
Implementation of a Prototype Bi-directional Translation Tool
between OCL and JML

Kentaro Hanada†, Hiroaki Shimba†, Kozo Okano†and Shinji Kusumoto†,

†Graduate School of Information Science and Technology, Osaka University, Japan
{k-hanada, h-shimba, okano, kusumoto}@ist.osaka-u.ac.jp

Abstract - OCL (Object Constraint Language) is an anno-
tation language for UML. It can describe specification more
precisely than natural languages. In recent years, MDA (Model
Driven Architecture) based techniques have emerged, thus
translation techniques such as translation from OCL to JML
(Java Modeling Language) have gained much attention. Our
research group has been studying not only a translation method
from OCL to JML but also a translation method from JML to
OCL. Bi-directional translation between OCL and JML sup-
ports (1) development by RTE (Round Trip Engineering) at
the design level, and (2) multi-translations among various for-
mal specification languages. This paper presents our imple-
mentations based on model translation techniques.

Keywords: Model-Driven Architecture, OCL, JML, de-
sign by contract

1 Introduction
In recent years, MDA (Model Driven Architecture) [14]

based techniques have emerged. MDA targets a lot of lan-
guages; thus, translation techniques such as translation from
UML (Unified Modeling Language) to some program lan-
guages, have gained much attention. Several research efforts
have proposed methods which automatically generate Java
skeleton files from UML class diagrams [6], [11]. Some of
them are publicized as plug-ins for Eclipse. Translation tech-
niques such as OCL (Object Constraint Language) [20] to
JML (Java Modeling Language) [15] have been also studied.

• OCL is a language to describe detailed properties of
UML and standardized by OMG (Object Management
Group).

• JML is a language to specify properties of a Java pro-
gram. It is also used in some static program analyzers
such as ESC/Java2[8].

JML aims for describing more detail properties than OCL
does. Both OCL and JML are based on DbC (Design by Con-
tract) [18] and able to provide property descriptions of classes
or methods.
We have already proposed a concrete method which trans-

lates a UML class diagram with OCL into a Java skeleton
with JML [19]. Our translation tool is implemented by map-
ping each of statements in OCL and JML by Java program.
However, model translation which uses some abstract mod-
els representing common aspects of the target languages, is
the main-stream of MDA. Also one of our original goals is
providing uniform techniques to translate from OCL to a lots

of specification languages. Our previous prototype of trans-
lation tool and other tools provided by other researchers [19],
[23] have low reusability. Thus, we consider that we have to
develop a useful tool which supports the above issues. And,
a major aim of existing tool is fulfillment of translation, so
existing tool has low usability.
This paper presents a prototype translation tool from OCL

to JML. First, we define syntax of UML with OCL using
Xtext [5]. Next, we describe translation rules from UML with
OCL to Java skeleton with JML. The syntax and rules are
used to translation in a framework provided by Xtext which is
a plug-in for Eclipse. The syntax description is independent
of translation rules in Xtext, therefore, the syntax part has
high reusability. Xtext can generate a dedicated editor of the
defined syntax. The editor has some high usability functions.
For example, code completion, detection of syntax errors, and
so on.
We also implemented a tool which translates from JML to

OCL by using the same approach of translation from OCL to
JML. Round Trip Engineering (RTE) [17], [25] is a method
which gradually refines model and source code by the re-
peated use of forward engineering and reverse engineering.
The aim of implementation of translation from JML to OCL
is to support RTE at specification description level.
The organization of the remainder of the paper is as fol-

lows. Sec.2 describes the background of this research and
related work. Sec.3, 4, and 5 describe the implementation
of our tool, experimental results, and discussion, respectively.
Finally, Sec.6 concludes the paper.

2 Background
In this section, we present background of our research such

as some techniques and related works.

2.1 Design by Contract
Design by Contract is one of the concepts about Object Ori-

ented software designing. The concept regards specifications
between a supplier (method) and a client (calling the method)
as contract. It is introduced to aim at enhancing software qual-
ity, reliability and reusability. The contract means that if caller
of its class the pre-condition then its class must also ensure the
post-condition. A pre-condition is the condition that should
be satisfied when a method is called. For example, conditions
for the arguments of method are pre-conditions. On the other
hands, a post-condition is the condition that should be satis-
fied when a process of method ends. If the pre-condition is
not satisfied then caller of its class has errors and if the post-

121

condition is not satisfied then class has errors. These separate
responsibilities have a clear distinction between the role of
developers, and it is useful to distinct the causes of software
defect.

