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Abstract—It has been noted in recent years that the presence
of code clones makes software maintenance more difficult.
Unintended code inconsistencies may occur due to the presence
of code clones. In order to avoid problems caused by code
clones, it is necessary to identify where code clones exist
in a software system. Consequently, various kinds of code
clone detection techniques have been proposed before now.
In particular, incremental code clone detection attracts much
attention in the last few years, and line-based and token-
based incremental detection methods have been proposed. In
incremental detections, code clone detection results or their
intermediate products persist by using databases, and it is used
in next code clone detection. However, no incremental detection
technique has been proposed for PDG-based detection, which
requires much more time to detect code clones than line-
or token-based detection. In this paper, we propose a PDG-
based incremental code clone detection technique for improving
practicality of PDG-based detection. A prototype tool has been
developed, and it has been applied to open source software.
We confirmed that detection time is extremely shortened and
its detection result is almost the same as one of an existing
PDG-based detection technique.
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I. INTRODUCTION

No software has no code clones. Recently, the presence
of code clones is pointed out as one factor that makes
software maintenance more difficult. A code clone is a code
fragment that has similar or identical code fragments in the
source code. Code clones occur for various reasons such as
copy-and-paste programming. Copy-and-paste programming
generates similar or identical logics in multiple places in
software. If an instance of code clones has to be modified
for correcting bugs, adding new functionalities, or adaptive
maintenance tasks, it is possible that its correspondents
requires the same modification. In such a situation, if
developers or maintainers are unaware of its duplication,
unintended code inconsistencies occur in the source code.

It is possible to decrease the negative impact of code
clone on software maintenance by recognizing where code
clones exist. For example, if a set of code clones is merged
as a single function or method, inconsistent changes never
occur in it in the future. Even if it is impossible to perform
such a refactoring, recognizing code clones raises developer
awareness, which could help to prevent the source code from
including unintended inconsistencies.

Various kinds of automatic code clone detection tech-
niques have been proposed before now. Each detection
technique has its own unique definition for code clones, so
that different code clones are detected by different detection
tools for the same source code. Each detection technique
has it own relative advantages and disadvantages, and no
technique is superior to any of the other techniques in all
aspects [3], [4]. It is therefore necessary to understand the
features of each detection technique and to select appropriate
techniques in the context of code clone detection.

The advantage of PDG-based detection is that it can
detect non-contiguous code clones, whereas other detection
techniques are less effective at detecting them [3]. A non-
contiguous code clone is a code clone having elements that
are not consecutively located on the source code. It has been
reported that, after copying and pasting a code fragment, the
pasted code is sometimes incorrectly changed or forgotten to
be changed [2]. Modifications after copy-and-paste generate
non-contiguous code clones if the modifications are larger
than token level (split clones). Consequently, detecting non-
contiguous code clones is of great importance for detecting
incorrectly modified code. On the other hand, there are two
big disadvantages in PDG-based detection. One is that the
ability for detecting contiguous code clones is inferior to
the other techniques [3]. The other is that the application
of PDG-based detection to practical software systems is not
feasible because doing so is time consuming [14], [15]. For
the former problem, the authors have proposed a special-
ized PDG that including a new dependency, execution-next
link, which is intended to improve the detection ability for
contiguous code clones [7]. In this paper, we work on the
improvement of the latter problem.

In the last few years, incremental code clone detection
attracts much attention. Incremental detection persists data
created during code clone detection, and uses it in the next
detection. By using such persistent data, in the second time
or later detections, detection time extremely shortens. Be-
fore now, line-based and token-based incremental detection
techniques have been proposed [6], [9].

In this paper, we propose a PDG-based incremental de-
tection technique. As mentioned above, PDG-based detec-
tion requires much time, so that it is unrealistic to apply
it to large-scale software systems. However, PDG-based
incremental detection realizes instant non-contiguous code



clone detection after the detection database is prepared.
Existing incremental detection techniques do not detect non-
contiguous code clones. For realizing PDG-based incremen-
tal detection, we focus on edges in PDGs, which are suitable
to persist PDG data. We define a clone pair by edge-level
matching, and propose an algorithm detecting clone pairs
under the definition.

