
Master Thesis

Title

A Method for Measuring Modifications of Class

Diagrams Based on Version Change Information

Supervisor

Prof. Shinji KUSUMOTO

by

Shinya YAMADA

February 7, 2011

Department of Computer Science

Graduate School of Information Science and Technology

Osaka University



Master Thesis

A Method for Measuring Modifications of Class Diagrams Based on Version Change

Information

Shinya YAMADA

Abstract

In order to effectively manage the development of a software, managers need to pre-

cisely understand the progress of the development and measure against the delay of them.

In the lower processes of software developments, the managers grasp the progress by us-

ing various metrics obtained from the source code and the update history information.

However, since there are no appropriate metrics to the upper processes, it is difficult to

grasp the progress of them. In this paper, we propose a measurement process on the

modifications of class diagrams which can be used to estimate the effort to change from

one class diagram to another. To measure the modifications of class diagrams, first, we

construct a tree based on the generalizations and the inner information of the classes in

the class diagrams. Next, we obtain the sequence of edit operations to change one tree

to another. Then, each edit operation is weighted based on the assigned cost. Finally, by

calculating a sum of the total costs, we obtain the modifications of the class diagrams.

We have utilized this approach to measure the modifications of several class diagrams

and compared with the data from actual software development. As the results, we con-

firmed the validity of using this approach to estimate the effort that is taken during the

modification.
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1 Introduction

Software systems play an critical role in our society, as they are used in daily basis

such as in banking and communication systems. In recent years, software systems be-

come huge[1] and encompass increasing amount of information, which accelerates the

complexity of the software development. Due to the increased complexity, it is a chal-

lenge to reduce the term and the cost of the software development to meet the demands

from software industries.

In order to meet the demands, a software management with quantitative data is nece-

ssary[2]. Adopting the quantitative management, the managers can grasp the actual

progress of the development and measure against the delay of them.

In the lower processes of the software development, a variety of metrics are used

to grasp the progress. For example, source code modifications[3] are used to grasp the

progress of the development, lines of code is used to evaluate the size of the system, com-

plexity metrics (e.g. cyclomatic complexity[4] and CK metrics[5]) are used to evaluate

the complexity of the system. In the higher processes, some metrics also exist such as

“estimation and the actual effort for modifying the system requirement[6].” However, the

assessment is time consuming since the metrics are measured by hand. Moreover, the

developers should not only engage in their own jobs but also in other tasks such as sudden

meeting with others. Thus, it is difficult to accurately measure the effort individually. This

problem would be solved if the effort for modifying design documents could be estimated

from the updated information between two versions of design documents.

Unified Modeling Language (UML) is a widely used modeling language for designing

software systems. UML provides several diagrams for many purposes. One of the most

important diagrams is class diagrams. Therefore, as the first step of estimating the effort

from design documents, we focus on class diagrams.

Traditionally, several metrics have being measured to manage projects e.g. the number

of classes, the number of attributes, and the number of operations[7] from class diagrams.

However, since they are size metrics, it is difficult to estimate the effort for modifying

class diagrams. The size metrics represent the size of the object on one occasion, thus

they do not reflect the context of modification.

In this paper, we first propose the measurement process on themodifications of class

diagrams(in the following, we call itMCD) which can be used to estimate the effort to
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change one class diagram to another. Measurement of MCD consist of three processes. (1)

Constructing trees based on the generalizations and the inner information of the classes

in the class diagram. (2) Obtaining the sequence of editing operations to change one

tree to another. (3) By weighting each of the editing operations and accumulating them,

we obtain the MCD. Second, we introduce the method for implementing the proposed

method. Finally, we evaluate MCD in terms of its validity in estimating the class diagram

modification effort and implemented tool in terms of running time by adapting versions

of class diagrams in the actual development data. The result showed the proposed MCD

correlates with the modification effort, and the measurement costs a few seconds for a

middle size project, thus the cost for measuring is sufficiently low.