2.2 OCL and JML
OCL details properties of UML models. It is standardized

by OMG. UML diagram alone cannot express a rich seman-
tics of relevant information on an application. OCL allows
to describe precisely the additional constraints on the objects
and entities present in a UML model.
JML is a language to detail constraints of Java methods or

objects [15]. The constraints are based on DbC. It is easy for
novices to describe properties in JML because the syntax of
JML is similar to that of Java. There are various kinds of tools
to verify the source codes with JML annotations. For exam-
ple, JML Runtime Assertion Checker (JMLrac) [24] checks
that there are no contradictions between JML constraints and
runtime values of the program. JMLUnit automatically gen-
erates a test case skeleton and a test method for JUnit [1].
The original use of JML was for runtime assertion checking
[4]. Several program verification tools are, however, provided
such as ESC/Java(2) [7], [13], JACK [3], KeY [2], Krakatoa
[16], and so on.

2.3 Model Translation
In order to represent an overview of a system to develop,

in usual, a model for the system is used in design phase. For
example, UML class diagram is one of such models.
QVT [9] and ATL [12] are typical model translation tech-

niques. Model translation has two types. One isModel2Model
(M2M) that translates from model to model. The other type
is Model2Text (M2T) that translates from model to code. For
example, UML2Java [6] provides a M2T translation capabil-
ity.

2.4 Round Trip Engineering
RTE (Round Trip Engineering) is a method that gradually

refines model and source code by the repeated use of forward
engineering and reverse engineering. RTE makes some fea-
ture changes and requirement changes easier [17], [25]. RTE
development has needs to keep the conformity of the models
with source code. In general, when the code or models are
changed, then the corresponding models or code are changed
automatically by using tool of supporting RTE.

2.5 Xtext
Xtext [5] is a framework to support to define syntax of

model and to define translation rule from model to text. Xtext
can generate a dedicated editor of the defined syntax. The
editor has some high usability functions. For example, code
completion, detection of syntax errors and so on. Moreover,
if Textual models are written on the editor, the models are
translated to text according to defined translation rules auto-
matically.

2.6 Related Work

Some existing methods [10][23] do not enough support it-
erate feature that is the most basic operation among collection
loop operations. Our research group proposed a technique to
resolve this problem by inserting a Java method that is seman-
tically equal to each OCL loop feature [19].
An iterate feature is an operation which applies an expres-

sion given as its argument to each element of a collection
which is also given as its another argument.

Set{1, 2, 3}−> iterate(i: Integer;
sum : Interger = 0 | sum+ i) (1)

Expression (1) defines an operation that returns a value which
represents a sum of all elements in Set. In expression (1), the
first argument (i : Integer) defines an iterator variable. The
second argument (sum : Integer = 0) defines a variable
which is used to store the return value and it’s initialization.
The third argument (sum+ i) stands for an expression that is
executed iteratively in the loop.
In JML or Java, expressions like “sum+ i” cannot be eval-

uated dynamically. For example, if Expression (1) was re-
solved by the same way of Expression (2), the result of the
translation would be like Expression (3).

JMLTools.flatten(setOfSets) (2)

JMLTools.iterate(int i, int sum = 0, sum+ i, set) (3)

In Expression (3), the expression “sum+ i” is evaluated only
once when the method is called. In other words, the expres-
sion is not evaluated iteratively and dynamically in every col-
lection element.
Our research group proposed a technique to resolve this

problem by inserting a Java method that is semantically equal
to each OCL loop feature [22]. It is worthful that the algo-
rithm deals with the iterate feature because an iterate feature
is widely used.
Expression (4) shows the general format of an iterate fea-

ture. The variables e, init, body and c mean an iterator vari-
able, a declaration of the return value and its initialization, an
expression executed in the loop, and a Collection type vari-
able respectively.

c−> iterate(e; init | body) (4)

Figure 1 shows a general format of our newly created method.
The keywords µ(), T1, T2 and the variable res mean a func-
tion which translates an OCL expression into a Java expres-
sion, a variable declared in init, a variable e, and the name of
a variable declared in init, respectively.

