
Preprocessing of Metrics Measurement Based on Simplifying Program Strucutres

Yui Sasaki, Tomoya Ishihara, Keisuke Hotta, Hideaki Hata,
Yoshiki Higo, Hiroshi Igaki, Shinji Kusumoto

Graduate School of Information Science and Technology, Osaka University,
1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan

Email: {s-yui,t-ishihr,k-hotta,h-hata,higo,igaki,kusumoto}@ist.osaka-u.ac.jp

Abstract—In software maintenance, grasping characteristics
of software systems by metrics measurement is a basic activity.
However, metrics do not always represent characteristics of
software systems. For example, Cyclomatic Complexity is a
metric counting the number of branches in a given module,
and it does not consider its content. One factor that Cyclo-
matic Complexity becomes large is the presence of repeated
structures such as consecutive if-else structures. However, if
such a structure is a repetition of simple operations, humans
would not recognize a difficulty to understand the source
code. In this paper, we propose performing preprocessing for
metrics measurement and a methodology of the preprocessing.
The proposed preprocessing simplifies repeated structures in
source code. By applying the proposed preprocessing to metrics
measurement, we can find low-understandability modules more
efficiently. Also, we compared results of metrics measurement
with and without the proposed preprocessing on open source
software systems. As a result, we confirmed that metrics
measurement with the proposed preprocessing was more useful
to find low-understandability modules than without it.

Keywords-Empirical Study, Metrics Measurement, Software
Maintenance

I. INTRODUCTION

Measuring software is a fundamental technique of em-

pirical software engineering. For example, many software

metrics have been widely studied and proposed in fault

prediction studies [1], [2]. Mining Software Repositories
field has explored software repository data and has proposed

many historical metrics for fault prediction models [3], [4].

Recent studies have shown the usefulness of such historical

metrics compared to traditional complexity metrics [5], [6].

McCabe’s Cyclomatic Complexity is one of the most

popular complexity metrics [7]. A variety of empirical

studies revealed the usefulness of Cyclomatic Complexity.

It is said, however, Cyclomatic Complexity does not exhibit

the proper complexity in object-oriented systems. Chidamber

and Kemerer defined six complexity metrics in object-

oriented designs, and Basili concluded that these metrics

were useful to identify fault-prone modules than Cyclomatic

Complexity [8], [9].

Not only fault prediction studies, but detecting refactoring

candidates also have used software metrics [10]. Refactoring

is a technique of improving the structure of a program

without changing its external behavior. For example, long or

complicated methods are less maintainability, and so these

methods should be broken up into simple methods [11]. This

operation is known as Extract Method refactoring, which is

one of the most popular refactorings, and is often performed

with other refactorings [12]. Because identifying the place

to be refactored is the first step in refactoring process, long

or complicated methods are often identified with Lines Of

Code or Cyclomatic Complexity.

In order to perform activities of software maintenance,

we must understand source code of the maintaining soft-

ware. However, software understanding itself is costly. A

fundamental task in software maintenance is reading and

understanding source code [13], [14], [15]. Consequently,

identifying low-understandability modules and improving

their understandability lead to efficient software maintenance

in the future.

However, Cyclomatic Complexity does not always rep-

resent the low-understandability of source code. Buse and

Weimer investigated code readability with several software

metrics [16]. They reported that though the low-level code

features and well-known metrics (code churn, past bugs,

warnings with a static analysis tool) had a significant level

of correlation with code readability, Cyclomatic Complexity

was not strongly related to readability. Also, Jbara et al. men-

tioned that there were some functions including successive

single-instructions such as case-entries in switch-statements

and if-statements in Linux Kernel, and these structures did

not reflect perceived complexity [17]. Moreover, Cyclomatic

Complextiy often underestimates the understandability of

modules because it does not count jump instructions such

as break- and continue-statements which break the “straight

line” flow of execution [18]. As described above, Cyclomatic

Complexity does not always work well in the context of

finding low-understandability modules. Though there are

tools that measure the modified Cyclomatic Complexity such

as pmccabe [19], there is no empirical study with these tools.

As well as Cyclomatic Complexity, Lines Of Code metric

does not always indicate understandability of source code.

The authors think that, one factor of it is the presence of

repeated structures. For example, a long method is con-

sidered as a typical target of Extract Method refactoring.

However, if it consists of a repetition of similar operations,

its cohesion should not be low. For example, a long method

initializing GUI parts includes many assignment statements.