In the following, Section 2 introduces terminologies we use in this paper and refer

the algorithm we used in our method. Section 3 proposes the metric and the overview of

the measurement. Section 4 shows how we implemented the tool realizing the proposed

method mainly about its feature for easily change input files as well as the idea for opti-

mization. Section 5 evaluates if MCD is applicable for estimating the modification effort,

in terms of the correlation between MCD and the actual modification effort as well as

the time spent for measuring MCD. Section 6 introduces MCD applications. In Section 7,

known issues for MCD are described. Section 8 reviews the related work. Finally, Section

9 summarizes the paper and refers to the future works.
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class name

attribute1

attribute2visibility2

type1 = initial value1

type2 = initial value2

:

:

operation1

operation2

()

(argument : argument type, …) : result type

Figure 1: Structure of a Class in a Class Diagram

interface name

Figure 2: Structure of an Interface in a Class Diagram

2 Preliminaries

Our method of measuring the modification from given two class diagrams is based

on the algorithm presented by Chawathe et al.[8]. In the following, we describe a class

diagram, and then, we introduce the terminologies useful to understand the latter sections

and an overview of the original algorithm MHDIFF.

2.1 Class Diagram

The class diagram is a type of static structure diagram in UML, which describes

classes and the relationships between the classes in a software system. Figure 1 shows the

structure of a class in a class diagram.

The vertices in a class diagram are classes. A Class in a class diagram consist of three

area, which are separated by horizontal lines. The upper area represents the name of the

class. The middle area represents the attributes of the class, where one can determine

its attribute names, their types, initial values, and visibility. The bottom area represents

operations of the class. This area provides the name of the operations, their arguments,

argument types, and result types. Figure 2 shows the structure of an interface in a class

diagram.

The interface can be considered similar to a class. The interface is depicted as a
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user

accountant

bookingstudent

Figure 3: Example of a generalization and a realization

circle. It contains attributes and operations, however, we omit the detailed explanations

about their notations.

A class diagram may contain several types of relations between the classes and the

interfaces, however, in this paper, we only explain a generalization and a realization. A

generalization shows a class inheriting another class. It is illustrated as an arrow origi-

nating from the sub class to the super class. A realization indicates that a class realizes

an interface. It is illustrated as a solid line between the bottom of the interface to the top

of the class. As an example of the generalization and realization, Figure 3 shows that

“student” inherits “user”, and “booking” realizes “accountant”.

A class diagram may also provide other information. Detailed specification is avail-

able in [9].

2.2 Terminologies

In this sub-section, we introduce the terminologies used in graph theory and the terms

specifically used in the paper using Figure 4. In this paper, the labels of nodes are located

on the right side of the nodes.

We usel(n) as a label of the noden. We denote a treeT using its nodesN , parent

functionp, and labeling functionl, and writeT = (N, p, l). The children of a noden are

denoted byC(n), and its parent byP (n). In Figure 4, the label of a node 2 is “user” and

depicted asl(2). A node 4 is denoted as C(2), and a node 1 is denoted as P(2). A root

node is an ancestor of all the other nodes in the tree. And it is labeled as “ROOT”. A leaf

node is a node without child node. An inner nodes contains one or more child nodes.
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Figure 4: Example of a Tree

2.3 MHDIFF

MHDIFF[8] is the tree difference algorithm proposed by Chawathe et al. The input

of MHDIFF is two trees and the output is an edit script. The Edit script is a sequence of

edit operations which transforms one tree to another. The edit script is composed of the

following six edit operations.

INS Intuitively, an insertion operation creates a new tree node with a given label, and

places it at a given position in the tree. The position of the new noden in the tree

is specified by giving its parent nodep and a subsetC of the children ofp. The

result of this operation is that n is a child ofp, and the nodesC, that were originally

children ofp, are now children of the newly inserted noden.

Formally, an insertion operation is denoted by INS(n, v, p, C), where n is the

(unique) identifier of the new node, v is the label of the new node,p ∈ N1 is

the node that is to be the parent of n, andC ⊆ C(p) is the set of nodes that are to be

the children of n. When applied toT1 = (N1, p1, l1), we get a treeT2 = (N2, p2, l2),

whereN2 = N1 ∪ n, p2(n) = p, p2(c) = n, ∀c ∈ C, p2(c) = p1(c), ∀c ∈ N1 − C,

l2(n) = v, andl2(m) = l1(m), ∀m ∈ N1.