3 Implementation

In this section, we will present the implementation of our
translation tool.

122

private T1 mPrivateUseForJML01(){
µ(init);
for (T2 e: µ(c1))
res = µ(body)

return res;
}

Figure 1: General Java Template of the Method for Iterate
Feature

Figure 2: overview of implementation using Xtext

3.1 The policy of Implementation
We implemented translation tools using Xtext. First, we

defined the syntax of the models. Next, we defined translation
rules from the syntax of model to source code. Both transla-
tions from OCL to JML and from JML to OCL, respectively,
are implemented by above method. Figure 2 is the overview
of the implementation.
Our implementation method has the following advantage.

• Syntax and translation rules are defined independently;
thus the part of syntax description can be reused.

• Xtext can generate a dedicated editor of the defined
syntax. The high usability functions explained in the
before section.

3.2 Translation from OCL to JML
In this section, we will present the implementation of trans-

lation from OCL to JML.

3.2.1 Syntax definition of UML with OCL annotation

We defined syntax of UML class diagram with OCL. In terms
of parts of UML, we use a conventional syntax rules, and we
extended the syntax. The extended syntax can append OCL
constraints. In terms of parts of OCL, we take account of
some cases of return type and others. Translation rules depend
on syntax of model, therefore careful thought of case analysis
helps semantic analysis and enhances utility for reuse syntax
of model. The function of the generated editor depend defined
syntax. Therefore, the more we take account of case analy-
sis, the more the generated editor has high usability. With all
these factors, careful thought of case analysis helps in usabil-
ity and reusability.

Figure 3: input model

Figure 4: result of translation from OCL to JML

3.2.2 Definition of translation rule from OCL to JML

Table 1,2 and 3 are a part of the translation rules of OCL to
JML. A translation function of an OCL statement to a JML
statement is expressed by µ. Here, Integer, Real and any type
of Boolean are expressed by ai. Any type of Collection is
expressed by ci.
We defined translation rules OCL-JML in much the same

rules as the existing research [19]. As Table 4, many collec-
tion loops can be replaced by iterate features. Therefore, our
existing research replaced the collection loop with the iter-
ate feature. However, this translation method has some chal-
lenges. For example, low readability of generated code is one
of challenges. In order to resolve this problem, if OCL loop
feature directly translates JML loop feature, we do not replace
the collection loop with the iterate feature.
Figure 3 is an example of a textual model based on the de-

fined syntax. Figure 4 is an example of a result of a translation
from the model to the text.

3.2.3 Type of Oclvoid

OclVoid type is a class which has only a constant, Undefined.
It is returned when an object is casted into an unsupported
type or a method gets a value from empty collection. Its coun-
terpart of JML is null. However, in OCL, a logical expression
such as “True or Undefined”, is not evaluated as undefined ex-
pression but True. To deal with OclVoid correctly, the trans-

Table 1: µ translation table of the numeric type
µ(a1 = a2) = µ(a1) == µ(a2)
µ(a1 > a2) = µ(a1) > µ(a2)
µ(a1 < a2) = µ(a1) < µ(a2)
µ(a1 >= a2) = µ(a1) >= µ(a2)
µ(a1 <= a2) = µ(a1) <= µ(a2)
µ(a1 <> a2) = µ(a1)! = µ(a2)

123

lation tool needs to treat OclVoid as below.

(a_1 == null ? false :
throw new JMLTranslationException())

3.3 Translation from JML to OCL
In this section, we will present the implementation of trans-

lation from JML to OCL.