Incremental detection is more helpful in various contexts
of code clone detection. There are several methods that
construct some kinds of historical data with code clone
analysis from CVS or SVN repository [8], [13], [16], [18].
If we detect code clones without incremental techniques, all
the source files of every revision have to be analyzed. That
is very time consuming. However, if we use an incremental
detection technique, detection time will extremely shorten
because only a few files are updated in a revision and in-
cremental technique analyze only the updated files. Another
situation is that, in order to avoid unintended inconsistent
changes, code clone detection is applied after maintainer
identified a code fragment that causes a fault. In this
context, what the maintainer wants is code clones that are
related to the buggy code fragment. Detecting code clones
from the entire system is overkill and time consuming.
Incremental technique can identify only the required code
clones instantly. In this situation, detecting code clones from
the entire system only once at the beginning and using
the result in every bug fixes should be avoided. Because,
source code is updated by every bug fix and every new
functionality addition. Using an initial detection result after
several modifications were added is dangerous because the
state of code clones has been changed by the modifications.

The proposed PDG-based incremental technique realizes
contiguous and non-contiguous code clones instantly. The
contributions of this paper are as follows:
• We propose a PDG-based incremental code clone de-

tection technique.
• We confirm that the proposed technique is enough rapid

as an instant clone detection technique and the detection
result is appropriate as a PDG-based detection.

II. PROGRAM DEPENDENCY GRAPH

A PDG is a directed graph representing the dependencies
between program elements (statements or conditional predi-
cates). A PDG node is a program element, and a PDG edge
indicates a dependency between two nodes. There are two
types of dependencies in a traditional PDG, namely, control
dependency and data dependency. When all of the following
conditions are satisfied, a control dependency from element
s1 to s2 exists:
• s1 is a conditional predicate, and
• the result of s1 directly influences whether s2 is exe-

cuted.
When all the following conditions are satisfied, there is a

data dependency from element s3 to s4 via variable v:

1: int fibonacci(int n){
2: int value = -1;
3: if (n <= 0) {
4: System.out.println(

"Illegal parameter");
5: } else if (n == 1 || n == 2) {
6: value = 1;
7: } else {
8: value = fibonacci(n - 2) +

fibonacci(n - 1);
9: }

10: return value;
11: }

(a) original source code
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Figure 1. A PDG Example

• s3 defines v,
• s4 references v, and
• there is at least one execution path from s3 to s4 without

redefining v.
PDGs used in this research is a specialized one. It has one

more dependency, execution-next link. By adding execution-
next link, its detection ability is enhanced [7]. An execution-
next link is an edge that represents the order of execution
of program elements. That is, there is an execution-next
link between two nodes if the program element represented
by one of the nodes may only be executed just after the
program element represented by the other node is executed.
An execution-next link is equal to an edge of a control
flow graph. Execution-next link makes it possible to detect
consecutive program elements as code clones, even if they
have neither data nor control dependency.

Figure 1 is a sample PDG generated from a simple source
code, which calculates Fibonacci series. Labels attached to
the nodes mean the lines where their elements locate in the
source code. The node labeled <1> is the enter node of the
PDG. There are two nodes labeled n or out. The former
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Figure 2. Overview of the Proposed Method

presents a formal parameter of the method, and the latter
presents a global variable defined outside the method.

III. PROPOSED METHOD

Figure 2 shows an overview of the proposed method.
It consists of two processings, analysis processing and
detection processing. Analysis processing analyzes source
files and builds PDGs. Then, PDGs information is stored
into the database. Detection processing detects code clones
by using PDG information stored in the database. In the
detection process, raw source files are not analyzed.

Note that, in the proposed method, data dependencies
are built by variables names. The program analysis in the
proposed method does not include points-to analysis. Points-
to analysis requires a whole-program analysis. Hence, PDG-
based incremental detection cannot be made if it includes
points-to analysis.

The remainder of this section is organized as follows:
Subsection III-A defines several terms used in the proposed
method; Subsection III-B and III-C describes analysis pro-
cessing and detection processing respectively.

A. Definition

Firstly, we define PDGs as follows.

