
Code Clone Detection on Specialized PDGs with Heuristics

Yoshiki Higo
Graduate School of Information Science and Technology

Osaka University
Suita, Osaka, Japan

Email: higo@ist.osaka-u.ac.jp

Shinji Kusumoto
Graduate School of Information Science and Technology

Osaka University
Suita, Osaka, Japan

Email: kusumoto@ist.osaka-u.ac.jp

Abstract—PDG-based code clone detection is suitable for
detecting non-contiguous code clones while other detection
techniques, line-, token-, or AST-based techniques are not.
However, PDG-based detection has lower performance for
detecting contiguous code clones than the other techniques.
Moreover, PDG-based detection is time consuming, so that
application to actual software systems is not feasible. The
present paper proposes PDG specializations and detection
heuristics for enhancing PDG-based code clone detection.
The experiment in this paper shows that the proposed
methods are effective for PDG-based code clone detection
by applying them to 4 open source systems.

Keywords-code clone, program dependency graph,

I. INTRODUCTION

A number of code clone detection tools have been de-
veloped before now. The detection tools reveal the position
of the detected code clones in the source code. Since there
is neither a generic nor a strict definition of code clone,
each detection tool has its own unique definition for code
clones that it uses to detect code clones. Consequently,
different code clones are detected by different detection
tools for the same source code.

Detection tools can be categorized based on the kinds of
detection techniques that they employ, with the main cat-
egories including line-, token-, metrics-, Abstract-Syntax-
Tree- (in short, AST), and Program-Dependency-Graph-
(in short, PDG) based detection techniques. Each detection
technique has its own relative advantages and disadvan-
tages, and no technique is superior to any of the other
techniques in all aspects [1], [2]. It is therefore necessary
to understand the features of each detection technique and
to use appropriate techniques in the context of code clone
detection. The advantages and disadvantages of PDG-
based detection are as follows:

• Advantage: PDG-based detection can detect non-
contiguous code clones, whereas other detection tech-
niques are less effective at detecting them [1]. A
non-contiguous code clone is a code clone having
elements that are not consecutively located on the
source code. It has been reported that, after copy-
and-pasting a code fragment, the pasted code is
sometimes incorrectly changed or forgotten to be
changed [3]. Modifications after copy and paste yield
non-contiguous code clones if the modifications are
larger than token level (split clones). Consequently,

detecting non-contiguous code clones is of great
importance for detecting incorrectly modified code.

• Disadvantage: The ability of PDG-based techniques
to detect contiguous code clones is inferior to the
other techniques [1]. In addition, the application of
PDG-based detection to practical software systems is
not feasible because doing so is time consuming [4],
[5]

The present paper proposes PDG specializations for
code clone detection. The specializations are as follows:

• Introducing execution-next link expands the range
of program slicing, so that the ability to detect
contiguous code clones is improved.

• Merging nodes reduces the computational cost of
code clone detection. There are two reasons why
PDG-based detection is time consuming. First, an
enormous number of node pairs are used as slice
points. Second, identifying similar subgraphs requires
highly computational cost. This specialization re-
duces both the costs.

The present paper also uses the following heuristics for
enhancing code clone detection.

• Two-way slicing enlarges code clone detection result
because there are similar subgraphs that cannot be
detected by only forward or backward slicing.

• Reducing slice points reduces the number of pro-
gram slicing to detect code clones. Unnecessary slice
points are identified and removed by this heuristics.

• Neglecting small methods also reduces the number
of program slicing. Given a minimum size of code
clone to be detected, no code clone is detected from
PDGs that is smaller than the size.

II. PRELIMINARIES

A. Program Dependency Graph

A PDG is a directed graph representing the depen-
dencies between program elements (statements). A PDG
node is a program element, and a PDG edge indicates
a dependency between two nodes. There are two types
of dependencies in the traditional PDG, namely, control
dependency and data dependency [6]. When all of the
following conditions are satisfied, a control dependency
from statement s1 to s2 exists:

• s1 is a conditional predicate, and
• the result of s1 determines whether s2 is executed.

2011 15th European Conference on Software Maintenance and Reengineering

1534-5351/11 $26.00 © 2011 IEEE

DOI 10.1109/CSMR.2011.12

76

2011 15th European Conference on Software Maintenance and Reengineering

1534-5351/11 $26.00 © 2011 IEEE

DOI 10.1109/CSMR.2011.12

75

1: String sample1(){
2: if(this.trueOrFalse()){
3: if(null == this.getPath()){
4: Project proj = this.getProject();
5: this.setPath(proj.getBaseDir());
6: }
7: StringBuilder text = new StringBuilder();
8: text.append("String A");
9: text.append("String B");
10: text.append("String C");
11: text.append("String D");
12: return text.toString();
13: }else{
14: return "";
15: }
16: }

(a) original source code

<14>

<12>

<11>

<10>

<1>

<2>

<7>

<8>

<9>

<3>

<4>

<5>

control

data

(b) generated PDG

Figure 1. Example of traditional PDG

When all the following conditions are satisfied, there is
a data dependency from statement s3 to s4 via variable v:

• s3 defines v, and
• s4 references v, and
• there is at least one execution path from s3 to s4

without redefining v.
Figure 1 is a simple example of source code and a PDG

generated from the source code. Labels attached to the
nodes mean the lines where their elements locate in the
source code. The node labeled <1> is the enter node of
the PDG. In this example, there are data dependencies be-
tween nodes using variables (“prog” or “text”), and there
are control dependencies between the control predicates
of the if-statements and their inner statements.

B. Basic algorithm for code clone detection

This section describes the basic algorithm that we use
for detecting code clones with PDGs. The algorithm was

built based on Komondoor’s Method [4].
In STEP 1, all nodes in PDGs are hashed based on

their contents. Nodes having the same hash value are
classified as an equivalence class. Variables and literals
used in the node are converted to their type names before
hashing. Consequently, the same hash value is generated
from syntactically identical program elements, even if the
variables are different. In the case of Figure 1, the program
elements in the 8th, 9th, 10th, and 11th lines have the same
hash value, even though every of the lines uses a different
literal.

