
Experimental Report of the Exercise Environment for Software Development PBL

Naoki Fukuyasu∗, Sachio Saiki†, Hiroshi Igaki‡ and Yuki Manabe‡
∗Faculty of Systems Engineering, Wakayama University

930 Sakaedani, Wakayama-shi, Wakayama, Japan
Email: fukuyasu@sys.wakayama-u.ac.jp

†School of Information, Kochi University of Technology
185 Miyanokuchi, Tosayamada-cho, Kami-shi, Kochi, Japan

Email: saiki.sachio@kochi-tech.ac.jp
‡Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita-shi, Osaka, Japan
Email:{igaki,y-manabe}@ist.osaka-u.ac.jp

Abstract—This paper summarized experiences of practical
software development exercise in PBL style activities from
organizer perspective. The object of this PBL is nurturing
advanced knowledge as advanced information and communi-
cation technology (ICT) engineers.

A main pillar of this report is trace the 5-year history of three
sub environments such as development, development support
and teaching support environment which are badly need to
hold our software development PBL, from problem and its
solutions viewpoint.

Keywords-PBL; exercise environment; software engineering
education;

I. INTRODUCTION

In recent years, with the increase of the scale and compli-

cation of the information system, shortage of the information

system engineer is pointed out. At first, industrial trend

was toward increasing the number of engineers. Nowadays

that trend changes to the quality of the engineer instead

of quantity. Therefore, nurturing advanced engineers of

information and communication technology is recognized as

an important issue [1]. Against that requirement, there are

many trials by collaboration between industry, academia and

government.

Industry requires that undergraduate and graduate students

should learn not only coding skills but also management

and communication skills which are necessary for project

management through practical exercises of software devel-

opment. One way to react to the requirement of industry,

practical software development exercises in PBL [2] style

(here after referred as “software development PBL”) has

been implemented on various educational organizations [3]–

[5]. It is difficult to master skill required for employment of

a project only by the usual lecture and exercise. On the other

hand, in the PBL style exercise, it is said that it might be

possible to acquire such skills because an attendance student

performs actual project management actively [5].

Against this background, we have also implemented a

software development PBL in IT Spiral, a program for

developing advanced IT specialists [6]. In this paper, we

summarize our experiences of software development PBL

activities.

The organisation of this paper is as follows. Details of

IT Spiral and its PBL style exercise are presented in section

II, then our improvements on prepared exercise environment

for the PBL are reported in section III. In section IV, we

describe future works of our environments, and finally we

present the conclusion of this report.

II. IT SPIRAL AND SOFTWARE DEVELOPMENT PBL

A. IT Spiral

IT Spiral is an education program for nurturing advanced

software engineers by 9 graduate schools and 4 private

corporations under the leadership of Osaka University [7].

At first, it was started as one of the pioneering IT specialist

development promotion programs led by the Ministry of Ed-

ucation, Culture, Sports, Science and Technology (MEXT).

Even after the support by MEXT ended, the program is

being held continuously for 5 years until now including the

supported period.

Its one-year curriculum features a series of basic software

courses, advanced software courses, and practical software

development courses. Especially, the series of practical soft-

ware development courses is held at one exercise room and

about 30 or 40 students from 9 graduate schools meet in the

room. The series consists of 16-day lectures and exercises

for a total of 6 course credits. A software development PBL

is held a part of the series. Figure 1 shows a scene of activity

in our PBL.

B. Practical Software Development Exercise

IT Spiral holds the software development PBL named

“practical software development exercise.” The PBL consists

of 3-day exercises and 1-day final presentation which is

opportunity to report the activities of students’ project and

its improvement. It spends about one and a half months

from the first exercise day to the final presentation day. A

2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing

978-0-7695-4761-9/12 $26.00 © 2012 IEEE

DOI 10.1109/SNPD.2012.56

482

Figure 1. Practical scene of the software development PBL in IT Spiral

team consists of 5 or 6 students from different universities.

Students of each team implement the web application which

specifications are given by teachers. The web application

is based on the Java EE (Enterprise Edition). The each

team implements it using JSP and Java, such as business

logic, DAO, Action of Struts framework and so on. Students

should also implement some test cases which test Java

classes implemented by themselves. The roles, for example

who implements a JSP and who implements a test case,

are decided by the team meeting. The practical software

development exercise aims to attain the following targets:

• Through the experience of software development from

implementation to integration testing by a team, the stu-

dents learn the difficulty of working in a team and the

importance of all-around skills such as communication,

schedule management, and project management.

