ rk)
V

(rk ≤ EndRevision) (1)

STEP2 classifying the blocks obtained in STEP1 based on their
hash values. Two or more blocks having the same hash value
form an EBG.

For each block in the EBGs identified in the STEP2, its corre-
sponding block is found with the proposed technique described in
Subsection 3.3.

5. EXPERIMENT
We conducted experiments on two well-known systems. The

purpose of these experiments was to confirm that the proposed tech-
nique has a beneficial effect on clone tracking. In order to achieve

Table 2: Timing information on experiment (with 8 threads)

Software
Hash Clone linking

generation total max. min. ave.
(min.) (min.) (sec.) (sec.) (sec.)

ArgoUML 132 43 46.0 0.043 21.3
Ant 100 50 31.2 2.8 17.1

the purpose, we have investigated tracking results by seeking to
answer the following questions.

QUESTION1 Could the proposed technique track clones that the
conventional technique could not track?

QUESTION2 Did clones that the proposed technique could not
track really disappear?

Firstly, we describe the experimental setup, then we show the
performance of CTEC. Lastly, we answer the questions.

5.1 Setup
In order to answer to the questions, we needed to track code

clones with the proposed technique and a conventional technique.
We used our tool, CTEC for tracking clones in both the ways. For
tracking clones based on the original CRD-based way, CTEC was
adjusted to track clones only if their CRDs are exactly the same.
For tracking clones in the proposed way, CTEC was used as it was.

We selected Ant and ArgoUML as the targets of these experi-
ments. Table 1 shows an overview of the target systems. They are
managed by using SVN. The tracking targets are the source files un-
der directories “/ant/core/trunk/src/main” and “/trunk/src”, respec-
tively. The source files under the directories comprise the “trunk”,
which is the main line of the development in SVN repositories. We
also narrowed down to a subdirectory of “trunk” to exclude test
files. The target period of the investigation was carefully chosen
because we would like to investigate the development histories of
multiple versions.

In this experiment, we specified 30 tokens as the threshold of
minimum clone length. Thirty tokens is one of often-used thresh-
olds in clone detection [11]. If a block includes at least 30 tokens,
it can be output as a clone.

5.2 Performance
Table 2 shows the timing information of two procedures, “hash

generation” and “clone linking”. In this experiment, both of the
procedures were performed with 8 threads and 4GBytes heap space3.
CTEC took a couple of hours for “hash generation, which is a clone
detection on all the target revisions. Besides, a “clone linking”
task is performed on every pair of consecutive revisions. The ta-
ble shows total, maximum, minimum, and average time for “clone
linking” per pair. We can see that maximum time is 46 seconds,
which means that we can perform a “clone linking” task interac-
tively on demand from users. We can say that CTEC scales well
enough for practical use.

5.3 Answer to QUESTION1
We tracked clones by using the proposed technique and a con-

ventional technique proposed by Duala-Ekoko and Robillard [4].
During the whole of the target period, the number of untrackable
clones of the proposed technique and the conventional technique
is 345 and 581 in Ant, and 537 and 739 in ArgoUML. There were
not clones that the conventional technique tracked but the proposed

3The workstation used in the experiment has two octal-core CPUs.
It is equipped with 128GBytes memory. The repositories and the
databases lay on a SSD in the experiment.

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

conven-onal	 method	 proposed	 method	

0.28	 0.30	 0.32	 0.34	

15,880	 17,148	 18,179	 18,964	 19,794	

(a) ArgoUML

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

conven-onal	 method	 proposed	 method	

268,587	

1.4	

269,531	272,632	 275,279	 554,389	904,537	

1.5	 1.6	 1.7	 1.8	

(b) Ant
Figure 6: Number of blocks that were not tracked by either the
proposed technique or the conventional one for every revision

technique did not. That is, 236 and 202 clones were tracked only
by the proposed technique, respectively.

Figure 6 shows the number of clones that were not tracked by the
proposed or conventional techniques in every revision. Clones not
tracked by the conventional technique are colored gray, and ones
not tracked by the proposed technique are colored black. Black
bars are drawn in front of gray bars. If a gray bar is taller than its
corresponding black bar, there are clones that were tracked only by
the proposed technique. The difference in length between the gray
and black bars represents the number of such clones.

