
Repeated Instructions Removal Preprocessing for Lightweight Code Clone Detection

Yoshiki Higo, Shinji Kusumoto
Graduate School of Information Science and Technology, Osaka University,

1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
Email: {higo,kusumoto}@ist.osaka-u.ac.jp

Abstract—This paper proposes a preprocessing removing
repeated instructions in the source code for lightweight code
clone detection. The proposed method increases the accuracy
of code clone detection.

Keywords-Code clone, Detection technique, Tool development

I. INTRODUCTION

At present, there are a variety of code clone detection
tools. However, not all of them are often used in other
research. Rapid detection tools are commonly-used because
it is easy to apply them to large-scale software. Most of
them employ line-based or token-based detection techniques.
However, the techniques suffer from repeated-instructions in
the source code. The presence of repeated-instructions is one
factor that the techniques detect unnecessary code clones and
they do not detect necessary code clones. A large body of
unnecessary code clones buries the necessary code clones,
which are related to copy-and-paste bugs.

This paper shows the negative impact of repeated-
instructions with an actual source code and a detection
tool. Then, it addresses a need of preprocessing removing
repeated-instructions for increasing accuracy of code clone
detection and proposes a removal method. A simplistic
implementation of the proposed algorithm is presented for
confirming the usefulness of the proposed method, that is,
detection results from preprocessed source code are more
reasonable for human than ones from original source code.

II. NATURAL ENEMY OF LIGHTWEIGHT DETECTION

In widely-used programming languages such as C/C++
or Java, there are often repeated-instructions in the source
code. In Java, for example, repeated append invocations for
generating SQL statements or repeated println invocations for
outputting information are typical repetitions. The authors
previously reported that the presence of repeated-instructions
has a negative impact on code clone detection [1].

Herein, we show the negative impact with actual source
code. Figure 1 is a Java class containing three methods.
The only difference between the methods is the number of
append invocations if we ignore the literals. Simian, which
is a line-based detection tool, was applied to the source code.
As a result, the following 4 clone groups were detected. For
example, a code clone 4-5-6 means that it locates on a region

1: public class Sample {
2: String method1() {
3: StringBuilder txt = new StringBuilder();
4: txt.append("A");
5: txt.append("B");
6: return txt.toString();
7: }
8:
9: String method2() {

10: StringBuilder txt = new StringBuilder();
11: txt.append("C");
12: txt.append("D");
13: txt.append("E");
14: return txt.toString();
15: }
16:
17: String method3() {
18: StringBuilder txt = new StringBuilder();
19: txt.append("F");
20: txt.append("G");
21: txt.append("H");
22: txt.append("I");
23: return txt.toString();
24: }
25: }

Figure 1. Sample Source Code

from the 4th line to the 6th line in the source code. In this
detection, we set 2-lines as the minimum detection size.

• {4-5-6, 12-13-14, 21-22-23}
• {3-4-5, 10-11-12, 18-19-20}
• {11-12-13-14, 20-21-22-23}
• {10-11-12-13, 18-19-20-21}
Simian detected many code clones from the source code,

which contains only 16 statements. However, Simian did not
detect the following clone group, which should be the most
reasonable clone group for human.

• {3-4-5-6, 10-11-12-13-14, 18-19-20-21-22-23}
The processing logics of the three methods (generate →

append → return) are the same. Hence, there is a point of
view that every entire method should be detected as a code
clone. If so, only a single clone group is enough to let human
to know that the three methods are considarably duplicated.
If every method contains only a single append invocation,
the entire methods would be detected as code clones. As
shown in this example, the presence of repeated-instructions
promotes unnecessary code clones detection and prevents
necessary code clones from being detected.