2012 19th Asia-Pacific Software Engineering Conference

1530-1362/12 $26.00 © 2012 IEEE

DOI 10.1109/APSEC.2012.59

120

joe
Typewritten text
SATA Workshop

1: public final Object getValoreIndirizzobenefattotrans(...) {
...
if() { ... if() { ... if() { ... if() { ...

124: if (soggetto != null) {
...

128: else
129: {
130: ArrayIterator iter = ...;
131: if (iter!=null && iter.size()>0) {
132: iter.reset();
133: IfIndirizzo recapito = ...;
134: if(...)
135: return ...;
136: else return null;
137: }
138: else
139: return null;
140: }
141: }
142: else return null;

} } } }
189: }

(a) a method including deep nest structures

1: public static int getColumnIndex(final String sColumnName)
2: {
3: if (sColumnName.compareToIgnoreCase(...) == 0)
4: return NDX_TI_ID_TITOLO;
5: else if (sColumnName.compareToIgnoreCase(...) == 0)
6: return NDX_TI_ID_COMPAGNIA;

...
204: else if (sColumnName.compareToIgnoreCase(...) == 0)
205: return NDX_FI_DESC_FILIALE;
206: return -1;
207: }

(b) a method including repeated structures

Figure 1. Motivating Example

Such assignment statements can be considered as a repetition

of similar operations. Also, we do not consider that a part

of such a method should be extracted as a new method for

reducing method size.

In this paper, we focus on the context that a user would

like to find low-understandability modules, and propose

a preprocessing of metrics measurement for finding such

modules efficiently. In order to investigate the usefulness of

the proposed preprocessing, we conducted an experiment on

approximately 13,000 open source software systems. In the

experiment, we compared results of metrics measurement

with and without the proposed preprocessing. As a result, we

confirmed that low-understandability modules were found

more efficiently with the proposed preprocessing than with-

out it.

II. MOTIVATING EXAMPLE

Figure 1(a) is a Java method, which has deep nest struc-

tures with many if-statements. The Cyclomatic Complexity

of the method becomes 33, which reperesents this method

has low understandability.

We found another method as shown Figure 1(b) whose

Cyclomatic Complexity was 112 in the same software.

if (…) {
 state = X;
} else if (…) {
 state = Y;
} else {
 state = Z;
}

Then Else

if

Then Else

Then Else

if

if

: assignment

Then Else

if

Figure 3. Transformation of else-if Statements

The value 112 of its Cyclomatic Complexity indicates that

the structure in this method has lower understandability

than Figure 1(a). Though the method certainly includes

many branches, it is not difficult to understand because of

repetition of simple instructions.

In this paper, we propose a new technique for measuring

lower metric values in such a case of Figure 1(b). The

key idea is folding repeated structures. If a method has

repeated structures such as if-statements in Figure 1(b),

the structures are folded as a single structure. Here after,

we use a term simplified source code, which means source

code where all the repeated structures in the original source

code are folded. These operations are a preprocessing of

metrics measurement. Applying the proposed preprocessing,

the value of Cyclomatic Complexity of Figure 1(b) becomes

lower than the value of Figure 1(a).

III. PROPOSED PREPROCESSING

Herein, we describe the operation of folding repeated

structures, which is the proposed preprocessing of metrics

measurement. The process is performed as follows:

1) constructing ASTs from input source code;

2) folding repeated structures on ASTs;

3) creating simplified source code from the folded ASTs.

Figure 2 shows how the source code of Figure 1(b)

is manipulated by the proposed preprocessing. By using

Figures 2 and 1(b), we explain the details of the proposed

preprocessing.

Phase1. Constructing AST

First, we construct ASTs from input source code. A

remarkable point is that, in the proposed preprocessing, else-

if structures following if-statement as shown in Figure 1(b)

are transformed. The transformation consists of (1) removing

a node “Else” if there is only a node “If” following the node

“Else”, (2) connecting parent and child nodes of the removed

node. Figure 3 shows an example of the transformation. By

using the transformation, we can regard else-if structures as

repeated ones in the Phase2.

Our approach does not focus on the details of statements

such as variable names or conditional expressions. We do

not consider AST nodes corresponding to such elements in

source code.

121

Method

if

then
return

then then

return return

return

112 subtrees

Method

Root

Class

. . .