DEL This operation is the inverse of the insertion operation. Intuitively, DEL(n) causes

n to disappear from the tree; the children ofn are now the children of the (old)

parent ofn. The root of the tree cannot be deleted.
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Formally, a deletion operation is denoted by DEL(n), wheren ∈ N1 andn is not

the root ofT1. When applied toT1 = (N1, p1, l1), we get a treeT2 = (N2, p2, l2)

with N2 = N1 − n, p2(c) = p1(n), ∀c ∈ C(n), p2(c) = p1(c), ∀c ∈ N2 − C(n),

andl2(m) = l1(m), ∀m ∈ N2.

UPD The operation UPD(n, v) changes the label of the noden to v.

Formally, an update operation applied toT1 = (N1, p1, l1) is denoted by UPD(n, v),

wheren ∈ N1, and producesT2 = (N2, p2, l2), whereN2 = N1, p2 = p1, l2(n) = v,

andl2(m) = l1(m), ∀m ∈ N2 − n.

MOV A move operation MOV(n, p) moves the subtree rooted atn to another position in

the tree. The new position is specified by giving the new parent of the node,p. The

root cannot be moved.

Formally, a move operation applied toT1 = (N1, p1, l1) is denoted by MOV(n, p),

wheren, p ∈ N1, andp is not in the subtree rooted atn. The resulting tree isT2 =

(N2, p2, l2), whereN2 = N1, l2 = l1, p2(n) = p, andp2(c) = p1(c), ∀c ∈ N2 − n.

COPY A copy operation COPY(m, p) copies the subtree rooted atn to another position.

The new position is specified by giving the nodep that is to be the parent of the new

copy. The root cannot be copied.

Formally, a copy operation applied toT1 = (N1, p1, l1) is denoted by COPY(n, p),

wheren, p ∈ N1, andnZ is not the root. LetT3 = (N3, p3, l3) be a new tree that

is isomorphic to the subtree ofT1 rooted atn, and letn′ be the root ofT3. The

result of the copy operation is the treeT2 = (N2, p2, l2), whereN2 = N1 ∪ N3,

l2(m) = l1(m), ∀m ∈ N1, l2(m) = l3(m), ∀c ∈ N3, p2(n′) = p, p2(m) = p1(m),

∀m ∈ N1, andp2(m) = p3(m), ∀m ∈ N3.

GLUE This operation is the inverse of a COPY operation. Given two nodesn1 and

n2 such that the subtrees rooted atn1 andn2 are isomorphic, GLU(n1, n2) causes

the subtree rooted atn1 to disappear. (It is conceptually “united” with the subtree

rooted atn2.) The root cannot be glued. Although the GLU operation may seem

unusual, note that it is a natural choice for an edit operation given the existence of

the COPY operation. The symmetry in the structure of edit operations is useful in

the design of the algorithm.
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booking accountant student

ROOT

bookkeeper accountant

officeworker

1 1

2 3

3

4

4

5

5

6

Figure 5: Sample Trees

Formally, a glue operation applied toT1 = (N1, p1, l1) is denoted by GLUE(n1, n2).

Let T3 be the subtree rooted atn1, and letT4 = (N4, p4, l4) be the subtree rooted at

n2. The precondition of this GLUE operation is thatT4 is isomorphic toT3 − T4.

The result of the glue operation is the treeT2 = (N2, p2, l2), whereN2 = N1 −N4,

p2(c) = p1(c), ∀c ∈ N2, andl2(c) = l1(c), ∀c ∈ N2.

Here, we use an example to explain MHDIFF algorithm. Figure 5 shows the sample

input trees.T1 depicts an original tree andT2 depicts a modified tree. Note that identifi-

cations in each vertex is intentionally assigned for the purpose of explanation; however,

MHDIFF and our method do not use the identifications in each element used by UML

modeling tools. In comparison betweenT1 andT2, the node 2 labeled “user” is deleted

in T2 and a new node 6 labeled “officeworker” is inserted asC(1) in T2. Moreover, the

label “booking” at the node 4 is modified to “bookkeeper” and “accountant” at the node

5 becomes a child of “officeworker” at the node 6. During the algorithm process, MHD-

IFF assigns the operation (annotates) to each vertex as shown in Figure 6. In Figure 6,

dot-dashed arrows show the vertices are annotated by edit operations.