In STEP 2, a pair of nodes, (r1,r2), is selected from
each equivalence class, and pairs of similar subgraphs that
include r1 and r2 are identified. The starting points of
the slicings are (r1, r2), and slicing is performed in lock
step. If both predecessors (successors) have the same hash
value, they are added to the pair of slices. In the following
situations, predecessors are not added to the pair of slices,
and the slicings stop:

• Predecessors (p1, p2) have different hash values.
• Predecessors (p1, p2) have the same hash value.

However, p1 (p2) already exists in the slice of r1
(r2). This processing is intended to prevent an infinite
loop.

• Predecessors (p1, p2) have the same hash value.
However, p1 (p2) already exists in the slice p2 (p1).
This processing is intended to prevent the two slices
from sharing the same node.

Pairs of identified similar subgraphs are clone pairs in the
basic algorithm.

In STEP 3, if a clone pair (s1, s2), which is a pair
of similar subgraphs identified in STEP2, is subsumed
by another clone pair (s1′, s2′) (s1 ⊆ s1′ ∩ s2 ⊆
s2′), it is removed from the set of detected clone pairs
because reporting the subsumed clone pairs is not useful.
The existence of such subsumed clone pairs enlarges the
detection results unnecessarily.

In STEP 4, a clone set is formed from clone pairs
sharing the same subgraphs. For example, two clone pairs
(s1, s2) and (s2, s3) would be merged into one clone set
{s1, s2, s3}.

C. Weaknesses of existing PDG-based detection methods

Previous studies revealed that PDG-based detection has
the following weaknesses [1], [4], [5].

Compared to other detection techniques, the first weak-
ness is that PDG-based detection has lower performance
for the detection of contiguous code clones. This is be-
cause consecutive program elements in the source code
do not necessarily have data dependency or control depen-
dency. On the other hand, line- or token-based detection
methods do not consider such dependencies but rather
compare program elements textually, so that these methods
are good at detecting contiguous code clones. For example,
assume that we detect code clones from the source code
of Figures 1(a) and 2. The region from the 3rd line to the
11th line of Figure 1(a) is duplicate to the same region of
Figure 2. However, if the traditional PDG is used for clone

7776

1: String sample2(){
2: while(this.goOrStop()){
3: if(null == this.getPath()){
4: Project proj = this.getProject();
5: this.setPath(proj.getBaseDir());
6: }
7: StringBuilder text = new StringBuilder();
8: text.append("String A");
9: text.append("String B");
10: text.append("String C");
11: text.append("String D");
12: System.out.println(text.toString());
13: }
14: }

Figure 2. compared source code

detection, the region from the 3rd line to the 6th line and
the region from the 7th line to the 11th line are detected
as different code clones. The two regions are connected
via the node <2> in the traditional PDG. However, the
nodes <2> of the both PDGs do not have the same hash
value, so that program slicings stop at the nodes.

The second weakness is that PDG-based detection has
a high computational complexity, which means that it
is not realistic to apply PDG-based detection to actual
software systems. There are two reasons why PDG-based
detection has a high computational complexity. The first
reason is that the number of nodes used as slice points is
considerably too high, which means that a large number
of slicings are performed in code clone detection. The
second reason is that identifying similar subgraphs is an
NP-complete problem.

III. PDG SPECIALIZATIONS FOR CODE CLONE
DETECTION

This section proposes methods of PDG specializations
for code clone detection, which overcome the weaknesses
associated with PDG-based detection.

A. Introducing execution-next link

The first specialization is the introduction of execution-
next link. An execution-next link is an edge that represents
the order of execution of program elements. That is, there
is an execution-next link between two nodes if the program
element represented by one of the nodes may only be
executed after the program element represented by the
other node is executed. An execution-next link is exactly
equivalent to the edge of a control flow graph. Execution-
next link makes it possible to detect consecutive statements
as code clones, even if they have neither data nor control
dependency.

Figure 3 shows the PDG including execution-next links
for the source code shown in Figure 1(a). In Figure 3,
the region from the 3rd line to the 6th line is directly
connected with the region from the 7th line to the 11th
line by execution-next link. Consequently, it is possible to
detect the two regions as a single code clone from two
methods in Figures 1(a) and 2.

Introducing execution-next link increases the cost of
code clone detection because it leads to more edges. How-
ever, it makes it possible to merge multiple nodes, which is

<14>

<12>

<11>

<10>

<1>

<2>

<7>

<8>

<9>

<3>

<4>

<5>

control

data

execution

Figure 3. PDG with execution-next link

presented in the next subsection. Application of both the
specializations poses no problem for computational cost
(see Section VII).

B. Merging directly-connected equivalence nodes

The second specialization is merging multiple nodes as
a single node. This specialization also allows improvement
of detection capability, so that consecutive duplicate state-
ments in the source code are the target of merging. One
example of consecutive duplicate statements is the region
from the 8th line to the 11th line in Figure 1(a). Almost all
code clones detected from such a region is false positives
[7]. For example, the region from the 8th line to the 9th
line are identified as a code clone of the region from the
10th line to the 11th line by forward slicing on execution-
next link from the pair of nodes (<8>,<10>) in Figure 3.
However, human will never need such code clones. One
method for not detecting such false positives is that we
generate only a single node from the region, not generate
nodes for every statement in the region. The number of
nodes on PDGs is decreased by this method, so that
required computational cost for detection is reduced. Note
that this specialization does not decrease the ability of the
algorithm to detect code clones because graph reachability
is preserved in the specialization, so that the ability to
detect non-contiguous code clones is not decreased.