Method

if

then
return

return

Method

Root

Class

*112

…
public static int getColumnIndex(…)
 {
 if (…)
 return NDX_TI_ID_TITOLO;
 return -1;
 }
…

…
 public static int getColumnIndex(…)
 {
 if (…)
 return NDX_TI_ID_TITOLO;
 else if (…)
 return NDX_TI_ID_COMPAGNIA;
 else if (…)
 return NDX_TI_ID_NODO;
 else if (…)
 return NDX_TI_ID_CAUSALE;
 …
 else if (…)
 return NDX_FI_DESC_FILIALE;
 return -1;
 }
… Phase.1

Phase.2

Phase3

Input Output

*N: weight

Figure 2. Proposed Preprocessing for Figure 1(b)

compared nodes

repeated structure

(a) pairs of leaves

repeated structure

compared nodes

(b) pairs of branches

repeated structure

compared nodes

(c) pairs of sequential nodes

Figure 4. Examples of Repeated Structures

: method invocation

Then

if

Then

if

Then

if

Then

if

*2
Then

if

Then

if

*2 *2
Then

if

Then

if

*2 *2

fold
fold

fold

*2

Figure 5. Example of Folding AST

Phase2. Folding Structures

AST sibling nodes are sorted in the order of the appear-

ance on the source code. If there are consecutive similar

structures in sibling nodes, they are regarded as repeated

structures. If a pair of nodes satisfies the criteria in Table I,

the nodes would be regarded as similar to each other. We

describe “weight” in Table I later. ASTs in Figure 4(a) and

4(b) are regarded as repeated structures based on the criteria.

In addition, not only a single node but also sequential

nodes are compared as one-side of the pair in AST sibling

nodes. For example, in the following source code, there

are consecutive two statements (assignment statement and

method invocation statement).

comparator = new ObjectIdentifierComparator();
cb.schemaObjectProduced(this, "2.5.13.0", comparator);
comparator = new DnComparator();
cb.schemaObjectProduced(this, "2.5.13.1", comparator);

In order to handle repetitions of such multiple statements,

if each pair of nodes in a pair of sequential nodes satisfies

the criteria, it would be similar to each other. Consequently,

we can regard structures of Figure 4(c) as repeated ones.

Folding repeated structures consists of two operations,

which are (1) removing all the elements of the repetitions

except the first element, and (2) adding the weight of the

number of elements to the first element.

There are nested repeated structures in the source code.

For example, in the following source code, there are repeti-

tions of method invocations and repetitions of if-statements

including the method invocations.

Table I
CRITERIA FOR SIMILARITY OF NODE

compared nodes criteria for similarity
a pair of leaves type of statements and weights are the same
a pair of branches its subtrees are isomorphic

122

if (null != storepass) {
cmd.createArg().setValue("-storepass");
cmd.createArg().setValue(storepass);

}
if (null != storetype) {

cmd.createArg().setValue("-storetype");
cmd.createArg().setValue(storetype);

}

In the case of nested repeated structures, the folding op-

eration is applied to nodes in order from leaf to root. In

this example, firstly method invocations are folded, then if-

statements are folded.

This process is achieved by a postorder traversal. If a

traversed node contains children, we get them. Then, if we

find a pair of similar (sequential) nodes in the children, they

are folded. These operations are repeatedly performed until

there are no similar nodes on sibling nodes. Figure 5 shows

how the above source code is folded.

There are various repeated structures in source code such

as introduced by [20]. We confirmed that all of the repeated

structures in [20] were folded with this approach.

Though Figure 1(b) has many branches, each branch node

has similar statements as its children. Therefore, all the

structures are folded.

Phase3. Providing Simplified Code

Finally, the proposed preprocessing generates simplified

source code from the simplified ASTs.

IV. CASE STUDY

We implemented a prototype tool for Java source code,

and evaluated the proposed preprocessing by applying the

tool to about 13,000 software systems (see Table II), which

are open to the public in [21]. In this evaluation, we

calculated some metrics for each method in all the target

software. The purpose of the case study is to reveal the

answers to following questions.

1) Do results of metrics measurement change by using

the proposed preprocessing?

2) Is there any relationship between metrics measurement

result and understandability of the source code?

In the remainder of this section, we describe experimental

results and answers for each question.

SetUp

In this experiment, we measured Cyclomatic Complexity

and Lines Of Code. Cyclomatic Complexity was measured

by counting branches in source code. We regarded that the

following blocks were branches.