3.3.1 Syntax definition of Java skeleton code with JML
annotation

We defined the syntax of Java skeleton with JML. In regard
to Java, we defined syntax of class declaration, class modifier,
field variable and method declaration as target of translation.
Variable type and others are needed to translate correctly, so
we defined the syntax of Java skeleton. In terms of parts
of JML, our translation tool can translate a part of formula
that defined in JML Reference Manual. JML is more con-
crete language than OCL, and JML has complex expression
that cannot express by OCL. For example, JML has assign-
ment operation and shift operation, but OCL does not have
these operations. At the time of syntax definition, we omit-
ted these operation and syntax that cannot translate from JML
to OCL. By omitting syntax that does not support translation
from JML to OCL, user can input only JML supported by
generated editor. Because of this, it becomes that much easier
to understand corresponding syntax.

3.3.2 Definition of translation rule from JML to OCL

Table 5 is a part of translation rules of JML to OCL.
In terms of elementary operation, translation of JML to

OCL only has to replace operator of JML with operator of
OCL. However, in order to translate correctly, a part of op-
erator needs to interchange operand. The syntax of JML is
similar to that of Java. For example, “+ operator” is used
in various cases, “Integer + Integer”, “String + Integer” and
others. However, OCL does not support operation among dif-
ferent types. On the other hand, JML supports “+ operator”
among types not involving numerical type. In terms of loop
operation, exists and forall and others are defined as operation
of Collection type in OCL. However, it sometimes happens
that exists and forall and others are used as for loop of Java in
JML. Therefore, loop operation of JML cannot be translated
loop operation of OCL. If loop operation is used as Collection
in JML, our tool translates JML to OCL. If loop operation is
not used as Collection in JML, our tool outputs error mes-
sages.

Table 2: µ translation table of the collection type

µ(c1=c2) = µ(c1).equals(µ(c2))
µ(c1>c2) = µ(c1).containsAll(µ(c2))&&!µ(c1).equals(µ(c2))
µ(c1<c2) = µ(c2).containsAll(µ(c1))&&!µ(c1).equals(µ(c2))
µ(c1>=c2) = µ(c1).containsAll(µ(c2))
µ(c1<=c2) = µ(c2).containsAll(µ(c1))
µ(c1<>c2) = !µ(c1).equals(µ(c2))

3.4 Type inference
In OCL, “==” is used to evaluate whether or not two ob-

jects are equivalent. However in JML, “==” is used in order
to evaluate whether or not two reference types are equivalent,
and “equals()” method is used in order to evaluate whether
or not two reference types are equivalent. In order to translate
correctly, there is a need to distinguish variable type and so
on correctly. When translate from JML to OCL, our tool can
distinguish type information correctly. However, when user
write textual model, our tool cannot distinguish type informa-
tion.

4 Experiments
This section will explain experiments in detail.

4.1 Overview of Experiments
We conducted two experiments. The aim of the first exper-

iment (Experiment1) is to evaluate quality of translation from
JML that is described in experimental object to OCL. The aim
of second experiment (Experiment2) is to evaluate quality of
translation from OCL that is generated by our translation tool
to JML. It is in order to ensure that our tool has possible ap-
plication of RTE.

4.2 Measurements
In order to evaluate results of translation, we measured two

items of the following.

Ratio of Transformation
Ratio = OCLtranslated/JMLall

Ratio of Reverse Transformation
Ratio = JMLreverse/OCLtranslated

JMLall is the number of pre-conditions and post-conditions.
OCLtranslated is the number of OCL statements that are trans-
lated from JML statements by our translation tool. JMLreverse

is the number of JML statements that are translated from gen-
erated OCL statements by our translation tool.

4.3 Results of Experiments
4.3.1 Experiment 1

Experiment 1 uses a warehouse management program. Figure
5 shows the class diagram of the warehouse management pro-
gram. It consists of seven classes. Table 6 shows components
of the warehouse management program in details.

Table 3: µ translation table of the operation of the collection
type

µ(c1−>size()) = µ(c1).size()
µ(c1−>isEmpty()) = µ(c1).isEmpty()
µ(c1−>notEmpty()) = !µ(c1).isEmpty()
µ(c1−>excludes(a1)) = µ(c1−>count(a1) = 0)
µ(c1−>count(a1)) = µ(c1−>iterate(e; acc : Integer = 0 |

if e = a1 then acc+ 1 else acc endif))

124

Figure 5: UML class diagram of a warehouse management
program

The warehouse management program [21] has correct JML
statements by the past research [21]. The number of described
pre-condition, post-condition and class-invariant is 130. We
used these statements in order to evaluate quality of transla-
tion. The result shows that the number of correctly translated
statements is 102, Ratio of Transformation is 78.4%. Figure
6, and 7 show the cases of failure translation.
There are many cases of failure translation. For example, if

multi-variables are declared in forall feature, then translation
from JML to OCL fails. Additionally, we can enumerate the
following expressions as other fails : expressions with type
operations, typeof operations, applying ”+” between String
type and numeric type expressions and so on.