We investigated clones tracked only by the proposed technique
to reveal whether tracking by the proposed technique had been cor-
rect or not. This was a manual investigation, so that we restricted
the investigation to the period “1.8” in Ant and “0.32” in ArgoUML.
In this investigation, we checked what kinds of modifications were
performed in both the cases that tracking was correct and not cor-
rect. the following is a list of modifications. Prefix “T” means that
tracking was correct even if the modifications were performed and
“F” means that tracking was incorrect because of the modifications.

T1 Clones (and their surrounding code) were extracted as new
methods.

T2 New blocks were added as surrounding code of clones such as
null checking.

459	 	 	 	 */	
460	 	 public	 synchronized	 void	 createStreams()	 {	
461	 	 	 	 if	 (out	 !=	 null	 &&	 out.length	 >	 0)	 {	
462	 	 	 	 	 	 String	 logHead	 =	 new	 StringBuffer("Output	 ").append(
463	 	 	 	 	 	 	 	 	 	 ((append)	 ?	 "appended"	 :	 "redirected")).append(
464	 	 	 	 	 	 	 	 	 	 "	 to	 ").toString();	
465	 	 	 	 	 	 outputStream	 =	 foldFiles(out,	 logHead,	 Project.MSG_VERBOSE);	
466	 	 	 	 }	
467	 	 	 	 if	 (outputProperty	 !=	 null)	 {	
	
...	 	 	 	 	 	 ...	
	
479	 	 	 	 }	
480	
481	 	 	 	 if	 (error	 !=	 null	 &&	 error.length	 >	 0)	 {	
482	 	 	 	 	 	 String	 logHead	 =	 new	 StringBuffer("Error	 ").append(
483	 	 	 	 	 	 	 	 	 	 ((append)	 ?	 "appended"	 :	 "redirected")).append(
484	 	 	 	 	 	 	 	 	 	 "	 to	 ").toString();	
485	 	 	 	 	 	 errorStream	 =	 foldFiles(error,	 logHead,	 Project.MSG_VERBOSE);	
486	 	 	 	 }	 else	 if	 (!(logError	 ||	 outputStream	 ==	 null))	 {	
	
...	 	 	 	 	 	 ...	
	
510	 	 	 	 }	
511	 	 	 	 if	 (alwaysLog	 ||	 outputStream	 ==	 null)	 {	
	
...	 	 	 	 	 	 ...	

(a) Before modification (revision 567,592)

459	 	 	 	 */	
460	 	 public	 synchronized	 void	 createStreams()	 {	
461	 	 	 	 outStreams();	
462	 	 	 	 errorStreams();	
463	 	 	 	 if	 (alwaysLog	 ||	 outputStream	 ==	 null)	 {	
	
...	 	 	 	 	 	 ...	
	
573	 	 }	
574	
575	 	 /**	 outStreams	 */	
576	 	 private	 void	 outStreams()	 {	
577	 	 	 	 if	 (out	 !=	 null	 &&	 out.length	 >	 0)	 {	
578	 	 	 	 	 	 String	 logHead	 =	 new	 StringBuffer("Output	 ").append(
579	 	 	 	 	 	 	 	 	 	 ((append)	 ?	 "appended"	 :	 "redirected")).append(
580	 	 	 	 	 	 	 	 	 	 "	 to	 ").toString();	
581	 	 	 	 	 	 outputStream	 =	 foldFiles(out,	 logHead,	 Project.MSG_VERBOSE);	
582	 	 	 	 }	
583	 	 	 	 if	 (outputProperty	 !=	 null)	 {	
	
...	 	 	 	 ...	
	
595	 	 	 	 }	
596	 	 }	
597	
598	 	 private	 void	 errorStreams()	 {	
599	 	 	 	 if	 (error	 !=	 null	 &&	 error.length	 >	 0)	 {	
600	 	 	 	 	 	 String	 logHead	 =	 new	 StringBuffer("Error	 ").append(
601	 	 	 	 	 	 	 	 	 	 ((append)	 ?	 "appended"	 :	 "redirected")).append(
602	 	 	 	 	 	 	 	 	 	 "	 to	 ").toString();	
603	 	 	 	 	 	 errorStream	 =	 foldFiles(error,	 logHead,	 Project.MSG_VERBOSE);	
604	 	 	 	 }	 else	 if	 (!(logError	 ||	 outputStream	 ==	 null))	 {	
	
...	 	 	 	 ...	
	