A set of consecutive nodes R = {s · · · t} are merged
into a single node if they satisfy the following conditions.

• Condition 1: There is a path from statement s to
statement t, which is formed from only execution-
next link.

• Condition 2: There is no execution branch in R.

7877

In other word, none of nodes in R is conditional
predicate.

• Condition 3: All the nodes in R have the same hash
value.

• Condition 4: Any path (node set) subsuming R does
not satisfy both the conditions 2 and 3.

We herein assume that node m was generated by merg-
ing all the nodes in R. The following explains how we
construct data, control, and execution-next links from/to
the node m.

Data Dependency: Assume that datato(p) is the set of
nodes having data dependencies to node p, and P is the set
of nodes included in path R, the set of node having data
dependencies to node m is defined the following formula:

datato(m) =
∪
p∈P

datato(p) ∩ P (1)

Herein, P means a complement set of P , so that P∪P is
all the nodes in the PDG. In the same way, the set of node
having data dependencies from node m, datafrom(m), is
defined the following formula:

datafrom(m) =
∪
p∈P

datafrom(p) ∩ P (2)

Control Dependency: Condition 2 ensures that all the
nodes in P have control dependencies from the same node.
In the proposed method, we define that the merged node
m also has a control dependency from the same node.
Consequently, a set of nodes having control dependencies
to m is defined as the following formula:

controlto(m) = controlto(s) (3)

Also, Condition 2 ensures that there is no conditional
predicate in P . Consequently, the set of control dependen-
cies from controlfrom(m) always becomes empty:

controlfrom(m) = ∅ (4)

Execution-next Link: Condition 2 ensures that there
is no execution branch in R, so that it is very easy to
define the sets of execution-next links from/to the node
m, executionto(m), and executionfrom(m).

executionto(m) = executionto(s) (5)
executionfrom(m) = executionfrom(t) (6)

Figure 4 shows the PDG that the PDG shown in Figure
3 was converted with the proposed merging method. In
Figure 4, 4 nodes located between the 8th line and the
11th line in the source code satisfy the 4 conditions, so
that they were merged as a single node. This specialization
reduces the following 2 kinds of computational cost.

• If the merged node appears in the path of program
slicing, the slicing cost is reduced. For example, we
assume that a program slicing is performed from
the node <7> in Figures 3 and 4. In Figure 3, 4
hops are needed to reach the node <11> from <7>.
Meanwhile, in the case of Figure 4, only 1 hop is
required to reach the node <11>.

<14>

<12>

<1>

<2>

<7>

<8,9,10,11>

<3>

<4>

<5>

control

data

execution

Figure 4. Result of applying the mergind method to the PDG in Fig. 3

• The merging method reduces the number of equiva-
lence nodes, so that the number of program slicing
from the nodes is reduced. For example, in the
case that we detect code clones from the source
code shown in Figure 1(a) and 2, the nodes located
between the 8th line and the 11th line of both the
methods have the same hash value. If the merging
method is not applied, 8C2 = 28 pairs of program
slicing are performed. However, most of the pairs
are consecutive statements in the source code, and
pairwise program slicing from such pair does not
detect human-wanted code clones. Meanwhile if the
merging method is applied to the PDGs, the con-
secutive 4 nodes of both the methods are merged as
a single node. Consequently, only a single pair of
program slicing is performed from the nodes.

IV. HEURISTICS FOR ENHANCING CODE CLONE
DETECTION

This section introduces some heuristics for enhancing
code clone detection.

A. Two-way slicing

The first heuristics is that both forward and backward
slicings are used to identify similar subgraphs, whereas
previous approaches primarily used either forward or
backward slicing, but not both [4], [5], because a pair of
similar subgraphs identified by forward slicing cannot be
identified by backward slicing, and vice versa. Figures 5
and 6 show simple examples of such subgraphs with three
program elements (<4>,<6>, and <8>).

In Figure 5, one variable (“r”) is referenced twice in
each code clone, so that there are two data dependencies.
For example, “<4> → <6>” and “<4> → <8>” are
contained in the code clone <4,6,8>. In this instance,
backward slicings cannot detect the code clones, whereas

7978

1:void sample3(){
2: if(this.trueOrFalse()){
3: ...
4: float r = 0.05;//tax rate
5: ...
6: float taxA = priceA * r;
7: ...
8: float taxB = priceB * r;
9: ...
10: }
11:}

(a) Sample code 3

1:void sample4(){
2: while(this.goOrStop()){
3: ...
4: float r = 0.05//tax rate;
5: ...
6: float taxA = priceA * r;
7: ...
8: float taxB = priceB * r;
9: ...
10: }
11:}

(b) Sample code 4

data

<1>

<2>

<4>

<6>

<8>

control

execution

(c) generated PDG

Figure 5. Example code that backward slice cannot detect similar
subgraphs

forward slicings from the element <4> are able to detect
them.

In Figure 6, two variables (“price” and “tax”) are
referenced in a single statement in each code clone, so that
there are two data dependencies of the reference nodes.
For example, “<4> → <8>” and “<6> → <8>” are
contained in the code clone <4,6,8>. In this instance,
forward slicings cannot detect the code clones, whereas
backward slicings from element <8> can detect them.

Komondoor et al. showed that backward slicing is not
always helpful to detect code clones [4], which means
that the proposed method performs unnecessary execu-
tions of backward slicing. They increase computational
cost. However, it is quite difficult to investigate all the
situations that backward slicing is not helpful and all the
situations that forward slicing is not helpful. That is why
the proposed method always performs two-way slicings.
The purpose of the proposed method is to detect many
and large similar subgraphs as much as possible. The
unnecessary executions of backward and forward slicings
increase computational cost, but they neither reduce the
number of detected similar subgraphs nor minify the size
of detected similar subgraphs.