1: public class Sample {
2: String method1() {
3: StringBuilder txt = new StringBuilder();
4: txt.append("A"); // 2
5: return txt.toString();
6: }
7:
8: String method2() {
9: StringBuilder txt = new StringBuilder();

10: txt.append("C"); // 3
11: return txt.toString();
12: }
13:
14: String method3() {
15: StringBuilder txt = new StringBuilder();
16: txt.append("F"); // 4
17: return txt.toString();
18: }
19: }

Figure 2. Optimized Source Code

III. PROPOSED METHOD

The aim of the proposed method is decreasing the false
positives detected. It is a preprosessing that removes the
second and latters of repeated-instructions. Figure 2 shows
optimized source code, which is converted from the source
code of Figure 1. Also, the preprocessing outputs a mapping
file between original and optimized source code. It is used
for converting locations of code clones in optimized source
code to ones in original source code.

If we apply Simian to the optimized source code, then
only the following clone group is detected.

• {3-4-5, 9-10-11, 15-16-17}
Then, the mapping file is used for converting locations of
code clones, and we obtain the following clone group.

• {3-4-5-6, 10-11-12-13-14, 18-19-20-21-22-23}
Next, we explain an algorithm that converts the source

code. The inputs of the algorithm are as follows:

• A sequence of units: Herein, an unit is an element
in the source code. In line-based detection, a unit
corresponds to a line, and in token-based detection, a
unit corresponds to a token.

• A threshold of window size: A maximum length
of consecutive units that is treated as an entity of a
repeated-instructions.

The output of the algorithm is a sequence of units that is
the same as the input sequence except it does not include
repeated-instructions. Figure 3 is an implementation of the
algorithm where a sequence is Java String. Note that the
implementation is a pilot one, for code clone detection, an
implementation for a sequence of Java tokens. If we input
abbc, abbbc, or abbbbc to the implementation, it outputs
abc for all the inputs. The inputs are the same as the lines
forming the 3 methods in Figure 1 where a line corresponds
to a character. Also, in the case that a token corresponds

String transform(String original, int threshold) {
StringBuilder text = new StringBuilder(original);

// loop for different window size
for (int w_size = 1; w_size <= threshold; w_size++) {

// loop for deleting repeated
// substrings of a fixed window size
for (int i = 0; (i + w_size) < text.length(); i++) {
final int b_index1 = i;
final int e_index1 = b_index1 + w_size;
final String array1 = text.substring(b_index1, e_index1);
final int b_index2 = i + w_size;
final int e_index2 = b_index2 + w_size;
while (e_index2 <= text.length()) {
final String array2 = text.substring(b_index2, e_index2);
if (array1.equals(array2)) {
text.delete(b_index2, e_index2);
} else {
break;

}}}}

return text.toString();
}

Figure 3. An Implementation of the Proposed Algorithm for Java String

to a character, the methods in Figure 1 is converted to the
following strings with a correspondence table of Table I.

• method1: abcdaefgbheifgbheifgjbkefg
• method2: abcdaefgbheifgbheifgbheifgjbkefg
• method3: abcdaefgbheifgbheifgbheifgbheifgjbkefg

Whenver the implementation takes any of the above strings,
it outputs abcdaefgbheifgjbkefg. Consequently, token-
based technique detects the entire methods as code clones.

IV. CONCLUSION

This paper showed the negative impact of repeated-
instructions for code clone detection, and proposed an
algorithm to delete them. In the future, we are going to
implement the proposed method as an actual detection tool.

ACKNOWLEDGMENT

The present research is being conducted as a part of
the Stage Project, the Development of Next Generation
IT Infrastructure, supported by the Ministry of Education,
Culture, Sports, Science, and Technology of Japan.

REFERENCES

[1] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Method and
Implementation for Investigating Code Clones in a Software
System. Information and Software Technology, 49(9-10):985–
998, Sep. 2007.

Table I
CORRESPONDENCE TABLE BETWEEN TOKEN AND CHARACTER

token character token character
StringBuilder a txt b

= c new d
(e) f
; g append h

l̈iteral¨ i return j
toString k