628	 	 	 	 }	
629	 	 }	

(b) After modification (revision 567,593)
Figure 7: An EBG that only the proposed technique tracked

T3 Conditional predicates were changed on conditional blocks in-
cluding clones.

T4 Methods including clones were moved to other classes.

T5 New catch clauses were added on try blocks including clones.
In the CRD definition of try block, it includes exception types
of catch clauses attached to the try-block [4]. Consequently,
if a new catch clause is added to a try block, the CRD of the
try block changes.

T6 Methods were inlined as other methods.

F1 Cloned blocks were deleted. As a result, other blocks in the
next revision were incorrectly linked to the deleted blocks.

F2 Cloned block became smaller than the threshold (30 tokens).
Smaller blocks than the threshold were not registered to the

425	 	 File	 base	 =	 null;	
426	 	 String	 name	 =	 res.getName();	
427	 	 if	 (res	 instanceof	 FileResource)	 {	
428	 	 	 	 FileResource	 fr	 =	 (FileResource)	 res;	
429	 	 	 	 base	 =	 fr.getBaseDir();	
430	 	 	 	 if	 (base	 ==	 null)	 {	
431	 	 	 	 	 	 name	 =	 fr.getFile().getAbsolutePath();	
432	 	 	 	 }	
433	 	 }	
434	
435	 	 if	 (restrict(new	 String[]	 {name},	 base).length	 ==	 0)	 {	

ExecuteOn.java (revision 668,723)	

592	 	 	 	 File	 base	 =	 baseDir;	
593	 	 	 	 String	 name	 =	 r.getName();	
594	 	 	 	 if	 (r	 instanceof	 FileResource)	 {	
595	 	 	 	 	 	 FileResource	 f	 =	 (FileResource)	 r;	
596	 	 	 	 	 	 base	 =	 f.getBaseDir();	
597	 	 	 	 	 	 if	 (base	 ==	 null)	 {	
598	 	 	 	 	 	 	 	 name	 =	 f.getFile().getAbsolutePath();	
599	 	 	 	 	 	 }	
600	 	 	 	 }	
601	 	 	 	 process(base,	 name,	 destDir,	 stylesheet);	
602	 	 }	

XSLTProcess.java (revision 668,723)	

revision 668,724	

revision 668,724	

res	 instanceof	 FileProvider	

r	 instanceof	 FileProvider	

Figure 8: Cloned blocks not tracked by the proposed technique
because types in their conditions changed

database. They were treated as deleted blocks. As a result,
incorrect linking occurred.

Figure 7 shows actual clones classified into T1. The cloned if-
blocks and their subsequent code were extracted as new methods.

Table 3 shows the number of clones falling into each category.
The number of correct tracking is 40, and the number of incorrect
is only 4. That is, the accuracy of tracking for clones that were
tracked by only the proposed technique is about 91%.

5.4 Answer to QUESTION2
We investigated whether clones not tracked by the proposed tech-

nique had really disappeared. We conducted a manual investigation
on period “1.8” in Ant and “0.32” in ArgoUML as well as QUES-
TION1. As a result, we revealed the following modifications were
factors in clones not being tracked by the proposed technique.

T1 Cloned blocks existed after modifications. However, their sizes
became smaller than the threshold (30 tokens), so that they
were considered to have disappeared by CTEC.

T2 Cloned blocks were deleted from the source code.

T3 Cloned blocks evolved to different code by large modifications.

F1 Types appearing in the conditions of cloned blocks were changed.
In the proposed technique, variable names, method names,
and literals are normalized but not types. Consequently, changes
of types mean that CONDITION2 is unsatisfied.

F2 Conditions of cloned blocks were changed. This kind of change
mean that CONDITION2 is unsatisfied.

Table 3: Clones tracked by only the proposed technique
category Ant ArgoUML

T tracking was appropriate 37 3
T1 extracting as new methods 18 0
T2 becoming deeper nested 9 0
T3 changing block’s conditions 5 2
T4 moving methods 2 1
T5 adding new catch clauses 2 0
T6 in-lined to other methods 1 0

F tracking was NOT appropriate 4 0
F1 deleting blocks 3 0
F2 shrinking blocks 1 0