B. Do not use excessively large equivalence classes

In STEP 2 of the detection process, if n nodes are
included in an equivalence class, then n(n−1)/2 pairwise
slicings are performed from the equivalence class. In the
case of actual software systems, several thousand or more
nodes may have the same hash value, so that an enormous
number of pairwise slicings are performed, which is very
time consuming.

1:void sample5(){
2: if(this.trueOrFalse()){
3: ...
4: int price = getPrice();
5: ...
6: int tax = getTax();
7: ...
8: int amount = price + tax;
9: ...
10: }
11:}

(a) Sample code 5

1:void sample6(){
2: while(this.goOrStop()){
3: ...
4: int price = getPrice();
5: ...
6: int tax = getTax();
7: ...
8: int amount = price + tax;
9: ...
10: }
11:}

(b) Sample code 6

data

<1>

<2>

<4>

<6>

<8>

control

execution

(c) generated PDG

Figure 6. Example code that forward slice cannot detect similar
subgraphs

However, such large equivalence classes can occur,
not because instances of such classes are generated by
copy-and-paste programming, but rather because such in-
stances are stereotyped instructions. For example, variable
declarations, such as int i; or int j;, and return
statements, such as return a; or return b;, are
typical stereotyped instructions. Consequently, the second
heuristics is a size threshold for equivalence classes. If the
size of an equivalence class is larger than the threshold,
then instances of that class are not used as slice points.

C. Small methods are not hashed

When we use code clone detection tools, we configure
the threshold to specify the minimum size of code clones
detected. Intraprocedural PDG is generally used in the
field of code clone detection, so that if the size of the
entire PDG of a method is smaller than the threshold,
code clone is never detected from it. Consequently, the
third heuristics is that small methods are not hashed in
STEP 1 of the detection process. This method prevents
program slicing from being performed on the PDGs of
small methods.

V. IMPLEMENTATION

We developed a software tool, Scorpio, based on the
proposed methods [8]. In the detection process, STEP 2 is
the most time consuming. In STEP 2, a large number of
program slicings are performed in order to identify similar
subgraphs. We focus on the fact that every slicing is inde-
pendent from one another, which means that the slicings
can be performed in parallel. Consequently, Scorpio iden-
tifies similar subgraphs with multithreads. We can specify
the number of threads to perform program slicing as a

1:void sample3(){
2: if(this.trueOrFalse()){
3: ...
4: float r = 0.05;//tax rate
5: ...
6: float taxA = priceA * r;
7: ...
8: float taxB = priceB * r;
9: ...
10: }
11:}

(a) Sample code 3

1:void sample4(){
2: while(this.goOrStop()){
3: ...
4: float r = 0.05//tax rate;
5: ...
6: float taxA = priceA * r;
7: ...
8: float taxB = priceB * r;
9: ...
10: }
11:}

(b) Sample code 4

data

<1>

<2>

<4>

<6>

<8>

control

execution

(c) generated PDG

1:void sample5(){
2: if(this.trueOrFalse()){
3: ...
4: int price = getPrice();
5: ...
6: int tax = getTax();
7: ...
8: int amount = price + tax;
9: ...
10: }
11:}

(a) Sample code 5

1:void sample6(){
2: while(this.goOrStop()){
3: ...
4: int price = getPrice();
5: ...
6: int tax = getTax();
7: ...
8: int amount = price + tax;
9: ...
10: }
11:}

(b) Sample code 6

data

<1>

<2>

<4>

<6>

<8>

control

execution

(c) generated PDG

8079

command line option of Scorpio. Parallel performance
efficiently uses the resource of multiple physical CPUs
and multi-core CPUs, so that the detection time can be
shortened.

Currently, Scorpio can handle only Java source code.
However, both the basic algorithm for clone detection and
the proposed methods can be applied other programming
languages such as C/C++.

VI. METHODOLOGY FOR EVALUATION

This section introduces methodologies for evaluating the
proposed specialization and heuristics.

A. Clone Reference

We use freely available code clone data from [9] as a
reference (a set of code clones that should be detected). In
the experiment of this paper, we use the following terms:

• clone candidates: duplicated code detected by Scor-
pio.

• clone references: duplicated code included in the
reference.

Instances of clone references are manually classified
into the following three groups:

• Type 1: code clones that are identical to their cor-
respondents. This type permits only differences in
spaces and tabs.

• Type 2: code clones that include different identifiers
from their correspondents.

• Type 3: code clones that include differences beyond
Type 2 code clones. Pasted code including statement
insertions, deletions, or modifications is classified in
this type.

Types 1 and 2 code clones are contiguous, and Type 3
code clones are non-contiguous.

B. Good value, Ok value

We use the good value and the ok value[1] to decide
whether clone candidates match clone references. In the
experiment, We use 0.7 as the threshold, which is the same
value used in the literature [1].

C. Recall

We calculate recall for evaluating detection capability.
Assume that R is a detection result, Srefs is the set
of clone references, and Sgood(R) and Sok(R) are sets
of detected clones whose good or ok value with an
instance of clone references is equal to or greater than
the threshold in R. Recalls of R by using good and ok
values (Recallgood(R) and Recallok(R)) are defined as
follows:

Recallgood(R) =
|Sgood(R)|
|Srefs|

(7)

Recallok(R) =
|Sok(R)|
|Srefs|

(8)

This experiment has two limitations related to recall.
• The clone references used in the experiments are not

all code clones included in the target systems. Conse-
quently, the absolute values of recall are meaningless.

Recall can be used only for relatively comparing
detection results. For the same reason, precision is
not used for evaluation.

• In the present experiments, the locations of detected
code clones are managed with triplet (f ,s,e) as well
as Bellon’s experiments. f is the absolute path of the
file including a given code clone, s is the start line
of the code clone, and e is the end line of the code
clone. Consequently, if a detected code clone is non-
contiguous, 1 or more lines of non-duplicated code
is incorrectly counted as duplicated code.