Table II
OVERVIEW: UCI SOURCE CODE DATA SETS

of software 13,193
of methods 18,366,094

total lines of code 361,663,992

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

100 200 300 400 500

va
lu

e
of

 m
et

ric
s

method number

CC

FCC

(a) Cyclomatic Complexity

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

100 200 300 400 500

va
lu

e
of

 m
et

ric

method number

LOC

FLOC

(b) Lines Of Code

Figure 6. Difference of Metrics Values

• case-entry in switch-statement

• do-statement

• for-statement

• foreach-statement

• if-statement

• catch-statement in try-statement

• while-statement

Also, Lines Of Code was measured without comment

lines and blank lines. In the remainder of this section,

metrics used in this experiment are called as shown in Table

III.

Ex1.Comparison between Metrics Values

At first, we compared values between metrics with and

without the proposed preprocessing for each method. Figure

6 shows the top 500 methods on all the target software

without the proposed preprocessing. We found that par-

ticularly high CC or LOC values were greatly reduced

with the preprocessing. That means these methods include

Table III
TARGET METRICS

Cyclomatic Complexity Lines Of Code
without the preprocessing CC LOC

with the preprocessing FCC FLOC

123

0
20
40
60
80

100
120
140
160
180
200

100 200 300 400 500

va
lu

e
of

 m
et

ric

method number

CC
FCC

Figure 7. Difference of Metrics Values on One Software

many repeated structures. The highest CC is 4,371, and its

method includes 200 if-statements. 191 out of the 200 if-

statements have only one large switch-statement including so

many case-entries. The case-entries in each of such switch-

statements were folded.

Each software has a different gap between CC and FCC

measurement. For example, some software have few meth-

ods including repeated structures, and the others have many

methods including repeated structures as shown in Figure

7. Though this software has many methods whose CC are

over 100, almost all of them have repeated if-structures, and

so those FCC are only 5. Furthermore, a method with the

highest FCC ranks at the 455th in the CC order, which means

that it is not easy to find this method with CC.

In order to grasp how measurement results for every

target system were changed by the proposed preprocessing,

we used an indicator, ConcordanceRate. ConcordanceRate
means the rate how measurement results with and with-

out the preprocessing share the same modules in top n.

ConcordanceRate for Cyclomatic Complexity is defined as

the following formula.

ConcordanceRate(n) =
|CC(n)∩FCC(n)|

n

CC(n) and FCC(n) are sets of methods that are top n
in the CC or FCC order, respectively. The more there are

common methods between CC(n) and FCC(n), the higher

ConcordanceRate becomes. We determined the threshold n
as the number of the top 20% methods for each software.

If there is no difference between top 20% CC and top 20%

FCC methods, ConcordanceRate becomes 1.

Investigating for all the target software, we found that

about 85% of the target software had at least one different

method in their top 20%.

Ex2.Comparison between Understandability of Source Code
and Metrics Values

We evaluated metrics with the preprocessing based on the

human consideration. In this experiment, 8 people (faculty

staffs and students) in the department of computer science of

Osaka University were joined as subjects. This experiment

was conducted along with the following steps.

28
25

21

15 15

10 10

3

0

5

10

15

20

25

30

A B C D E F G H

of

 m
et

ho
ds

subject

CC FCC LOC FLOC

Correct set

Figure 8. Comparison between Human Consideration and Metrics

0

5

10

15

20

25

30

1 51 101 151 201 251 301 351

of

 m
et

ho
ds

n

CC
FCC
Ideal

20%

(a) Cyclomatic Complexity

0

5

10

15

20

25

30

1 51 101 151 201 251 301 351

of

 m
et

ho
ds

n

LOC
FLOC
Ideal

20%

(b) Lines Of Code

Figure 9. The Number of Correct Methods in Top n

1) Every subject judge whether each method is difficult

to understand or not.

2) Every method judged as difficult to understand is

called a correct method, and its set is called correct
set.

3) Methods in the target systems are sorted in the order

of each metric with and without the proposed prepro-

cessing. We compare the number of correct methods

included in top 20% of the sorted methods.

The subjects judged all the methods by browsing the

source code of them. We did not provide metrics values to

the subjects during the experiment. We selected not so large

software from 13,000 software systems as the target because

the subjects checked the source code manually. The target

software is JCap, which includes 389 methods. The values

of ConcordanceRate of Cyclomatic Complexity and Lines

Of Code for this software are 69% and 67%, respectively.