593	 	 	 	 File	 base	 =	 baseDir;	
594	 	 	 	 String	 name	 =	 r.getName();	
595	 	 	 	 if	 (r	 instanceof	 FileProvider)	 {	
596	 	 	 	 	 	 FileResource	 f	 =	 ResourceUtils.asFileResource((FileProvider)	 r);	
597	 	 	 	 	 	 base	 =	 f.getBaseDir();	
598	 	 	 	 	 	 if	 (base	 ==	 null)	 {	
599	 	 	 	 	 	 	 	 name	 =	 f.getFile().getAbsolutePath();	
600	 	 	 	 	 	 }	
601	 	 	 	 }	
602	 	 	 	 process(base,	 name,	 destDir,	 stylesheet);	
603	 	 }	

427	 	 File	 base	 =	 null;	
428	 	 String	 name	 =	 res.getName();	
429	 	 if	 (res	 instanceof	 FileProvider)	 {	
430	 	 	 	 FileResource	 fr	 =ResourceUtils.asFileResource((FileProvider)res);	
431	 	 	 	 base	 =	 fr.getBaseDir();	
432	 	 	 	 if	 (base	 ==	 null)	 {	
433	 	 	 	 	 	 name	 =	 fr.getFile().getAbsolutePath();	
434	 	 	 	 }	
435 	 	 }	
436	

fp	 !=	 null	

fp	 !=	 null	

ExecuteOn.java (revision 718,386)	

XSLTProcess.java (revision 718,386)	

revision 718,387	

revision 718,387	

Figure 9: Cloned blocks not tracked by the proposed technique
because their conditions were changed

F3 New catch clauses were added to cloned try blocks. Such mod-
ifications mean that CONDITION2 is unsatisfied.

Figure 8 shows an actual instance of untracked clones because of
a change in type in its condition (F1). In revision 688,724, FileRe-
source was changed to FileProvider in the condition of the cloned
block. If the proposed technique were to be designed to normal-
ize types in the conditions of the clone blocks, this clones would
tracked correctly. However, the more normalized conditions are,
the more likely it is that blocks are probably tracked incorrectly.

Figure 9 shows another example of clones not being tracked by
the proposed technique (F2). The change performed in this exam-
ple is larger than the one in Figure 8. In order to track clones even
if this kind of large modifications were performed on the conditions
of the cloned block, CONDITION2 must become much weaker or
even be removed. However, such changes on CONDITION2 will
yield much more incorrect tracking. Consequently, tracking clones
correctly even if their conditions are largely changed is not realistic
for a CRD-based clone tracking approach.

Table 4 shows the number of clones not tracked by the proposed
technique because of such modifications. We manually investigated
61 untracked clones, and we found that 56 out of them had actually
disappeared. That is, precision of our technique is about 92%.

6. INVESTIGATION ON WHY CLONES
DISAPPEAR

As an application of the proposed technique, we investigated
why clones disappear during software evolution. In this applica-
tion, we investigated why clone relationships among blocks had
disappeared. On the other hand, the experiment described in Sec-
tion 5 focuses on tracking each cloned block. In the past, several
studies investigated occurrences and evolution of clones [12, 14,

Table 4: Clones not tracked by the proposed technique
category Ant ArgoUML

T not tracking was appropriate 23 33
T1 shrinking blocks 7 9
T2 deleting blocks 8 24
T3 changing blocks 8 0

F not tracking was NOT appropriate 5 0
F1 changing types in conditions 2 0
F2 changing conditions 2 0
F3 adding catch clauses to try blocks 1 0

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

15,880	 17,148	 18,179	 18,964	 19,794	

0.28	 0.30	 0.32	 0.34	

(a) ArgoUML

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

20	

268,587	269,531	272,632	 275,279	 554,389	904,537	

1.4	 1.5	 1.6	 1.7	 1.8	

(b) Ant
Figure 10: Number of EBGs that disappeared or whose ele-
ments disappeared for every revision

16, 19]: however, there is no research focusing on the investigation
why clones disappear. Several empirical investigations on clones
found that some of the detected clones disappeared during software
evolution [14, 19]. However, in those investigations, clone removal
is a by-product of clone evaluations. They did not investigate why
clones had disappeared.

This investigation was also conducted on Ant and ArgoUML. Fig-
ure 10 shows the number of EBGs whose elements disappeared at
each revision. As shown in this figure, clones disappear throughout
the evolution of the software.