D. Content rate of detection result

We used the following content rate to quantitatively
compare detection results:

CR(R1, R2) = 100 × | S(R1) ∩ S(R2) |
| S(R1) |

(9)

where:
• R1,R2: detection result, which is a set of clone

candidates. A clone candidate consists of a pair of
similar graphs. A graph is formed from a set of
program elements.

• S(R): program elements included in detection result
R. In the proposed method, the unit of program
elements is PDG nodes (statements in the source
code).

When the detection result R1 includes all of the program
elements in R2, CR(R1, R2) becomes maximum, 100%.
When R1 does not include any of the program elements
in R2, CR(R1, R2) becomes minimum, 0%.

E. Number of node comparisons

In order to quantitatively evaluate the computational
cost, we investigated the number of node comparisons in
STEP 2 of the detection process. The greater the number
of node comparisons, the higher the computational cost.

VII. EVALUATION OF EACH PROPOSED METHOD

In order to evaluate the effectiveness and efficiency of
each of the proposed methods, we conducted experiments
on 4 open-source systems. Specifically, we evaluated the
effectiveness of the following items:

• s1: effectiveness of execution-next link
• s2: effectiveness of merging nodes
• h1: effectiveness of two-way slicing
• h2: effectiveness of neglecting excessively large

equivalence classes
• h3: effectiveness of neglecting small methods

Table I
TARGET SOFTWARE

Software Short name Lines of code
netbeans-javadoc netbeans 14,360

eclipse-ant ant 34,744
eclipse-jdtcore jdtcore 147,634

j2sdk1.4.0-javax-swing swing 204,037

8180

Table IV
NUMBER OF DETECTED CLONE REFERENCES

ID netbeans ant jdtcore swing
Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3 Type 1 Type 2 Type 3

clone references 6 33 16 4 24 2 120 866 359 145 595 37
A1 good 1 3 2 1 2 0 19 29 8 22 34 6

A1 ok 2 5 2 2 2 0 76 221 50 39 54 12
A2 good 3 4 3 1 3 1 40 179 62 29 47 11

A2 ok 4 13 3 3 6 1 92 370 126 46 89 16
A3 good 3 5 3 0 3 1 29 148 60 32 68 12

A3 ok 4 16 3 3 6 1 94 390 135 56 357 21
B1 good 3 8 4 1 5 0 37 251 61 31 59 12

B1 ok 5 18 13 3 6 0 99 459 143 54 326 19
B2 good 3 8 5 1 6 1 51 196 67 36 71 13

B2 ok 4 18 13 3 8 1 98 456 138 58 354 20
B3 good 3 9 4 0 5 1 34 170 60 34 71 12

B3 ok 5 19 13 3 8 1 100 472 153 58 360 23

The experimental targets are the software systems listed
in Table I. The exact versions of the systems that we
used are available on [9]. In the remainder of this section,
every software is called by the name of ‘Short name’
column. The ‘Lines of code’ column indicates the total
number of lines of code in the .java files. We detected
code clones (similar subgraphs) having six or more nodes
in this experiment.

A. h1: Effectiveness of two-way slicing

First, we evaluated the degree to which detected code
clones were enlarged with two-way slicings with Eq. 9.
Table II lists the configurations of the detections. For
example, detection A1 uses backward slicing, however
,it does not use forward slicing and execution-next link.
The content rates of the detections are shown in Table III.
Table III shows that two-way slicings enlarged the size of
detected code clones for all the systems. This is because
there often exist code clones that cannot be detected only
by backward or forward slicing.

Table II
DETECTION CONFIGURATION

ID Detection configuration
backward slicing forward slicing execution-next link

A1 © × ×
A2 × © ×
A3 © © ×
B1 © × ©
B2 × © ©
B3 © © ©

Table III
CONTENT RATES BETWEEN DETECTION METHODS USING TWO-WAY

AND ONE-WAY SLICING

Software Content rate Software Content rate

netbeans

CR(A3,A1) = 21.6 %

ant

CR(A3,A1) = 44.6 %
CR(A3,A2) = 50.7 % CR(A3,A2) = 55.5 %
CR(B3,B1) = 75.8 % CR(B3,B1) = 64.1 %
CR(B3,B2) = 82.3 % CR(B3,B2) = 70.3 %

jdtcore

CR(A3,A1) = 55.0 %

swing

CR(A3,A1) = 45.6 %
CR(A3,A2) = 65.7 % CR(A3,A2) = 56.8 %
CR(B3,B1) = 77.7 % CR(B3,B1) = 73.6 %
CR(B3,B2) = 80.3 % CR(B3,B2) = 75.8 %

Next, we investigated the effect of two-way slicings
on the detection of clone references. Table IV shows the
results. The result indicates that, in most cases, two-way
slicings could detect more clone references than one-way
slicing in isolation. In a few cases, some code clones that
were detected using one-way slicing were not detected
by two-way slicings (e.g., the Type 1 clone in ant).
This is because some code clones were inappropriately
enlarged by two-way slicings; inappropriate enlargement
yields lower good and ok values, so that the code clones
did not match the clone references.