These annotated edit operations coincide with intuition that they are synonymous with

the modifications described in the above paragraph. In this example, where the node 2

labeled “user” inT1 is deleted inT2, the corresponding annotated operation is DEL(2).

At the end, MHDIFF outputs an edit script, a sequence of edit operations described in

Section 2.3. In this example, the edit script,ε, may

ε = {INS(6, officeworker, 1,{4, 5}), DEL(2), UPD(4, bookkeeper), MOV(5,6)}

7
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ROOT
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UPD
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3

4

4

5
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Figure 6: Annotated Trees

3 A New Metric for Modifications of Class Diagrams

3.1 Modifications of Class Diagrams

Assume that a class diagramC2 is created based on a class diagramsC1. That is,C2 is

obtained by applying some modifications toC1 in the design phase. Then, MCD evaluates

the effort of modifyingC1 toC2 in design phase of the software development.

First, this method calculates and determines an edit script which is the sequence of

edit operations. For an instance, if we apply the edit operations to the class diagramC1,

the class diagramC2 is obtained. Next, a proposed method assigns a weight for each edit

operation in the edit script. Finally the MCD between theC1 andC2 are calculated as a

sum of the total weights.

We would mention why we designed MCD as a scalar value. During the process, the

edit script is obtained. As it consists of a sequence of edit operations, we can represent

the modification as a vector valueV, such as

V =


INS

DEL
...

 =


2

3
...

 .

Both notations have advantages and disadvantages. The process of measuring MCD

is very similar to the Function Point method[10]. The Function Point is a scalar value

which measures a functional size of the software independent of any development tools or

technologies. It differs from the size of the code particularly in light of its independency.

8



transform class diagram 

into tree

obtain edit script

edit script

modification

calculate modification

1

2

3

Figure 7: Flow of the modification measurement

The size of the code may differ even if a developer implements the same functionality

when he/she uses different programming languages. The Function Point method first

evaluates the system and obtains the number of functions. The functions are categorized in

5 elements and weighted. Lastly, the Function Point is obtained by a sum of the weighted

values in each category in the Function Point method.

The Function Point share similar advantages[11] and disadvantages[12] to MCD. Ac-

cording to Furey[11], the Function Point provides a better way to compare organizations

and project productivities. It is much easier to evaluate and compare between two vari-

ables if a scalar value is utilized. Therefore, we also design the MCD as a scalar value.

3.2 Flow of the Measurement

In this section, we present a flow of MCD measurement. The measurement consists

of the following three steps.

Step1: Transform two input class diagramsC1 andC2 into trees.

Step2: Calculate and obtain the edit script which represents a sequence of edit operations,

which transformsC1 toC2. This step is essentially the same process as MHDIFF.

Step3: By weighting each edit operation and accumulating the weight, the MCD is ob-

tained.

9



- attribute1 : int

+ operation2() : String
+ operation1() : void

user

accountant

bookingstudent

user

ROOT

student

booking accountant

1

2

3

4 5transform

attributes:1

operations:2

Figure 8: Tree Construction

Figure 7 shows the flow of measurement. Each number in Figure 7 corresponds to the

steps described above.

3.3 Tree Construction

In the tree construction, the classes and the interfaces in the class diagrams are trans-

formed into nodes. Each node of the constructed tree includes inner information, which

represents the information of the original class. The inner information consists of three in-

formation: the name of the class, the number of attributes, and the number of operations.

The edges in trees are derived from the class relations. The transformation of edges only

targets on generalizations of classes. Other relations in class diagrams such as realization

and composition are not be transformed. Therefore, the existence of these relations does

not affect the modification. The class with no super class in the original class diagram

connects to the newly added node, “ROOT”.

Figure 8 shows an example of the tree construction. The class “user”, “student”,

“booking” and the interface “accountant” is transformed into nodes. The class “user” in

the left hand has one attribute and two operations, thus the corresponding node 2 in the

right hand has inner information, the number of attribute is one and operations is two.