• Through looking back the development process, the stu-

dents obtain the further understanding of development

process and process improvement.

III. IMPROVEMENT OF EXERCISE ENVIRONMENT

We prepared and improved the exercise environment for

the software development PBL in IT Spiral. It consisted of

some sub environments. In this section, we describe our im-

provements of three sub environments, such as development,

development support and teaching support environments, for

5 years.
Figure 2 shows the transitions of three sub environments.

The details of the transitions of each sub environment are

described in following.

A. Development Environment

The development environment consists not only of tools

for describing and compiling programs but also environment

for testing the implemented system. In software development

PBL, the system is developed by a team of more than one

member. It is important that all members prepare same de-

velopment environment. The testing results may be different,

if the members use different environment. It is complex to

find out the cause of the problem.

In our PBL, students implement a Java EE (Enterprise

Edition) based web application system by using the devel-

opment environment in which JDK (Java Development Kit) /

JRE (Java Runtime Environment), Apache Tomcat, Eclipse,

and so on are installed. In the 1st year, the exercise was held

by using students’ laptop PC. We made students install some

software tools specified by us on their own PC. Because of

the difference of Operating System such as Windows XP and

Vista and the difference of pre-installed software especially

JRE which have different version numbers, it has occurred

that one student got the correct result on his environment

and another got the wrong result from same implementation.

In the 2nd year, then we have tried to prepare laptop PCs

installed same possible Operating System by cleaning each

PC before the exercise. Moreover, in the 3rd year, we have

tried standardization of the development environment by

distributing common image of virtual machine to students.

483

development

development support

teaching support

sub environments 2007 2008 2009 2010 2011

cleaning VM image building procedure

Kagemai

&

CVS Trac & SVN

Cloud-ization

(ticket driven development)

Gantt chart
highlighting problems

team state view

Figure 2. The transitions of three sub environments for 5 years

On the other hand, it became clear that hardware perfor-

mance was important for execution of that virtual machine.

Especially the students who used laptop PC with less than

2 GBytes RAM complained about slow performance and

said that it was impossible to implement by their own way.

So, by showing the procedures of building that development

environment for students, we considered that they could

prepare the environment whose versions of installed software

corresponded, even if they did not use virtual machine.

B. Development Support Environment

Communication in system development by a team is

generally important, so development is usually carried out

by using some support tools for that communication. It

is also applied to software development PBL. The typical

support tools of communication in system development are

for example, a versioning system, a bug tracking system,

etc.

In our original PBL, students carried out the development

by using CVS as a versioning system and Kagemai as a

bug tracking system for development support environment.

These support tools were prepared by us. Then we tried

two improvements in support environment. One of that

improvements was to introduce Trac and SVN, and the other

was the Cloud-ization of support environment.

As already reported in [6], the usability of Kagemai was

low for our PBL because it also required inputting data

which were beyond the scope of the exercise. There were

some cases that students fixed bugs without to report these

bugs through Kagemai. Teachers analyzed development sta-

tus of students from Kagemai and CVS data, so more exact

input was important. Therefore we introduced Trac and

SVN as a support environment which was more suitable

for our PBL. Trac and SVN were prepared for ticket driven

development. Under ticket driven development, a ticket is

generated for each task which is performed for one product

by one developer. Generated tickets are grouped by a unit

of development named milestone which corresponds to use

cases and so on. By using Trac, students can manage not

only reporting bugs but all tasks of the development on the

same system. Teachers can also recognize the development

status by analyzing these logs, as it will be described in

III-C.

In the 5th year, we tried the Cloud-ization of the server

running Trac and SVN to manage it easily. We used edubase

Cloud1, one of the Cloud Computing services for educa-

tion provided by GRACE center in National Institute of

Informatics, as an infrastructure of the Cloud-ization. The

summary of the new environment is illustrated in Figure 3.

Edubase Cloud is based on Eucalyptus, and booting images

of OS (machine images) are saved on the S3 (Simple Storage

Service) storage. As a characteristic of S3 storage, if the

instance of a machine image is stopped, the runtime data

is cleared. It is necessary to use EBS (Elastic Block Store)

volumes to keep Trac and SVN data persistently. Therefore,

we have planned to store constant parts, such as the web

server for running Trac and SVN, the main software and

plugins of Trac and SVN, and basic configurations of the

server, as the machine image on the S3 storage and to keep

variable data at runtime, such as Trac project data, SVN

repository data, and access logs, persistently by the EBS

volumes. We have prepared an EBS volume and an Elastic

IP address for each team, and an EBS volume and an IP

address have been always assigned to an instance in the

pair. Even if the server instance was changed, the students

could access the team data by the always same URL.