Definition 1 PDGs used in this paper are connected
graphs1, so that a PDG g can be represented as a set of
edges existing in it.

g := {e1,e2, · · · ,em} (1)

Next, edges in PDGs are defined as follows.

1Strictly, if a method has a parameter that is not referenced in it, the node
of the parameter is isolated. We do not care such an isolated parameter node.
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Figure 3. Edge trees generated from a PDG

Definition 2 Edge e can be represented as the following
formula.

e := (vs,ve, t)

Where, vs is the start node, ve is the end node, and t is the
type of e (data, control, or execution-next).

Next, we define a incident relationship between two edges
as follows.

Definition 3 The incident relationship between edges e1 =
(v1,v2, t1) and e2 = (v3,v4, t2) is represented as the following
formula.

incident(e1,e2) := (v1 = v3∧ v2 6= v4)∨
(v1 = v4∧ v2 6= v3)∨
(v2 = v4∧ v1 6= v3)∨
(v2 = v3∧ v1 6= v4) (2)

Next, we define a set of paths between two nodes by using
the incident relationship.

Definition 4 PDGs used in this paper are connected
graphs, so that there are at least a path between any two
edges. Herein, we assume that PAT HS(ei,e j) is a set of
paths between two edges ei and e j. Note that, PAT HS does
not includes paths with redundant edges.

Herein, we define a new data structure, edge tree.

Definition 5 On a PDG g = {e1,e2, · · · ,en}, an edge tree
is a tree whose nodes are graph edges and whose edges are
incident relationships in g.

Figure 3 shows a simple example. There are multiple
edge trees that can be generated from the a PDG. Figure
3 shows 3 edge trees whose roots are edge e1. As shown
in this example, an edge tree does not have all the incident
relationships in a PDG. Consequently, we defines a set of
edge trees as follows.

Definition 6 T REES(g) is the entire set of the edge trees,
every of which can be made from a PDG g.



Also, we define a path on an edge tree as follows.

Definition 7 treepath(t,e) is a path from the root node to
node e on edge tree t.

Herein, the theorem 1 is self-evident.

Theorem 1

treepath(t,e) ∈ PAT HS(er,e) (3)

where er is the root note of edge tree t.

Also, in a connected graph, PAT HS(er,e) 6= /0 is always
established, which means that there is at least a path from
er to any other edge e (e∈ g). Consequently, there is at least
an edge tree that can be generated from a connected graph
g.

Next, we define a equivalence relationship on edges.

Definition 8 The equivalence relationship between two
edges e1 = (v1,v2, t1) and e2 = v3,v4, t2 can be represented
as the following formula.

e1 ≡ e2 := (t1 ≡ t2)∧ (v1 ≡ v3)∧ (v2 ≡ v4) (4)

Node equivalence should be defined according to the
context of code clone detection. If we want to detect only
the exact duplications on the source code, v1 ≡ v2 should
becomes true if and only if the strings of the two nodes are
exactly identical. If we want to detect exact and similar code
as code clones, v1 ≡ v2 should be reflected by certain kinds
of code normalizations.

By using the definition 8, an equivalence relationship of
edge paths p1 = (e1,e2, · · · ,en) and p2 = ( f1, f2, · · · , fm) is
defined as follows.

Definition 9

p1 ≡ p2 := (|p1|= |p2|)∧∀i(ei ≡ fi) (5)

That is, two edge paths p1 and p2 has the equivalence
relationship if they has the same number of edges, and every
pair of the edges has the equivalence relationship.

Also, we define a equivalence relationship on edge trees
t1 ∈ T REES(g1) and t2 ∈ T REES(g2).

Definition 10

t1 ≡ t2 := (|g1|= |g2|)∧
∃(e1,e2, · · · ,e|g1|)∃( f1, f2, · · · , f|g2|)∀k
(

[

1≤i≤|g1|
{ei}= g1∧

[

1≤ j≤|g2|
{ f j}= g2∧

treepath(t1,ek)≡ treepath(t2, fk)) (6)

That is, edge tree t1 is equivalent to t2 if and only if the
numbers of nodes in t1 and t2 are the same and all the paths
from any node to the root on t1 has an equivalant path on
t2.