4.3.2 Experiment 2

In Experiment 1, 102 statements are translated correctly. We
rechecked that these generated statements become recognized
as translation object of prototype translation tool from OCL
to JML. In terms of correctly translated OCL, Ratio of Trans-
formation of translation from OCL to JML is 100%. For this
reason, translation from JML to OCL by our tool has no prob-
lem. These are, however, some bugs in translation from OCL
to JML, because our translation rule is still in the trial phase.

Table 4: a part of correspondence table of Collection-Iterate
c1−>exists(a1 | a2) = c1−>iterate(

a1; res : Boolean = false | res or a2)
c1−>forAll(a1 | a2) = c1−>iterate(

a1; res : Boolean = true | res and a2)
c1−>count(a1) = c1−>iterate(

e; acc : Integer = 0 |
if e = a1 then acc+ 1

else acc endif)
st1−>select(a1 | a2)) = st1−>iterate(a1; res :

Set(T) = Set {} |
if a2 then res −>includeing (a1)
else res endif)

st1−>reject(a1 | a2)) = st1−>select(a1 | not a2)
c1−>any(a1 | a2) = c1−>select(a1 | a2)−>

asSequence()−>first()
c1−>one(a1 | a2) = c1−>select(a1 | a2)−>size()= 1

/*@
ensures \result.matches("containerID." + containerID

+ "CarryingDate | " + carryingDate + "\n{1}")
@*/
String toString(){
}
/*@
ensures (\forall Request r; requestList.contains(r);

r.getAmount() > 0);
ensures (\forall Request r; requestList.contains(r)

&& r.getAmount() != \old(r.getAmount());
r.getRequestState() == StockState.SHORTAGE);

@*/
List deliveringOrder(){
}

Figure 6: An example of a failure translation from JML to
OCL (input)

context ContainerItem::toString()::String
post : result.matches(’ContainerID.’

[type error][type error][type error][type error])

context ReceptionDesk::deliveringOrder()::List
post : requestList->forAll(r:Request|r.getAmount() > 0)
post : requestList and r=(r)@pre and ->forAll(

r:getRequestState() = StockState.SHORTAGE)

Figure 7: An example of a failure translation from JML to
OCL (output)

As a result, 98 statements out of 102 statements as input state-
ments are translated correctly, and Ratio of Transformation is
96.1%. And, the result shows that 4 statements have some
bug. Figure 8, and 9 show a part of failure case.
OclAsType method is described in the lexical specification.

OclAsType method is not, however, described in the trans-
lation rules, so that our tool could not translate oclAsType
method. We, however, have the modified method of unsuc-
cessful to translate 4 statements. Therefore we will modify
our translation rule in the aftertime.

5 Discussions
Result of Ratio of Transformation is 78.4% in Experiment

1. Here we implemented our tool as prototype, so our tool
has unsupported statements. However, Ratio of Transform of
experimental result shows that majority of JML are consisted

Table 5: µ translation rule from JML to OCL
µ(b1?b2:b3) = if µ(b1) then µ(b2)

else µ(b3) endif
µ(b1<==>b2) = µ(b1)= µ(b2)
µ(b1<=! =>b2) = µ(b1) <> µ(b2)
µ(b1==>b2) = µ(b1) implies µ(b2)
µ(b1<==b2) = µ(b2) implies µ(b1)
µ(b1&&b2) = µ(b1) and µ(b2)
µ(b1||b2) = µ(b1) or µ(b2)
µ(b1|b2) = µ(b1) or µ(b2)
µ(b1 ˆb2) = µ(b1 xor µ(b)
µ(b1& b2) = µ(b1) and µ(b2)
µ(\result) = result
µ(\old(a1)) = µ(a1)@pre
µ(\not modified(a1)) = µ(a1) = µ(a1)@pre
µ(\fresh(a1)) = µ(a1).oclIsNew()