It became more easy to supply the server running Trac

and SVN for each team independently by the Cloud-ization.

The operations needed for booting two or more servers

which had similar settings only copying the machine image

and changing a few configurations. When the server trouble

occurred, we could minimize the extent of the impact. The

I/O error of the file system has occurred in the server of a

team as an actual trouble, we have tried to restore the server

1http://edubase.jp/cloud/

484

S3 storage

sta�c server image

server instances for each team

assigned

G2 + xxx.yyy.zzz.6
G2 + xxx.yyy.zzz.5

G2 + xxx.yyy.zzz.4
G2 + xxx.yyy.zzz.3

T2 + xxx.yyy.zzz.2T1

EBS volume (Trac/SVN data)

+ xxx.yyy.zzz.1
(Elas�c IP)

connect to
xxx.yyy.zzz.team_num

edubase Cloud

students

Figure 3. Cloud-ization of the development support environment using edubase Cloud

by a new instance. We have assigned the copy of the EBS

volume and the Elastic IP address which was assigned to the

troubled instance to the new instance. By this operation, we

have been able to restore the same environment as before

the trouble for students in about 12 minutes from recognition

(about 50 minutes from occurrence) of that.

In addition, we have prepared two systems against other

troubles. One is a server for duplicating data on EBS

volumes using rsync, a tool for synchronizing file systems

over the network. The other is a system that checks aliveness

of web servers providing Trac and SVN by trying to connect

to the servers with HTTP. When the trouble that there is

no response from the server occurs, it sends an email of

a warning message for us. Fortunately, any troubles which

these preparations commit effectively did not occur in our

experience.

C. Teaching Support Environment

In PBL style exercise, it is important that the teacher

behaves as the facilitator whose role is the adviser rather

than the instructor. Appropriate advice from facilitators to

students is considered vital to enhance the value of PBL.

Of course the effectiveness is the same with software de-

velopment PBL. What needs to be done to give students

specific advice is correct understanding of team’s status not

only about development products but also about process by

facilitators. Through by two data, one is history of activity

stored in the task management tool and the other is changing

log of the source repository, it is possible to get general

status of process and products. Put another way, it may be

possible for facilitator to give the advice on real-time using

these data. However, it is difficult to grasp problems on

development from raw log data of resources varying with

time, such as a task management tool or a source code

repository, for anyone except for an expert.

Against this background, a novel Gantt chart tool getting

development status easily was developed in the 3rd year.

Unfortunately, scale marks of existing Gantt chart tools are

usually calibrated by a day or an hour. It is not enough

grain size for facilitators to understand development status

on software development PBL. A significant advantage of

our tool against the existing is not miss a few changing of

temporal variation because of variability of time grain size.

Using this tool, our recognition process of student’s status

became much easier. Although some features are required

by facilitators through the practical use of the facilitation on

the PBL. With the increasing of demands, additional features

were implemented for our tool in the 5th year. For example,

alarm function by highlighting problem point on the Gantt

chart and instinctive visualization of team’s state by graphs.

Figure 4 shows output of the tool. Upper left side table

means task state of each member, right side illustrates rate

485

task state of
each member

visualizing each task by
Gantt chart with highlighting

rate of task assignment
for each member

Figure 4. Output of the visualization tool

of task assignment for each member and bellow one is a

Gantt chart with highlighting.

Our tool was greatly helpful to grasp development status

but the problem of data accuracy was exposed. Ergographic

data taken from task management tool are deeply depend

student’s input. Perhaps, students may make declarations an

overclaim or underclaim to avoid low marks. In other words,

the accuracy of these data is questionable. So we need to

think of effects of the non accurate data.

IV. FUTURE WORK

In this section, we explain some future works about each

sub environment.

For making improvements of the development environ-

ment, we plan to use edubase Cloud as a DaaS (Desktop

as a Service) provider. DaaS is a service that the user can

access a virtual desktop terminal via the Internet. There are

some merits for both students and teachers by using DaaS.