Figure 8 summarizes the result. In the case of subject

“A”, there are 28 correct methods. The value of Y-axis

represents the number of correct methods included in the top

20%. As shown of this graph, both Cyclomatic Complexity

124

0

1

2

3

4

5

6

7

8

0

5

10

15

20

25

30

35

40

1 51 101 151 201

of

 su
bj

ec
ts

va
lu

e
of

 m
et

ric

method number

CC

FCC

of subjects

(a) Cyclomatic Complexity

0

1

2

3

4

5

6

7

8

0

20

40

60

80

100

120

140

160

1 51 101 151 201

of

 su
bj

ec
ts

va
lu

e
of

 m
et

ric

method number

LOC

FLOC

of subjects

(b) Lines Of Code

Figure 10. Relationship between Metrics Value and The Number of Subjects

and Lines Of Code with the preprocessing present more

correct methods than without it in the top 20%. That is,

for subject “A”, the preprocessing is useful to detect low-

understandability methods efficiently. Totally, in the case of

Cyclomatic Complexity, for 7 out of 8 subjects, the number

of correct methods with the preprocessing is larger than

without it. On the other hand, in the case of Lines Of Code,

the preprocessing is more useful for only 2 out of 8 subjects.

For 4 out of remaining 6 subjects, both results with and

without the preprocessing included all the correct methods,

so that we could not see differences between them.

Next, we investigated the number of correct methods

included in top n by changing n. Figure 9 shows the

investigation results for subject “B”. The dotted line is

the ideal curve, which means that all the correct methods

appear in the top without including other methods. We can

see that (1) the curve of FCC is nearer than CC, and (2)

the curve of FLOC is nearer than LOC, respectively. That

means the preprocessing is useful for efficient detection of

low-understandability methods. Especially, in the case of

Cyclomatic Complexity, there is a significant difference with

and without the preprocessing. In the top 10 methods, only

2 correct methods were included without the preprocessing

whereas 9 correct methods were included with it. We con-

ducted the same investigation for the other subjects. As a

result, for 7 out of 8 subjects, we found that the proposed

preprocessing was useful for detecting low-understandability

methods efficiently.

V. DISCUSSION

Figure 10 shows metrics values of all the methods in-

cluded in the target system of Ex2. In addition, we plotted

the number of subjects who judged the method as difficult

to understand. In X-axis, the methods are arranged in the

descending other of FCC/FLOC. We confirmed that there

was a correlation between FCC/FLOC and the number of

subjects who judged the method as difficult.

However, there are some outliers. First, there are false-

positive methods. Though these methods had high FCC or

FLOC values, all the subjects judged as not difficult to

understand. For example, there is a method which includes 3

switch-statements, and the number of case-entries in each of

the switch-statements is different. This method has high FCC

and FLOC, because 3 switch-statements are not regarded as

repeated structures. As shown this example, difference of

the repeat count may be not significant for humans. Hence,

it would be required not to consider the difference of the

repeat count.

Also, there are other kinds of false-negative methods.

These methods were judged as difficult to understand by

some subjects, and their metrics values were reduced by ap-

plying the preprocessing. From this result, there is possible

that the length of source code affects to understandability.

Simplified source code has no information about the repeat

count and metrics values of the original source code. Hence,

it is necessary to use not only metrics values with the

preprocessing but also ones without the preprocessing or

125

the other metrics related to readability of source code for

identifying low-understandability source code.

VI. THREDS TO VALIDITY

In Ex2, we selected only a single software system. This

system is relatively small, and each method included in

the system is not so long. Also, in the selected system,

most of repeated structures were repetition of simple case-

entries and simple if-else-statements. Thus, we could not

evaluate multiple statements folding and recursive folding.

If we apply the proposed preprocessing for more systems, we

can evaluate the folding operation for a variety of repeated

structures.

Subjects in Ex2 have knowledge of software engineer-

ing, which probably has an impact on understandability of

source code. If we conduct the same experiment for other

people (for example, people who hardly have experiences of

programming), we may obtain a different result.

VII. CONCLUSION

This paper addressed that the presence of repeated struc-

tures have a negative impact on metrics measurement, and

proposed a technique that remove repeated structures. The

proposed technique is used as a preprocessing of metrics

measurement from source code. We compared results of

metrics measurement with and without the proposed pre-

processing on approximately 13,000 open source systems.

The comparison results showed that most of the target

methods included repeated structures and metrics values

were significantly different between with and without the

preprocessing. Also, we investigated the relationship be-

tween subject’s understandability of target methods and

their metrics values with and without the preprocessing.