The class “student” has the super class, therefore the relation is transformed into edge

of the tree. The others has no super classes, thus the corresponding nodes in the right

hand connect to “ROOT”. Recall the relations except generalization does not transformed

into edges. So the realization between “accountant” and “booking” is disregarded. In the

paper, we will call the inner information of nodem asInner(m) e.g. the inner information

of the node 2 in Figure 8 is described as Inner(2).
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Figure 9: Bipartite Graph

The two class diagrams are independently transformed into trees. In the following, we

call the treeT1 derived from the first input class diagram andT2 derived from the second

input class diagram.

3.4 Weighted Bipartite Graph Construction

3.4.1 Graph Construction

Based on the nodes inT1 andT2 in Section 3.3, a complete bipartite graph is con-

structed. In order to eliminate COPY and GLUE operations, we modified a method in

MHDIFF. Originally, a complete bipartite graph in MHDIFF is calledInduced Graph,

where the number of added special nodes,⊕ and⊖, is limited to one. However, our

method does not limit the number of special nodes which are added in the graph.

Let be define a functionN(Tx) as the number of nodes in a treeTx andS(Tx) as the

set of nodes in the treeTx. For special nodes⊕ and⊖, N(⊕) represents the number of

special nodes⊕ andS(⊕) represents the set of nodes⊕. AssumingT+
1 = T1 ∪ S(⊕)

andT+
2 = T2 ∪ S(⊖), the nodes are added to satisfyN(T+

1 ) = N(T+
2 ). After adding the

nodes to the bipartite graph, edges are added to the graph between nodes in each side of

the graph i.e. the edgee is added between the nodesm ∈ S(T+
1 ) andn ∈ S(T+

2 ). Sample

of constructed complete bipartite graph is shown in Figure 9.

3.4.2 Cost Assignment

Each edge of the bipartite graph is weighted as a cost. The cost of an edge represents

the difference between nodes from one to other. Originally in MHDIFF, a node only

11



contains a label; therefore, a cost of the edge between the nodesm andn is the difference

betweenl(m) andl(n). However, since we use the nodes with inner information, we must

define the difference properly between nodes. The equation 1 represents the difference

between nodem andn.

Diff (m,n) = LabelUPD(m,n) + InnerChange(m,n) (1)

In this equation, LabelUPD(m,n) and InnerChange(m,n) are defined by

LabelUPD(m,n) = Len(m) + Len(n)− 2× COMMON(m,n)

and

InnerChange(m,n) = 2× {|AttrN(m)− AttrN(n)|+ |OprN(m)−OprN(n)|},

respectively. Len(m) represents the label length of the nodem, AttrN(m) represents

the number of attributes inm, OprN(m) represents the number of operations inm and

COMMON(m,n) representsLongest Common Subsequence(LCS) in each label of the

node.

Thus, the cost of edgee connecting fromm and ton is

Cost(e) = Diff (m,n).

3.5 Bipartite Graph Matching

After applying Weighted Bipartite Graph Construction, we obtained a complete wei-

ghted bipartite graph, each edge of the complete bipartite graph (see Figure 9) has costs

representing the difference between nodes. In this section, first we present about how to

prune (eliminate) edges, and next how to obtain a minimum weight perfect matching of

the bipartite graph.

3.5.1 Pruning Edges

One can obtain a perfectly matched bipartite graph by applying the algorithm de-

scribed in Section 3.5.2. However, the calculation described in Section 3.5.2 requires

O(n2logn) and more and the calculation in this step requiresO(n2). Therefore by prun-

ing unnecessary edges in the graph, we reduce the total calculation cost.
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We describe how to prune (eliminate) the apparently unnecessary edges in the wei-

ghted complete bipartite graph. In original MHDIFF, the two pruning rules are defined.

Both of them are based on the idea that the target edges can be replaced by other edges.

However, in order to omit some edit operations (see Section 3.8), we only use one of the

pruning rules. Intuitively, the pruning targets are edges connected fromm and ton whose

difference Diff(m,n) is sufficiently high. They are apparently not necessary since the

accumulated cost of the final edges is smaller if deletingm and addingn than remaining

them. Remaining edges will be annotated and affect MCD. Therefore, if we define the

cost representation of one operation as Cost(Opr), an edge connected fromm and ton as

[m,n], the pruning targets are edgese = [m,n] which satisfy Inequation 2.