Finally, we investigated the degree to which two-way
slicings increased the computational cost. Table V shows
that the order of computational cost is “ backward slicings
< forward slicings < two-way slicings”, with the magni-
tude of the increase differing among targets. The largest
increase, approximately 800-fold, is between A1 and A3

Table V
NUMBER OF NODE COMPARISONS

Software ID # of node cmpr. Software ID # of node cmpr.

netbeans

A1 135,385

ant

A1 567,891
A2 551,331 A2 4,942,013
A3 110,356,247 A3 10,388,934
B1 327,889 B1 951,183
B2 663,348 B2 5,289,877
B3 101,104,540 B3 11,295,018

jdtcore

A1 58,155,404

swing

A1 16,123,841
A2 346,223,464 A2 331,698,602
A3 1,382,195,451 A3 525,716,585
B1 118,144,589 B1 28,427,935
B2 408,615,802 B2 342,132,984
B3 1,431,922,235 B3 528,963,280

Table VI
CONTENT RATES BETWEEN DETECTION WITH AND WITHOUT

EXECUTION-NEXT LINK

Softwre Content rate Software Content rate

netbeans
CR(B1,A1) = 25.8 %

ant
CR(B1,A1) = 57.4 %

CR(B2,A2) = 59.2 % CR(B2,A2) = 74.1 %
CR(B3,A3) = 96.1 % CR(B3,A3) = 93.9 %

jdtcore
CR(B1,A1) = 65.0 %

swing
CR(B1,A1) = 60.9 %

CR(B2,A2) = 76.9 % CR(B2,A2) = 71.5 %
CR(B3,A3) = 94.0 % CR(B3,A3) = 95.7 %

NUMBER OF NODE COMPARISONS

Software ID # of node cmpr. Software ID # of node cmpr.

netbeans

A1 135,385

ant

A1 567,891
A2 551,331 A2 4,942,013
A3 110,356,247 A3 10,388,934
B1 327,889 B1 951,183
B2 663,348 B2 5,289,877
B3 101,104,540 B3 11,295,018

jdtcore

A1 58,155,404

swing

A1 16,123,841
A2 346,223,464 A2 331,698,602
A3 1,382,195,451 A3 525,716,585
B1 118,144,589 B1 28,427,935
B2 408,615,802 B2 342,132,984
B3 1,431,922,235 B3 528,963,280

Table VI
CONTENT RATES BETWEEN DETECTION WITH AND WITHOUT

EXECUTION-NEXT LINK

Softwre Content rate Software Content rate

netbeans
CR(B1,A1) = 25.8 %

ant
CR(B1,A1) = 57.4 %

CR(B2,A2) = 59.2 % CR(B2,A2) = 74.1 %
CR(B3,A3) = 96.1 % CR(B3,A3) = 93.9 %

jdtcore
CR(B1,A1) = 65.0 %

swing
CR(B1,A1) = 60.9 %

CR(B2,A2) = 76.9 % CR(B2,A2) = 71.5 %
CR(B3,A3) = 94.0 % CR(B3,A3) = 95.7 %

8281

Table VII
CHANGE IN THE NUMBER OF NODE COMPARISONS BY INTRODUCING COMPUTATIONAL COST REDUCTION METHODS (NUMBERS IN PARENTHESES

INDICATE THE RATE OF DETECTION WITHOUT APPLYING THE PROPOSED METHODS)

Software
of node comparisons (×103)

s2: merging h2: equivalence class h3: small
nodes thrs.100 thrs.200 thrs.300 thrs.500 thrs.1,000 methods

netbeans 39,507 46,276 100,713 100,713 100,713 101,104 100,755
(39.1%) (45.8%) (99.6%) (99.7%) (99.6%) (100.0%) (99.7%)

ant 9,818 2,056 4,436 7,388 7,388 7,388 8,844
(86.9%) (18.2%) (39.3%) (65.4%) (65.4%) (65.4%) (78.3%)

jdtcore 1,031,635 42,941 344,209 393,344 615,456 699,470 1,380,464
(72.0%) (3.0%) (24.0%) (27.5%) (43.0%) (48.8%) (96.4%)

swing 408,196 16,584 35,860 41,774 100,153 137,676 438,090
(77.2%) (3.1%) (6.6%) (7.9%) (18.9%) (26.0%) (82.8%)

of netbeans. The above evaluation confirmed that:
• two-way slicings can detect more clone references

than one-way slicings in isolation;
• however, this increases the computational cost.

B. s1: Effectiveness of execution-next link
First, we evaluated the degree to which detected code

clones were enlarged by execution-next link. In this eval-
uation, we calculated the content rate using Eq. 9, where
R1 is the detection result with execution-next link and E2

is the detection result without it. The results are shown in
Table VI, which indicates that:

1) content rates were relatively low when only back-
ward slicings were used, and

2) content rates were relatively high when two-way
slicings were used.

The reason for 1) is that fewer nodes can be reached using
only backward slicings compared to forward slicings. The
small number of node comparisons obtained with only
backward slicings as shown in Table V support this asser-
tion. In addition, execution-next link drastically increased
the number of reachable nodes. The reason for 2) is that
more nodes were reachable using two-way slicings, and
execution-next link did not drastically increase the number
of reachable nodes. In all cases, the content rates were
considerably less than 100%, indicating that execution-
next link always enlarged the detected code clones.

Next, we investigated the effect of execution-next link
on the detection of clone references. Table IV shows the
result. In most cases, more clone references were detected
with execution-next link. However, in other cases, inappro-
priately enlarged code clones were identified, which means
that the number of detected clone references decreased.
The purpose of execution-next link is to improve the
ability to detect contiguous code clones. However, the re-
sults of this investigation indicate that execution-next link
increased the number of detected non-contiguous clone
references in addition to contiguous clone references.

Table V shows the number of node comparisons for
the cases in which execution-next link was either used
or not used. The difference between detection with and
without execution-next link has the same appearance in
all the target systems. When only backward slicings were
used, the number of comparisons increased by 2- or 3-
fold. When only forward slicings were used, it increased

by less than 2-fold. When two-way slicings were used, it
remained approximately unchanged.

The above evaluation indicates that:
• Execution-next link enables the detection of both the

contiguous and non-contiguous clone references;
• however, this increases the computational cost. The

degree of increase depends on which slicing is used
for detection.

C. s2,h2,h3: Effectiveness of merging nodes, neglecting
excessively equivalence classes, and neglecting small
methods

In this evaluation, we used the B3 configuration because
it has the highest computational cost.