By using the these definitions, clone pair is defined as
follows.

Definition 11 .

clonepair(s1,s2) := (s1∩ s2 = /0)∧
∃t1∃t2(t1 ∈ T REES(s1)∧
t2 ∈ T REES(s2)∧
t1 ≡ t2) (7)

where s1 and s2 are connected subgraphs on PDG g1 and
g2, respectively.

In this paper, if two graphs have at least a pair of
equivalent edge trees, they are regarded as a clone pair.
However, it is redundant to output all the clone pair under the
definition 11. Consequently, only the clone pairs satisfying
the following condition is output.

Definition 12

out putclonepair(s1,s2) := clonepair(s1,s2)∧
¬∃(s′1,s′2)(clonepair(s′1,s

′
2)∧

s1 ⊂ s′1∧
s2 ⊂ s′2) (8)

That is, a out putclonepair is a clone pair that is not
subsumed by any other clonepair.

The differences and relationships of the proposed detec-
tion and traditional PDG-based detections are discussed in
Subsection V-B.

B. Analysis Processing

Figure 2 shows an overview of analysis processing. The
input is updated source files and the output is updated
database. Firstly, source files are input to the analysis module
(label 1), then PDGs are built from methods included in the
input files. All the edges are extracted from the PDGs. They
are stored into the database (label 2). If the database already
has edges extracted from the older version of the files, they
are removed before storing the new version.

C. Detection Processing

Figure 2 shows an overview of detection processing. The
inputs are target source files and database, and the output
is a set of clone pairs related to the target source files. In
detection processing, a user specifies files where he wants
to detect code clones (label 1). Then, the detection module
queries the database with the specified file names (label 2).
The database returns a set of edges that are equivalent to
the edges in the specified files (label 3). Then, the detection



module constructs clone pairs from the edges, and output
them (label 4).

In order to realize detection processing, we construct
an algorithm that detects clone pairs related to a specified
method. We apply the algorithm to every method included
in the target files. The algorithm is shown in Algorithm 1.

Algorithm 1 detect (m)
Input: m: a method
Output: C: a set of clone pairs related to m

1: C← /0
2: for all e1 such that e1 ∈ m do
3: for all e2 such that e2 ≡ e1∧ e2 6= e1 do
4: C←C∪ create(e1,e2, /0)
5: end for
6: end for
7: return C

First of all output C is initialized with /0 in the 1st line.
Then, all the edges included in the input method m are
obtained from the database. The edges have method IDs.
A method ID indicates a method whose PDG includes the
edge. That is, the 2nd line obtain all the edges included in
the input method m without re-generating a PDG from it. In
the 3rd line, all the edges that are equivalent to the edges in
method m are extracted from the database. Then, for every
pair of the edges, clone pairs are detected by the create
algorithm, which is shown in Algorithm 2.

Algorithm 2 create (e1, e2, E)
Input: e1, e2:a pair of edges, E: a set of edges that have

been already checked.
Output: (S1,S2): a output clone pair satisfying e1 ∈ S1 and

e2 ∈ S2
1: (S1,S2)← ({e1},{e2})
2: E← E ∪{e1,e2}
3: for all ex such that incident(e1,ex)∧ ex 6∈ E do
4: for all ey such that ex ≡ ey∧ incident(e2,ey)∧ ey 6∈ E

do
5: (Sx,Sy)← create(ex,ey,E)
6: (S1,S2)← (S1∪Sx,S2∪Sy)
7: end for
8: end for
9: return (S1,S2)

Firstly, (S1,S2) is initialized and E is updated with the
input pair of edges in the 1st and 2nd lines respectively.
Then, all the pairs of edges that are incidents of the input
pair are obtained in the 3rd an 4th lines. For every of the
obtained pairs, algorithm create is applied recursively.

IV. IMPLEMENTATION

Herein, we describe a prototype tool that we have devel-
oped based on the proposed method. The prototype is written

in Java language, and it uses SQLite database system. The
database is stored in disk not memory.