Diff(m,n) ≥ Cost(INS(n)) + Cost(DEL) (2)

Rigorously, the elimination condition should satisfy not only Inequation 2 but also

other conditions. Suppose finally remaining edgee′ = [m′, n′], wherem′ is one element

of C(m) andn′ is one element ofC(n), it occurs no problem when the edgee = [m,n]

is also remaining. However, ife does not exist,m′ is forced to move ton′. Figure 10

(a) shows an example without any problem using Inequation 2. However, with respect to

Figure (b),e′ = [m′, n′] exists but dose not existe = [m,n]. This situation forcesm′ to

moven′. Defineα as a number of finally remained edges connected fromC(m) toC(n),

the pruning rule should rigorously satisfy the following condition:

Diff(m,n) + α× Cost(MOV) ≥ Cost(INS(n)) + Cost(DEL).

However, since the number of edges connected fromC(m) to C(n) will be determined

after applying the process described in Section 3.5.2, the number of these edges cannot

be determined. This impasse cannot be broken. Hence, we use the pruning rule that only

satisfy Inequation 2.

3.5.2 Perfect Matching

A problem obtaining a minimum weight perfect matching of the bipartite graph is

called assignment problem.O(n2logn) of the fastest algorithm is described in [13]. We

used Hungarian Method[14]; the calculation requiresO(n3) for the ease of implementa-

tion. After applying this step, a graph shown in Figure 11 is obtained.
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Figure 11: Minimum Weight Perfect Matching of the Bipartite Graph

3.6 Edit Script Acquisition

After applying Bipartite Graph Matching, the minimum weight perfect matching of

the bipartite graph is obtained. Next, an edit operation is annotated to each edge. Origi-

nally, in MHDIFF, there are six edit operations, however, we use only four edit operations.

The reason for this is described in Section 4.2.

Here we describe conditions for annotating the following edit operation on each edge

e.

NIL NIL is annotated whene is connected fromm ∈ S(T+
1 ) to n ∈ S(T+

2 ), inner

information ofm andn is the same and the edge connected fromP (m) to P (n)

exists.

INS and DEL INS is annotated when a noden which is not⊖ connects to⊕. DEL is

annotated when a nodem which is not⊕ connects to⊖.
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forall e = [m,n] do {
if (Inner(m) = Inner(n) && existe′ = [P (m), P (n)]) then e← NIL

else if(m = ⊕ && n = ⊖) then e← NIL

else if(m ∈ T+
1 = ⊕ && n ∈ T+

2 ̸= ⊖ && exist edgee = [m,n]) then e← INS

else if(m ∈ T+
1 ̸= ⊕ && n ∈ T+

2 = ⊖ && exist edgee = [m,n]) then e← DEL

else if(not existe′ = [P (m), P (n)]) then e←MOV

else if(Inner(m) != Inner(n))then {
e← UPD

if (not existe′ = [P (m), P (n)]) then e←MOV.UPD

}
}

Figure 12: Pseudo Code forAnnotate
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Figure 13: Annotated Bipartite graph

MOV MOV is annotated when an edgee connected fromm ∈ S(T+
1 ) to n ∈ S(T+

2 )

exists as well as the edge connected fromP (m) to P (n) does not exist.

UPD and MOV.UPD UPD is annotated when an edgee is connected fromm ∈ S(T+
1 )

to n ∈ S(T+
2 ) whose inner information is different. In this time, if the edge also

satisfies condition MOV, then MOV.UPD is annotated.

Figure 12 shows the pseudo code forAnnotate. Figure 13 shows an example of the bipar-

tite graph each edge is assigned the edit operation.

It is easy to obtain an edit script if the annotated bipartite graph exists. One can

obtain the graph just counting the number of each edit operations annotated in the bipartite

graph. There are some ordering constraints in MHDIFF, however, in our method, there

is no ordering constraint. Originally, COPY and GLUE operation impose the ordering
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constraint to the edit script. As our method omits these two operations, there is no ordering

constraint.

For example, the edit script from the annotated graph in Figure 13 is

{DEL(1),DEL(5),UPD(3, 8),MOV(2, 6),MOV.UPD(4, 7)}.