In order to reveal why clones disappear, we manually investi-
gated why the EBGs disappeared. We investigated all the disap-
peared EBGs in periods “0.32” of ArgoUML (Figure 10(a)) and
“1.8” of Ant (Figure 10(b)). The numbers of EBGs are 43 and 37,

Table 5: Reasons why clones disappeared
Reason ArgoUML Ant
Refactoring 10 (9) 7 (3)
Different evolution 6 11
Unintended inconsistency 15 10
Unneeded code deletion 8 5
Shrinking 4 0
CRD limitation 0 3
Total 43 36

265	 	 Hashtable	 ret	 =	 new	 Hashtable();	
266　　for	 (Enumeration	 e	 =	 System.getProperties().propertyNames();	
267	 	 	 	 e.hasMoreElements();)	 {	
268	 	 	 	 String	 name	 =	 (String)	 e.nextElement();	
269	 	 	 	 ret.put(name,	 System.getProperties().getProperty(name));	
270	 	 }	
271	 	 return	 ret;	

PropertySet.java (revision 671,017)	

140	 	 Properties	 p	 =	 new	 Properties();	
141	 	 for	 (Enumeration	 e	 =	 sys.propertyNames();	 e.hasMoreElements();)	 {	
142	 	 	 	 String	 name	 =	 (String)	 e.nextElement();	
143	 	 	 	 p.put(name,	 sys.getProperty(name));	
144	 	 }	
145	 	 p.putAll(mergePropertySets());	

revision 671,018	

CommandlineJava.java (revision 671,017)	

String	 value	 =	 sys.getProperty(name);	
if	 (name	 !=	 null	 &&	 value	 !=	 null)	 {	
	 	 	 	 p.put(name,	 value);	
}	

Figure 11: Code where an unintended inconsistency occurred

respectively. Table 5 summarizes the results of the investigation.
The number of EBGs that disappeared due to refactoring are 10

and 7, respectively. However, some of those refactorings were not
intended for removing duplicate code. We found that the other in-
tentions were shortening long methods or simplifying complicated
methods. Most of the refactorings were of the Extract Method pat-
tern. As a result of the refactorings, CONDITION2 became unsatis-
fied, so that EBGs could no longer be tracked.

Different evolution means that, different modifications (e.g., func-
tionality enhancements or expansions) were applied to one or more
blocks in an EBG, so that they evolved differently. We classified 6
and 11 EBGs into this category, respectively.

Unintended inconsistency means that clones disappeared unin-
tentionally. For example, incomplete simultaneous modifications
for a bug fix or for error checking were classified in this way. In
this investigation, 15 and 10 EBGs were classified into this cate-
gory. Figure 11 shows actual code of this category. This EBG con-
sists of two blocks, which are in different source files. Only one
of them was modified (null checking code was added) in revision
671,018. However, those two blocks are logically the same. The
null checking should also be added to the other code.

Unneeded code deletion means EBGs were removed by deleting
unneeded code. We investigated commit logs for deciding whether
the commits were for deleting unneeded code or not. We classified
8 and 5 EBGs into this category.

Shrinking means the size of blocks in EBGs becomes smaller
than the threshold of minimum clone size to be detected. All the
blocks consisting of an EBG continue to be duplicated: however
their size became smaller than the threshold as a result of consis-
tent modifications. In consequence, they are no longer detected
as clones after the modifications. In this investigation, 4 EBGs in
ArgoUML were classified into this category.

CRD limitation means EBGs are judged to have disappeared be-
cause tracking was performed incorrectly. In this investigation, 3
EBGs in Ant were classified into this category.

7. THREATS TO VALIDITY

7.1 EBGs Categorization
In this experiment, we conducted manual investigations on open

source systems. However, the investigation result may not be en-
tirely correct because the authors are not developers of the target
systems. In order to eliminate incorrectness as much as possible,
two of the authors performed the investigation together. Totally, we
spent approximately 10 hours for the categorizations.

7.2 Target Systems
In this experiment, we targeted only two system written in Java.

Currently, it is difficult to generalize the investigation result be-
cause (1) only one programming language was investigated and (2)
the number of investigated systems is only two. Furthermore, we
selected ArgoUML and Ant as our targets because they are popular
and successful systems. If we had selected other systems that are
no more than moderately successful, the investigation results might
have been different from this experiment.

8. CONCLUSION
This paper proposed a technique for tracking clones in software

evolution. The proposed technique is an enhanced version of CRD-
based clone tracking. The proposed technique includes incremental
hash-based clone detection for rapid clone tracking. We conducted
experiments on open source systems and confirmed the following.