Table VII shows the degree to which each proposed
cost reduction method affected the number of node com-
parisons. The magnitude of reduction was varied from
software when the Merging Directly-Connected Equiva-
lence Nodes rule was applied and the number of node
comparisons decreased by 39% to 87%. Table VIII shows
how much the numbers of nodes and edges are decreased
by applying the method. The method reduced a small
percent of nodes and edges, so that it merged bottleneck
parts of PDGs for node comparisons. When the Do not use
excessively large equivalence classes rule was applied, i.e.,
a smaller threshold or a larger target software systems was

Table VIII
THE SIZE OF PDGS. (HEREIN, traditional MEANS THE PDG THAT

CONTAIN DATA AND CONTROL DEPENDENCIES. execution MEANS THE
PDG THAT CONTAIN DATA, CONTROL, AND EXECUTION-NEXT LINKS.

merged MEANS THE PDG WHERE CONSECUTIVE EQUIVALENCE
NODES ARE MERGED)

Software PDG # of nodes # of edges
data control execution

netbeans
traditional 6,557 4,700 5,626 0
execution 6,557 4,700 5,626 6,144
merged 6,060 4,362 5,131 5,647

ant
traditional 12,505 11,269 10,423 0
execution 12,505 11,269 10,423 12,379
merged 12,126 10,998 10,073 12,002

jdtcore
traditional 77,493 91,617 64,701 0
execution 77,493 91,617 64,701 77,980
merged 73,885 88,443 61,263 74,595

swing
traditional 82,824 75,560 68,310 0
execution 82,824 75,550 68,310 78,110
merged 78,783 73,026 64,370 74,050

8382

Table IX
CONTENT RATES BETWEEN DETECTIONS USING THE COMPUTATIONAL COST REDUCTION METHODS AND DETECTIONS PERFORMED WITHOUT

THE COMPUTATIONAL COST REDUCTION METHODS

Software
Content rate

s2: merging h2: equivalence class h3: small
nodes thrs.100 thrs.200 thrs.300 thrs.500 thrs.1,000 methods

netbeans 98.45 % 100 % 100 % 100 % 100 % 100 % 100 %
ant 99.15 % 96.58 % 99.48 % 99.82 % 99.82 % 99.82 % 100 %

jdtcore 99.40 % 91.25 % 94.62 % 96.49 % 97.35 % 99.00 % 100 %
swing 98.45 % 93.94 % 96.43 % 97.34 % 98.52 % 99.70 % 100 %

Table X
NUMBER OF DETECTED CLONE REFERENCES USING THE COMPUTATIONAL COST REDUCTION METHODS

Software Type
without s2: merging h2: equivalence class h3: small

the methods nodes thrs.100 thrs.200 thrs.300 thrs.500 thrs.1,000 methods
good ok good ok good ok good ok good ok good ok good ok good ok

netbeans
Type 1 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5
Type 2 9 22 10 22 9 22 9 22 9 22 9 22 9 22 9 22
Type 3 8 14 9 14 8 14 8 14 8 14 8 14 8 14 8 14

ant
Type 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3
Type 2 6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 10
Type 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

jdtcore
Type1 33 101 36 102 22 97 26 98 28 100 28 100 32 101 33 101
Type2 314 619 322 624 131 398 184 450 297 598 298 599 313 619 314 619
Type3 130 214 130 214 56 128 73 149 128 205 128 205 129 210 130 214

swing
Type1 31 55 31 56 31 55 31 55 31 55 31 55 31 55 31 55
Type2 74 360 72 360 70 358 72 359 72 359 73 360 73 360 74 360
Type3 12 22 13 23 12 21 12 22 12 22 12 22 12 22 12 22

used, the more drastically the number of node comparisons
decreased. For example, for the case in which the threshold
was 100 on jdtcore, the number of node comparisons was
3.0% of the value for the case in which it was not applied.
When the Small methods are not hashed rule was applied,
the number of comparisons decreased by 78% to 99%.

Next, using Eq. 9, we investigated the effect of the
proposed cost reduction methods on the number of clone
candidates. Table IX summarizes the content rates of the
detections. When the Merging Directly-Equivalence Nodes
rule was applied, the content rates exceed 98% for all the
target systems. That means that the rule hardly had an
impact on detection result. When the Do not use exces-
sively large equivalence classes rule was applied, all of the
content rates exceeded 90% for every target. In addition,
the greater the threshold, the higher the content rate. When
the Small methods are not hashed rule was applied, the
content rates were 100% for all of the detections. This is
because this rule filtered out only small methods in which
no clone candidates was detected.

Third, we investigated the effect of the proposed cost
reduction method on the detected clone references. Table
X shows the result. When Merging Directly-Connected
Equvalence Nodes rule was applied, the detected clone
references were equal to or greater than the detection
where it was not applied. Consequently, it has a small
contribution to improve recall of clone detection. When
the Do not use excessively large equivalence classes rule
was applied, the number of detected clone references did
not decrease for netbeans, ant, or swing. However, in the
case of jdtcore, the number of detected clone references
decreased at all of the thresholds. When the Small methods

are not hashed rule was applied, the number of detected
clone references was not affected at all.

Based on the above evaluation, we draw the following
conclusions:

• The Merging Directly-Connected Equivalence Nodes
rule decreases the computational cost. The degree of
decreasing is varied from software. In addition, the
method is partly-effective to improve recall of clone
detection.

• The Do not use excessively large equivalence classes
rule was effective in reducing the computational cost
producing very few false negatives.

• The Small methods are not hashed rule had little
impact on the computational cost. However, the ap-
plication of this method did not produce any true
negatives.

VIII. RELATED RESEARCH

Komondoor et al. first applied program slicing to code
clone detection [4]. In their method, program statements
and control predicates are nodes of PDGs. Backward
slicing is mainly used in the identification, and forward
slicing is performed only from matching predicates. Their
method was applied to several open-source software sys-
tems written in the C language. The application result
demonstrated the capability of program slicing to detect
non-contiguous code clones.