A. Equivalence relationship on PDG nodes

In order to permit token level differences on code clones,
equivalence relationship on PDG nodes is defined as follows:

Definition 13

v1 ≡ v2 := normalize(e1) = normalize(e2) (9)

where e1 and e2 are program elements, and v1 and v2 are
PDG nodes generated from them. normalize is a normal-
ization function, which replaces variables and literals with
special tokens with the following policies:
• variable: A special token is prepared for every of

different variables. The same variable is replaced with
the same special token.

• literal: A special token is prepared for every type of
literal. The same type literals are replaced with the same
special tokens.

There are other reasonable replacement policies, for exam-
ple, replacing variables and literals with the same token
would be work well.

B. Database

Edges in PDGs are stored into SQL database. The hash
values of edges are simultaneously stored too. Database
queries in detection processing are processed with the hash
values. In the implementation, we use MD5 algorithm for
hashing edges.

C. Approximating Algorithm

The algorithm described in Subsection III-C is not effi-
cient from the viewpoint that it uses a pair of equivalent
edges (e1,e2) to detect two or more clone pairs. In order
to speed up code clone detection, we make a following
assumption.

Assumption 1 A pair of equivalent edges is included only
in a single clone pair. No edge pair is shared by two or
more clone pairs.

Under this assumption, algorithms detect and create are
changed as shown in Algorithms 3 and 4.

In detect’ and create’ algorithms, DONE, which is a set
of edge pairs that have been already checked, is introduced.
If an edge pair is added to a clone pair, it is also added
to DONE. By checking DONE, every pair of equivalence
edges is added into a clone pair only once on an execution
of detect’ algorithm. However, this approximation prevents
some code clones from being detected. Figure 4 shows such
an example. In this figure, there are two PDGs G1 and G2.
Labels attached to the nodes represent their hash values. In
this case, there are two clone pairs between G1 and G2. The



Algorithm 3 detect’ (m)
Input: m: a method
Output: C: a set of clone pairs related to m

1: C← /0, DONE← /0, E← /0
2: for all e1 such that e1 ∈ m do
3: for all e2 such that e2 ≡ e1∧e2 6= e1∧(e1,e2) 6∈ E do
4: C←C∪ create′(e1,e2,E,DONE)
5: end for
6: end for
7: return C
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Figure 4. An example that detect’ algorithm cannot detect as clone pairs

Algorithm 4 create’ (e1, e2, E, DONE)
Input: e1, e2:a pair of edges, E: a set of edges that have

been already checked, DONE: a set of edge pairs that
have been already checked.

Output: (S1,S2): a output clone pair satisfying e1 ∈ S1 and
e2 ∈ S2

1: (S1,S2)← ({e1},{e2})
2: E← E ∪{e1,e2}
3: DONE← DONE ∪ (e1,e2)
4: for all ex such that incident(e1,ex)∧ ex 6∈ E do
5: for all ey such that ex ≡ ey ∧ incident(e2,ey)∧ ey 6∈

E ∧ (ex,ey) 6∈ DONE do
6: (Sx,Sy)← create(ex,ey,E)
7: (S1,S2)← (S1∪Sx,S2∪Sy)
8: end for
9: end for

10: return (S1,S2)

two code clones in G1 are areas surrounded by a dashed line
and a solid line respectively. This situation is conflicting with
the assumption 1. The prototype tool has implementations
of both the detect and detect’ algorithms.

D. Aborting Detection

The detection algorithm shown in Algorithms 1, 2, 3, and
4 requires very high cost under a special situation. Figure
5 shows such a situation. In this method, there are 1,000
case entries in a switch-statement, and every statement in

switch(x){
case 1:

statement1;
case 2:

statement2;
:
:

case 1000:
statement1000;

}

Figure 5. Code for which Algorithm 4 is very expensive

all the case entries has the same hash value. Thus, there
are an enormous number of pairs of equivalent edges, and
every pair of the edge pairs satisfies the incident relationship.
In order to avoid consuming much cost on such a special
situation, the prototype aborts detecting code clones in the
method if a large number of edges in the method has the
same hash value. Then, the prototype just notices that it
aborted detecting from the method.