125

pre : o.oclIsTypeOf(Request)
post : result = (receptionDate.getTime()-

(o.oclAsType(Request)).getReceptionDate())
.oclAsType(Integer) or result = 0

op compareTo(o : Object)

Figure 8: An example of a failure translation from OCL to
JML (input)

/*@
requires o.getClass().equals(Request);
ensures (\result == (receiptionDate.getTime()-

((o.oclAsType(Request)).getReceiptionDate()))
.oclAsType(Integer)) || (\result == 0);

@*/
public void CompareTo(Object o){
}

Figure 9: An example of a failure translation from JML to
OCL (output)

of elementary operation. It shows validity of our translation
tool. We describe a part of failure translation.
Our tool could not translate \type keyword which is a prim-

itive operator returning a type name. The reason why the
above situation happens is that OCL has no counterpart of
\type operator to identify a type name from a designated ex-
pression. In terms of this problem, the following manner is
thought as a solution approach. First, our tool keeps informa-
tion on parameter type before translation from JML to OCL.
Next, our tool outputs the parameter type directly in OCL
statements.
Result of Ratio of Reverse Transformation is 96.1% in Ex-

periment 2. There are some unsuccessful translated state-
ments in the result of translation, because our translation tool
from OCL to JML is a prototype. Input OCL was recognized
as correct input, therefore it shows that a quality of translated
OCL has no problem. It shows that translation rules have
some imperfection.
For this reason, the generated OCL has high quality. There

is some failure translation due to omission of implementation.
In terms of this failure translation, our tool will be able to
translate correctly by additional implementation.

6 Conclusion
This paper presents concrete method of implementing trans-

lation from OCL to JML and reverse translation. The aim of
implementation of translation from JML to OCL is to sup-

Table 6: Components of warehouse management program

Class Name # of methods # of lines
ContainerItem 12 224
Customer 10 156
Item 7 110

ReceptionDesk 8 162
Request 16 245
StockState 0 9
Storage 10 258
TOTAL 63 1164

port RTE at specification description level. Also, we applied
our tool to a warehouse management program as experimental
object and show results of experiments. One of future work
is to complete our translation tool. Now, our tool is at the
experimental stage, therefore we will implement the rest of
our translation tool. For example, our tool cannot treat Un-
defined correctly and needs to modify on that point. After
accomplish implementation of our tool, we will conduct the
additional experiment. In terms of evaluation of tool, we will
additionally evaluate quality of translation from OCL to JML
and from JML to OCL. We have not yet evaluated transla-
tion from OCL to JML except for the number of successful
translation.
For the future, we will make a comparison between result

of applying generated JML to review tool for JML and result
of applying described JML manually to review tool for JML.
As examples of review tool for JML, there is esc/java2, jml4c
and so on. In terms of translation tool from JML to OCL,
we will make a comparison between generated OCL and de-
scribed OCL manually to evaluate readability. Also, we will
applying generated OCL to review tool for OCL. As examples
of review tool for OCL, there is Octopus and so on. Also, we
will check carefully to see if our tool can do mutual transfor-
mation repeatedly by using our translation tool from OCL to
JML and from JML to OCL.

7 Acknowledgments
This work is being conducted as a part of Grant-in-Aid for

Scientific Research C (21500036).

REFERENCES
[1] JUnit. http://www.junit.org/.
[2] W. Ahrendt, T. Baar, B. Beckert, M. G. R. Bubel and,

R. Hahnle, W. Menzel, W. Mostowski, A. Roth,
S. Schlager, and P. Schmitt. The KeY tool. Software
and System Modeling, 4(1):32–54, 2005.

[3] L. Burdy, A. Requet, and J.Lanet. Java applet cor-
rectness: A developer-oriented approach. K. Araki,
S. Gnesi, and D. Mandrioli, editors, FME 2003,
2805:422–439, 2003.

[4] Y. Cheon and T. Leavens. A runtime assertion checker
for the Java Modeling Language (JML). In Hamid
R. Arabnia and Youngsong Mun, editors, the Interna-
tional Conference on Software Engineering Research
and Practice (SERP’02), pages 322–328, 2002.