Krinke proposed a fine-grained PDG, which he applied
to code clone detection [5]. In the fine-grained PDG,
nodes are mapped one-to-one onto nodes of an abstract
syntax tree, which means that the number of nodes in
fine-grained PDGs is much greater than the number of

8483

nodes in traditional PDGs. Consequently, it takes longer
to detect code clones using fine-grained PDGs. In order to
alleviate this problem, Krinke proposed a k-limited search
in which similar subgraphs are searched within k hops.

Jia et al. proposed a hybrid method to detect non-
contiguous code clones [10]. In this method, contiguous
code clones are firstly detected using a suffix-comparison
algorithm as string- and token-based detection tools. Sec-
ond, surrounding statements having control or data de-
pendency with the detected code clones are merged if the
corresponding code clones also have the same surrounding
statements. A case study revealed that their hybrid method
could rapidly detect more non-contiguous code clones than
Duplix, which is an implementation of Krinke’s method
[5]. The hybrid method of Jia et al. is suitable for detecting
both contiguous and non-contiguous code clones [10]. The
difference between their hybrid method and the method
proposed herein is that their method requires core parts
(contiguous code clones of a certain length) to detect
non-contiguous code clones, whereas the proposed method
does not.

Gabel et al. proposed a scalable detection method for
semantic code clones [11]. Their method is an enhanced
version of an AST-based detection method, Deckard [12].
They defined the semantic thread, which was used for
mapping and detecting similar subgraphs in PDGs, and
for detecting similar subtrees in ASTs.

Roy et al. proposed a lightweight detection method
for near-miss clones, which are intentionally copied and
pasted codes [13]. Their method relies extensively on TXL
[14] to realize the following:

• detect code clones in meaningful units,
• absorb the differences of source code formats, and
• flexibly normalize tokens and structures.
We are especially interested in the differences among

code clones detected by the proposed methods, Jia’s
method [10], Gabel’s method [11], and Roy’s method [13],
because all of these methods are able to successfully detect
both contiguous and non-contiguous code clones and have
high scalabilities.

IX. CONCLUSION

In the present paper we have proposed PDG specializa-
tions and heuristics for enhancing code clone detection.
In addition, we experimentally confirmed that each of the
proposed methods is effective either for improving the
stringency of detection or for reducing detection time.

In the future, we intend to use interprocedural PDGs to
detect code clones. Although using interprocedural PDGs
is more time consuming, more interesting and more benefi-
cial code clones will be detected, because if functionalities
straddling two or more methods are identical, they are
detected as a single clone set. We can therefore recognize
larger identical functionalities in the system.

ACKNOWLEDGMENTS

The present research is being conducted as a part of
the Stage Project, the Development of Next Generation

IT Infrastructure, supported by the Ministry of Education,
Culture, Sports, Science, and Technology of Japan. This
study has been supported in part by Grants-in-Aid for Sci-
entific Research (A)(21240002) and (C)(20500033) from
the Japan Society for the Promotion of Science, and Grant-
in-Aid for Young Scientists (B)(22700031) from Ministry
of Education, Science, Sports and Culture.

REFERENCES

[1] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo, “Comparison and Evaluation of Clone Detec-
tion Tools,” IEEE Transactions on Software Engineering,
vol. 31, no. 10, pp. 804–818, Oct. 2007.

[2] E. Burd and J. Bailey, “Evaluating Clone Detection Tools
for Use during Preventative Maintenance,” in Proc. of the
2nd IEEE International Workshop on Source Code Analysis
and Manipulation, Oct. 2002, pp. 36–43.

[3] M. Balint, T. Girba, and R. Marinescu, “How Developers
Copy,” in Proc. of the 14th IEEE International Conference
on Program Conprehension, June 2006, pp. 56–68.

[4] R. Komondoor and S. Horwitz, “Semantics-preserving pro-
cedure extraction,” in Proc. of the 27th ACM SIGPLAN-
SIGACT on Principles of Programming Languages, Jan.
2000, pp. 155–169.

[5] J. Krinke, “Identifying Similar Code with Program Depen-
dence Graphs,” in Proc. of the 8th Working Conference on
Reverse Engineering, Oct. 2001, pp. 301–309.

[6] M. Weiser, “Program slicing,” pp. 439–449, May 1981.

[7] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue, “Method
and Implementation for Investigating Code Clones in a
Software System,” Information and Software Technology,
vol. 49, no. 9-10, pp. 985–998, Sep. 2007.

[8] “Scorpio,” http://sdl.ist.osaka-u.ac.jp/∼higo/cgi-bin/moin.
cgi/scorpio-e/.

[9] “Detection of Software Clones,” http://bauhaus-stuttgart.de/
clones/.

[10] Y. Jia, D. Binkley, M. Harman, J. Krinke, and M. Matsusita,
“KClone: A Proposed Approach to Fast Precise Code Clone
Detection,” in Proc. of the 3rd International Conference on
Software Clones, Mar. 2009.

[11] M. Gabel, L. Jiang, and Z. Su, “Scalable Detection of
Semantic Clones,” in Proc. of the 30th International Con-
ference on Software Engineering, May 2008, pp. 321–330.

[12] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD:
Scalable and Accurate Tree-based Detection of Code
Clones,” in Proc. of the 29th Intenational Conference on
Software Engineering, May 2007, pp. 96–105.

[13] C. K. Roy and J. R. Cordy, “Nicad: Accurate detection of
near-miss intentional clones using flexible pretty-printing
and code normalization,” in Proc. of the 16th IEEE In-
ternational Conference on Program Comprehension, June
2008.

[14] J. R. Cordy, “The txl source transformation language,” in
Proc. of the 4th workshop on Language Description, Tools,
and Applications, 2006, pp. 190–210.

8584