V. EVALUATION

This section describes an experimental study that we
conducted in order to evaluate the proposed method. This
experiment consists of the following two sub-experiments.
• Experiment 1: Evaluation on execution time of the

proposed method. This evaluation was conducted for
confirming the efficiency of the proposed method.

• Experiment 2: Evaluation on detection quality of the
proposed method. This evaluation was conducted for
confirming the usefulness of the proposed method.

Both the experiments were performed with and without
the optimizations described in Subsections IV-C and IV-D.

The experiments were performed on a personal worksta-
tion, which is shown as follows:
• CPU: Intel Xeon E5405 (quad-core, 2.0GHz)
• Memory: 8GB
• OS: Windows 7 Enterprise (64bit)
In this evaluation, we use Ant, which is an open source

software system written in Java language because the current
implementation can handle only Java language. However,
it is possible to handle other programming languages if
we develop a component that builds PDGs from the other
languages. 5,903 revisions of Ant are analyzed and the the
number of files and the LOC of the last revision are 804 and
203,580, respectively.

A. Experiment 1: Detection Time

We investigated how efficiently the proposed method can
detect code clones in the following two contexts.
• Context 1: Code clones are detected from every revi-

sion. This kind of detection is often performed in re-
search related to code clones. Recently, several research
efforts have investigated whether the presence of code
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Figure 6. Elapsed time to detection for every revision in Ant

clones actually has the negative impact on software
maintenance or not [8], [16], [18]. By using incremental
code clone detection, such analyses can be conducted
quite efficiently.

• Context 2: When a bug is found in a code fragment,
it is desirable to modify its related bugs in other
code fragments simultaneously. In this context, code
clone detection is one of the promising approach for
simultaneous modifications.

1) Evaluation on Context 1: This evaluation was con-
ducted on the following steps.
• STEP1: checkout the initial revision.
• STEP2: detect code clones from the initial revision.

Note that the analysis processing is performed against
all the source files of the initial revision.

• STEP3: checkout the next revision.
• STEP4: detect code clones from the revision. Note that

the analysis processing is performed against only the
source files that are added or modified on the revision.

• STEP5: go to STEP3 if the next version exists.
We investigated the total time of STEP2 and STEP4. Table

I shows the result. The prototype could finished detection
within a single day from more than 5,000 revisions. The
optimizations shortened detection time by a few hours.

Figure 6 shows time to detecting code clones from every
revision. Red and black bars shows time with and without
the implementation optimizations respectively. A red bar is
drawn in front of a black bar in every revision, which means
that a black bar does not appear if the time without the

Table I
DETECTION TIME IN CONTEXT 1

# of revisions Detection Time
with opts. without opts.

5,903 13 hrs. 11 mins. 15 hrs. 2 mins

optimizations is shorter than the time with the optimizations.
This figure shows that the time without the optimizations
is a little longer then the time with the optimization in
most revisions. On the other hand, we observed the opposite
happens in some revisions. In such revisions, difference
in time was quite small, less than 100 milliseconds. Such
phenomenon deems to result from a chance. We can see that
the detection took less than a minute in most revisions with
optimizations. However, there are 19 revisions took over 1
minutes. All of them have many updated files. The average,
medium, and largest number of updated files in a single
revision were 3.53, 1, and 733, respectively.

For comparison, we investigated the detection time of
PDG-based non-incremental code clone detection. However,
we could not finish non-incremental detection because it
took more than one day to detect code clones from the first
300 revisions. The proposed method makes it possible to
detect PDG-based code clones for historical analysis from
actual software systems.

2) Evaluation on Context 2: This evaluation was con-
ducted on the following steps:
• STEP1: the analysis processing is performed against

all the source files,
• STEP2: the detection processing is performed against

every of the source files.
STEP1 is performed only once at the beginning of this

evaluation. Table II shows the time of STEP1 and STEP2.

Table II
DETECTION TIME IN CONTEXT 2

Processing execution time
with opts. without opts.