[5] Eclipse Foundation. Xtext - Language Development
Framework. http://www.eclipse.org/Xtext/.

[6] G. Engels, R.H.ücking, S. Sauer, and A. Wagner. UML
collaboration diagrams and their transformation to Java.
In UML1999 -Beyond the Standard, Second Interna-
tional Conference, pages 473–488, 1999.

[7] C. Flanagan, K. Rustan, M. Leino, M. Lillibridge, G. el-
son, J. Saxe, and R. Stata. A runtime assertion checker
for the Java Modeling Language (JML). Extended static
checking for Java. In ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation
(PLDI’2002), pages 234–245, 2002.

126

[8] C. Flanagan, K. Rustan, M. Leino, M. Lillibridge,
G. Nelson, J. Saxe, and R. Stata. Extended static check-
ing for Java. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and im-
plementation, pages 234–245, 2002.

[9] O. M. Group. Documents associated with meta ob-
ject facility (mof) 2.0 query/view/transformation, v1.1,
2011. http://www.omg.org/spec/QVT/1.1/PDF/.

[10] A. Hamie. Translating the Object Constraint Language
into the Modeling Language. In In Proc. of the 2004
ACM symposium on Applied computing, pages 1531–
1535, 2004.

[11] W. Harrison, C. Barton, and M. Raghavachari. Map-
ping UML designs to Java. In Proc. of the 15th ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 178–187,
2000.

[12] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL:
A model transformation tool. Science of Computer Pro-
gramming, 72(1-2):31–39, 2008.

[13] J. Kiniry and D. Cok. ESC/Java2: Uniting ESC/Java
and JML. Construction and Analysis of Safe, Secure and
Interoperable Smart devices (CASSIS’2004), 3362:108–
128, 2005.

[14] A. Kleppe, J. Warmer, and W. Bast. MDA explained:
the model driven architecture: practice and promise.
Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 2003.

[15] G. Leavens, A. Baker, and C. Ruby. JML: A Notation
for Detailed Design. Behavioral Specifications of Busi-
nesses and Systems, pages 175–188, 1999.

[16] C. Marche, C. Paulin-Mohring, and X. Urbain. The
KRAKATOA tool for certification of Java/JavaCard pro-
grams annotated in JML. J. Log. Algebr. Program, 58(1-
2):89–106, 2004.

[17] N. Medvidovic, A. Egyed, and D. S. Rosenblum.
Round-trip software engineering using uml: From ar-
chitecture to design and back, 1999.

[18] B. Meyer. Eiffel: the language. Prentice-Hall, Inc., Up-
per Saddle River, NJ, 1992.

[19] K. Miyazawa, K. Hanada, K. Okano, and S. Kusumoto.
Class enhancement of our ocl to jml translation tool and
its application to a curriculum management system. In
IEICE Technical Report, 110(458):115–120, 2011.

[20] Object Management Group. OCL 2.0 Specification,
2006. http://www.omg.org/cgi-bin/apps/doc?formal/06-
05-01.pdf.

[21] M. Owashi, K. Okano, and S. Kusumoto. Design of
Warehouse Management Program in JML and Its Veri-
fication with Esc/Java2 (in Japanese). The IEICE Trans-
action on Information and Systems, 91(11):2719–2720,
2008-11-01.

[22] M. Owashi, K. Okano, and S. Kusumoto. A Translation
Method from OCL into JML by Translating the Iterate
Feature into JavaMethods (in Japanese). Computer Soft-
ware, 27(2):106–111, 2010.

[23] M. Rodion and R. Alessandra. Implementing an OCL to
JML translation tool. 106(426):13–17, 2006.

[24] A. Sarcar and Y. Cheon. A new Eclipse-based JML com-
piler built using ASTmerging. Department of Computer
Science, The University of Texas at El Paso, Tech. Rep,
pages 10–08, 2010.

[25] S. Sendall and J. Küster. Taming model round-trip engi-
neering. In In Proceedings of Workshop Best Practices
for Model-Driven Software Development, pages 1–13,
2004.

127