We confirmed that metrics values with the preprocessing

had stronger correlation with the understandability than ones

without the preprocessing.

In the future, we are going to this research as follows:

• We tune the proposed technique. For example, not

considering the difference of repeat count in each

repeated structure will have a significant impact on

metrics measurement.

• By using the key idea that folding repeated structures,

we are going to develop a software tool for supporting

software development and maintenance. For example,

visualizing structures in a given method with the folded

functionality will help users to understand the method.

ACKNOWLEDGMENT

This study has been supported by Grants-in-Aid for

Scientific Research (A) (21240002), Grant-in-Aid for Ex-

ploratory Research (23650014, 24650011), and Grand-in-

Aid for Young Scientists (A) (24680002) from the Japan

Society for the Promotion of Science.

REFERENCES

[1] T. Menzies, J. Greenwald, and A. Frank, “Data mining static
code attributes to learn defect predictors,” IEEE Transactions
on Software Engineering, vol. 33, no. 1, pp. 2–13, Jan. 2007.

[2] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to pre-
dict component failures,” in Proceedings of 28th International
Conference on Software Engineering., May 2006, pp. 452–
461.

[3] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A
systematic review of fault prediction performance in software
engineering,” IEEE Transactions on Software Engineering,
vol. PrePrints, no. 99, pp. 1–31, 2011.

[4] H. Hata, O. Mizuno, and T. Kikuno, “Bug prediction based
on fine-grained module histories,” in Proceedings of 34th In-
ternational Conference on Software Engineering., Jun. 2012,
pp. 200–210.

[5] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto,
B. Adams, and A. E. Hassan, “Revisiting common bug
prediction findings using effort-aware models,” in Proceed-
ings of 26th IEEE International Conference on Software
Maintenance, Sep. 2010, pp. 1–10.

[6] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in Proceedings of 30th International
Conference on Software Engineering, May 2008, pp. 181–
190.

[7] T. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, Dec.
1976.

[8] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Transactions on Software En-
gineering, vol. 20, no. 6, pp. 476–493, Jun. 1994.

[9] V. Basili, L. Briand, and W. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transac-
tions on Software Engineering, vol. 22, no. 10, pp. 751–761,
Oct. 1996.

[10] F. Simon, F. Steinbrückner, and C. Lewerentz, “Metrics based
refactoring,” in Proceedings of the Fifth European Conference
on Software Maintenance and Reengineering, Mar. 2001, pp.
30–38.

[11] M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[12] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor,
and how we know it,” in Proceedings of the 31st International
Conference on Software Engineering, 2009, pp. 287–297.

[13] A. Goldberg, “Programmer as reader,” IEEE Software, vol. 4,
no. 5, pp. 62–70, Sep. 1987.

[14] S. Haiduc, J. Aponte, and A. Marcus, “Supporting program
comprehension with source code summarization,” in Proceed-
ings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 2, 2010, pp. 223–226.

126

[15] X. Wang, L. Pollock, and K. Vijay-Shanker, “Automatic
segmentation of method code into meaningful blocks to
improve readability,” in Proceedings of the 2011 18th Working
Conference on Reverse Engineering, 2011, pp. 35–44.

[16] R. P. L. Buse and W. R. Weimer, “Learning a metric for
code readability,” IEEE Trans. Softw. Eng, vol. 36, no. 4, pp.
546–558, Jul. 2010.

[17] A. Jbara, A. Matan, and D. G. Feitelson, “High-mcc functions
in the linux kernel,” in Proceedings of 34th International
Conference on Program Comprehension, Jun. 2012.

[18] J. J. Vinju and M. W. Godfrey, “What does control flow really
look like? eyeballing the cyclomatic complexity metric,” in
Proceedings of the 2012 IEEE 12th International Working
Conference on Source Code Analysis and Manipulation, 2012,
pp. 154–163.

[19] “pmccabe,” http://http://manpages.ubuntu.com/manpages/
lucid/man1/pmccabe.1.html.

[20] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Method and
implementation for investigating code clones in a software
system,” Information and Software Technology, vol. 49, no.
9–10, pp. 985–998, Sep. 2007.

[21] C. Lopes, S. Bajrachaya, J. Ossher, and P. Baldi, “Uci source
code data sets,” http://www.ics.uci.edu/∼lopes/datasets/.

127