STEP1 3 mins. 18 secs

STEP2
ave. 1.7 secs. 2.9 secs.
med. 1.4 secs. 2.2 secs.
max. 8.0 secs. 12.8 secs.
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Figure 7. Elapsed time to detection for every file in Ant

the prototype took about 3 minutes for the initial analysis
processing, which is for preparing database used in the
detection process. In the cases of most source files, detection
processing took only several seconds, which shows that the
maintainer can instantly obtain code clones after specifying
a source file.

Figure 7 shows histograms of detection time for every
source file on STEP2 with and without the optimizations.
Every bar of the histograms means the number of files where
detection time is between 500n and 500(n + 1) millisec-
onds (n = 0,1,2, · · · ). Table II shows average, median, and
maximum time for both the detections. Detection processing
finished within a few second in most cases, and maximum
time was 8.0 and 12.8 seconds, which means that we can
obtain code clone information instantly in Context 2. When
the optimizations were not used, there was no file within
500 milliseconds meanwhile 133 files appeared within the
same region with the optimization. Also, all the average,
median, and maximum time shortened, which means that
the optimizations are effective to reduce detection time.

B. Experiment 2: Detection Quality

We compared code clones detected by the proposed
method with ones detected by an existing PDG-based detec-
tion tool, Scorpio [7]. There are two reasons why we chose
Scorpio as the comparison target. One is that Scorpio counts
execution-next link of PDG as well as the proposed method.
Consequently, comparing the proposed method with Scorpio
can reveal how the difference between similar-graph-based

Table III
NUMBER OF DETECTED CLONE PAIRS

Scorpio
Proposed Method

with opts. without opts.
724 740 831

detection and edge-based detection has an impact on code
clone detection on actual source code. The other is that Scor-
pio has been developed in our research group. Consequently,
we are well-acquainted with how to use Scorpio. Note that
this experiment is not for evaluating whether code clones
detected by the proposed method are worth to be checked
by human but for evaluating differences between PDG-based
and edge-based detections.

We calculated precision and recall for conducting a quan-
titative evaluation. In this evaluation, code clone matching
between the proposed method and Scorpio was performed
with good and ok measures, which were proposed by Bellon
et al. [3]. We specified 0.7 as the threshold, which is the
same value used in the literature [3].

Table III shows the number of clone pairs detected by
Scorpio and the proposed method. Table IV shows precision
and recall. Both the recall and precision are almost 1 with
and without the optimizations. The optimizations do not
decrease the detection ability of the proposed method as
a PDG-based detection tool. This evaluation shows that the
proposed method detects a quite similar set of clone pairs
to PDG-based non-incremental detection tool.

Figure 8 shows a pair of unmatched clone pairs. The lines
with prefix “+” indicate that they are included in a clone
pair detected by the proposed method, and the lines with
“-” mean that they are included in a clone pair detected by
Scorpio. For example, the 64th line is included in both the
instances of a clone pair detected by the proposed method,

Table IV
PRECISION AND RECALL

measure good ok
with opts. without opts. with opts. without opts.

precision 0.962 0.922 0.995 0.970
recall 0.972 0.990 0.994 1.000



50: e = replyToList.elements();
51: while (e.hasMoreElements()) {
52: mailMessage.replyto(

e.nextElement().toString());
53: }

+ 54: e = toList.elements();
+ 55: while (e.hasMoreElements()) {
+ 56: String to = e.nextElement().toString();

57: try {
58: mailMessage.to(to);

+ 59: atLeastOneRcptReached = true;
+ 60: } catch (IOException ex) {
+ 61: badRecipient(to, ex);

62: }
63: }

++- 64: e = ccList.elements();
++- 65: while (e.hasMoreElements()) {
++- 66: String to = e.nextElement().toString();

67: try {
68: mailMessage.cc(to);

++- 69: atLeastOneRcptReached = true;
+- 70: } catch (IOException ex) {
+- 71: badRecipient(to, ex);

72: }
73: }

+ -74: e = bccList.elements();
+ -75: while (e.hasMoreElements()) {
+ -76: String to = e.nextElement().toString();

77: try {
78: mailMessage.bcc(to);

+ -79: atLeastOneRcptReached = true;
-80: } catch (IOException ex) {
-81: badRecipient(to, ex);
82: }
83: }

Figure 8. Unmatched Clone Pairs Detected from Ant

and it also included in an instance of a clone pair detected by
Scorpio. The 64th, 65th, 66th, and 69th lines are included in
both the instances detected by the proposed method. On the
PDG, the code clones do not share the same edge, however
they shares the same node. The definition of clone pair in the
proposed method do not prohibit both code clones in a clone
pair from sharing the same node. On the other hand, Scorpio
does not permit code clones to share the same node. Such
a difference yielded this unmatched clone pairs. however, in
this experiment, we cannot say which clone pair is better to
be detected because what kinds of code clones are different
from what for we detect code clones.