These merits are

• the hardware performance required for students’ laptop

PC is decreased, because they can develop the system

as long as the PC connects with VPN via the Internet,

• the common development environment can be prepared

independently of students’ laptop PC, and

• there are no need for teachers to distribute the huge

(more than few GBytes) image of virtual machine.

However, using DaaS has a high dependence on the network

environment. If there is no connection to the Internet, the

development is impossible. When all students gather in a

room and exercise, they will use one network environment

and the network load will be high. We have to clear the

network problems.

The current problem of the support environment is that

cooperation between planning of project management and

inputting data to Trac is impossible. If students plan for

project management by using some tools, since these are

independent from Trac by us, they might have to maintain

the relation between Trac and these tools manually. There

are some methodologies to make cooperation between a plan

of project management, such as WBS (Work Breakdown

Structure), and a task management system, but introducing

of specific environment may restrict students’ ideas for

486

carrying the project. The future work is to make cooperation

between the plans by some WBS-like tools and the tasks

managed by Trac without restricting students’ ideas.

For the teaching support environment, what we would like

to point out is how to feedback the information getting from

our tool. From educational ideal point of view, student’s

spontaneous understanding is desired but it is difficult in

practice. Hence, if the output result of the tool was provided

to students, their motivation might become higher. However,

this action defeat the purpose of PBL ”think and act for

oneself”, facilitator’s decision of those presentation style

affects students’ understanding. So facilitator should decide

the presentation style carefully.

V. CONCLUSION

Experiments of the software development PBL in IT

Spiral focused on environments improvement have been

introduced. For the development environment, we introduced

a virtualization technology to give a non-stressful develop-

ment environment to students. For the development support

environment, ticket driven development style was adopted

by using a system of task management tool. For teaching

support environment, we developed a project visualization

tool to recognize process of student’s status easily.

Throughout 5 years trial, we had been applied some

improvements as shown in section III to the software devel-

opment PBL. Our improvements reduce students’ complaints

on usability of development environment and hardware

performance. Students could concentrate on the essential

part of the exercise, that is to improve their way of project

management. On the other hand, we encountered new chal-

lenges. These points should be investigated further.

ACKNOWLEDGMENT

We thank participating universities and cooperative com-

panies for the held of IT Spiral and practical software

development exercise, and we are grateful to the successive

students of this programs.

REFERENCES

[1] Keidanren (Japan Business Federation), “Towards strength-
ening development of human resources in advanced
information and communication technology by industry-
academia-government collaboration,” 2005, (in Japanese).
[Online]. Available: http://www.keidanren.or.jp/japanese/
policy/2005/039/honbun.pdf

[2] B. J. S. Barron, D. L. Schwartz, N. J. Vye, A. Moore,
A. Petrosino, L. Zech, and J. D. Bransford, “Doing with
understanding: Lessons from research on problem- and project-
based learning,” The Journal of the Learning Sciences, vol. 7,
no. 3/4, pp. 271–311, 1998.

[3] Y. Matsuzawa and H. Ohiwa, “A result of trial education for
software engineers through university-industry collaboration
and project-based learning,” Journal of Information Processing
Society of Japan, vol. 48, no. 8, pp. 2767–2780, 2007, (in
Japanese).

[4] T. Hananoi, G. Arita, S. Sawada, K. Ushijima, K. Yoshimoto,
and K. Makizono, “A bi-directional practical education through
industry-university cooperation,” Journal of Information Pro-
cessing Society of Japan, vol. 48, no. 2, pp. 832–845, 2007,
(in Japanese).

[5] A. Sawada, T. Kobayashi, N. Kaneko, N. Nakamichi,
H. Ohkubo, and S. Yamamoto, “A project based learning using
airship control software development,” Journal of Information
Processing Society of Japan, vol. 50, no. 11, pp. 2677–2689,
2009, (in Japanese).

[6] H. Igaki, K. Kakimoto, S. Saiki, N. Fukuyasu, S. Kawaguchi,
Y. Hayase, N. Sakiyama, and K. Inoue, “Process monitoring
environment for reality-based software development practice
based on comparison among student groups,” Educational
technology research, vol. 34, no. 1·2, pp. 95–105, 2011.

[7] M. Barker and K. Inoue, “IT SPIRAL: a case study in scal-
able software engineering education,” in Proc. 22nd IEEE-CS
Conference on Software Engineering Education and Training,
2009, pp. 53–60.

487