• The proposed technique tracked many clones not tracked by
a conventional technique due to Duala-Ekoko and Robillard.
The accuracy percentage of tracking such clones was 91%.

• In the experiment, many clones were not tracked by even the
proposed technique. However, most of such clones had actu-
ally become unduplicated by intended or unintended incon-
sistent modifications. The accuracy percentage of stopping
tracking such clones of the proposed technique was 92%.

Moreover, we employed the proposed technique to investigate
why clones disappear. We revealed that refactoring, different evo-
lution, and unintended inconsistencies are major factors for clone
disappearance. Interestingly, some of the refactorings were not in-
tended for removing duplicate code but for shortening long meth-
ods or simplifying complicated methods.

In the future, we are going to replicate some empirical exper-
iments that included clone tracking. Because the proposed tech-
nique can track clones more accurately than conventional tech-
niques, we might obtain new findings.

9. ACKNOWLEDGEMENTS
This work was supported by MEXT/JSPS KAKENHI 25220003,

24650011, and 24680002.

10. REFERENCES
[1] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta.

Analyzing cloning evolution in the linux kernel. Information
and Software Technology, 44:755–765, 2002.

[2] L. Aversano, L. Cerulo, and M. Di Penta. How clones are
maintained: An empirical study. In Proceedings of the 11th
European Conference on Software Maintenance and
Reengineering, pages 81–90, 2007.

[3] T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells in
software evolution. In Proceedings of the 23rd International
Conference on Software Maintenance, pages 24–33, 2007.

[4] E. Duala-Ekoko and M. P. Robillard. Clone region
descriptors: Representing and tracking duplication in source
code. ACM Transactions on Software Engineering and
Methodology, 20(1):3:1–3:31, 2010.

[5] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger. Relation of
code clones and change couplings. In Proceedings of the 9th
International Conference on Fundamental Approaches to
Software Engineering, pages 411–425, 2006.

[6] N. Göde. Evolution of type-1 clones. In Proceedings of the
9th International Working Conference on Source Code
Analysis and Manipulation, pages 77–86, 2009.

[7] N. Göde and R. Koschke. Studying clone evolution using
incremental clone detection. Journal of Software: Evolution
and Process, 25(2):165–192, 2013.

[8] Y. Higo and S. Kusumoto. How often do unintended
inconsistencies happen? –deriving modification patterns and
detecting overlooked code fragments–. In Proceedings of the
28th International Conference on Software Maintenance,
pages 222–231, 2012.

[9] Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto.
Incremental code clone detection: A PDG-based approach.
In Proceedings of the 18th Working Conference on Reverse
Engineering, pages 3–12, 2011.

[10] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is duplicate
code more frequently modified than non-duplicate code in
software evolution?: an empirical study on open source
software. In Proceedings of the Joint ERCIM Workshop on
Software Evolution and International Workshop on
Principles of Software Evolution, pages 73–82, 2010.

[11] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system for
large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670, 2002.

[12] C. Kapser and M. W. Godfrey. "Cloning considered harmful"
considered harmful: patterns of cloning in software.
Empirical Software Engineering, 13(6):645–692, 2008.

[13] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
Ethnographic Study of Copy and Paste Programming
Practices in OOPL. In Proceedings of the 3rd International
Symposium on Empirical Software Engineering, pages
83–92, 2004.

[14] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. In Proceedings of
the 10th European software engineering conference held
jointly with the 13th International Symposium on
Foundations of software engineering, pages 187–196, 2005.

[15] J. Krinke. A study of consistent and inconsistent changes to
code clones. In Proceedings of the 14th Working Conference
on Reverse Engineering, pages 170–178, 2007.

[16] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In
Proceedings of the 28th International Conference on
Software Engineering, pages 492–501, 2006.

[17] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding
copy-paste and related bugs in large-scale software code.
IEEE Transactions on Software Engineering, 32(3):176–192,
2006.

[18] M. de Wit, A. Zaidman, and A. van Deursen. Managing code
clones using dynamic change tracking and resolution. In
Proceedings of the 25th International Conference on
Software Maintenance, pages 169–178, 2012.

[19] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi, and
T. N. Nguyen. Clone management for evolving software.
IEEE Transactions on Software Engineering, 38(5), 2012.

[20] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta.
An empirical study on the maintenance of source code
clones. Empirical Software Engineering, 15(1):1–34, 2010.