VI. RELATED WORK

Hummel et al. proposed a line-based incremental detec-
tion methodology [9]. Their method firstly replaces user-
defined identifiers with special tokens in every line of the
source code. Then, hash values are calculated from them.
Next, the method stores their hash values, their line num-
bers, and their files names into the database. By using the
database, lines that are duplicated with specified lines can be
instantly obtained. multiple-lines duplication can be easily
constructed by combining single-line duplication stored in
the database.

Göde and Koschke proposed a token-based incremental
detection methodology [6]. They proposed a generalized
suffix tree, which is suitable to node insertion and deletion.
Suffix tree is a tree-structure where the number of suffixes
is the same as the number of leafs on a specified string. A
path from the root to a leaf i means the suffix started from
i-th of the specified string. It is possible to detect repeated
substrings within a specified string by using suffix tree. In
code clone detection, a suffix tree is generated from the
entire of a software system [1], [12]. A generalized suffix
tree is built on not a string but a set of strings, and paths
from the root to leafs represent suffixes of the strings. In
their method, every source file is a string in a generalized
suffix tree, which makes it easy to add or delete source
files. Consequently, the generalizes suffix tree is suitable to
incremental code clone detection.

Jiang et al. proposed a AST-based code clone detection
methodology [11]. They defined characteristic vector, which
is a vector representation of subtrees in ASTs. Elements
of characteristic vector are the number of various kinds
of tokens (e.g., variable names, literals, preserved names).
Characteristic vectors are compared by LSH algorithm [5].
LSH algorithm detects similar vectors with ignoring small
differences between them. By applying LSH algorithm to
characteristic vectors, similar subtrees in ASTs are identi-
fied. Also, Lee et al. proposed a multidimensional indexing
methodology for quick code clone detection with character-
istic vectors [17]. Literatures [11] and [17] do not explicitly
describe about incremental code clone detection with char-
acteristic vectors, however characteristic vectors can be a
intermediate representation of incremental detection.

Jia et al. developed a detection tool, KClone, which is an
implementation of the hybrid approach of token-based and
PDG-based techniques [10]. Firstly, KClone detects contigu-
ous code clones with token-based techniques, then it uses
data and control dependencies from/to the contiguous code
clones for enlarging them to non-contiguous ones. KClone’s
detection requires only lightweight program analyses. Actu-
ally, in the experiement of their paper, KClone detected code
clones more rapidly than CCFinderX. The differences of the
proposed method and KClone are as follows.

• KClone detects contiguous code clones in the first step
of detection process. That is, if a code clone does not
have a contiguous part that is longer than a threshold, it
is not detected. On the other hand, the proposed method
does not require contiguous parts for code clones.

• KClone is not an incrmental detection. Consequently, in
both the Context 1 and 2 of the experiment, detection
speed of the proposed method is more rapid than
KClone, which will be especially prominent in large-
scale software.



VII. CONCLUSION

This paper proposed a PDG-based incremental code clone
methodology, and introduced a prototype tool developed
based on the proposed method. The prototype tool has
optimizations for obtaining code clones more efficiently. A
case study was conducted with the prototype tool on open
source software systems. The experiment showed that the
proposed method could obtain code clones within a short
timeframe and its detection result was quite similar to the
detection result of an existing PDG-based detection tool.

In the future, we are going to enhance the proposed
method for more shortening detection time. At present, the
proposed method updates the database by a source file.
However, a single source file includes multiple methods
and a part of them is modified in a revision. Consequently,
database by a method is more efficiently for incremental
code clone detection.
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