3.7 Calculation for Modifications of class diagrams

Calculation of MCD is accomplished in following three steps. First, we count all edit

operations from an edit script. Second, we weigh each operation based on the assigned

cost. Finally, by accumulating the costs, we obtain the MCD.

Each operation cost is defined by users of their purpose. An example is shown in

Section 5.1.

3.8 MHDIFF Optimization

We used MHDIFF-like algorithm in our method to measure the modification between

given two class diagrams (C1, C2). Our method measures the modification fromC1 toC2.

Thus it can tailor in some points.

Firstly, we omit two edit operations, COPY and GLUE. COPY indicates that one sub

tree in the tree is copied and inserted in another location of the tree. For class diagram,

this operation means a set of classes is copied and inserted in another location of the

same class diagram. In the design phase, class diagrams may glow only by adding of new

classes. Hence, our proposed method should allow insertion and disallow copy of some

sub trees. This is the reason we omit COPY operation. GLUE is the inverse operation of

the COPY, therefore it is not appropriate for this time.

Secondly, we optimized a condition of operation assignment for MOV. Originally,

MHDIFF does not assign MOV to a child node if the inserted node is a inner node. Figure

14 shows the insertion example using MHDIFF. NIL showed that the assigned node has

not been operated in any edit operation.

However, this does not meet the intuition. Let us think the situation that the class M

inherits the class N (see Figure 15). To insert a new class X as a super class of M and a

sub class of N, the developer needs to create the class X and inherits N and change the

generalization edge of M. To design a method to meet the intuition, we changed the MOV

condition.
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The detailed MOV condition is described in Section 3.6.
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4 Implementation

4.1 Structure of the Tool

Figure 16 shows the structure of the implemented tool.

The tool firstly inputs two class diagrams. They are analyzed and abstracted into

information independent from input files. Using the information, Tree Constructor con-

structs trees. Bipartite Graph Constructor inputs two trees and constructs the weighted

complete bipartite graph. Some edges in the weighted complete bipartite graph are elim-

inated by pruner. The weighted pruned bipartite graph is transformed into the minimum

weight perfect matching of the bipartite graph by Perfect Matching Solver. It is analyzed

by Edit Script Generator and obtained the edit script. From the edit script, Modification

Calculator calculates the MCD.

The modules obtaining the information from input files (Information Analyzer) and

constructing trees (Tree Constructor) are distinct (See Figure 16). Thus, it is easy to

change the type of input files, for the developer develops a module which obtains the

information from the targets and replaces the module. This architecture yields a large

profit. If one is eager to calculate the modification between two source code in design

level abstraction, he/she only need to develop a module which analyzes source codes and

changes the module.

4.2 Ideas for Optimization

The method described in Section 3 first constructs a complete bipartite graph and

then obtains a perfect matching. This is good when the input files are absolutely differ-
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ent. Constructing the “complete” bipartite graph in MHDIFF assumes that all nodes may

have been changed, since each edge implies a possibility to be matched between nodes.

However, since our proposed method measures the modifications between given two class

diagrams whose ancestor is identical, most of the information in the class diagrams would

not be changed; The design is rarely changed completely.

Based on this idea, it is not necessary to construct a complete bipartite graph. If there

are nodesm ∈ T1 andn ∈ T2 whose inner information Inner(m) and Inner(n) as well as

the parent nodesP (m) andP (n) are identical, the edge between them will be annotated

as NIL. Therefore, the method only adds an edge between them. Thus, the method does

not require to construct bipartite graph for all nodes (see Figure 17.)

This method first investigates nodes and classifies them. In the first set, there are node

pairs which have the same node (the same inner information and the same parent.) For the

nodes in this set, one edge is added to each node. In the second set, there are nodes each

of which does not have the same node. In this set of the nodes, the method constructs a

complete bipartite graph by using the method described in Section 3.4.

However, this method contains an issue when the above idea is simply implemented.

Assume that two class diagrams, where each diagram holds two classesA andB, satisfy

Equation 3

Inner(A) = Inner(B), however,P (A) ̸= P (B). (3)

. Applying the above optimization, these classes can be two types of annotation (Type

1 and Type 2 in Figure 18.) The two input class diagrams are identical. Thus, Type 1 anno-

tation which produces no MCD is intuitively correct. Hence, the method generates edges

between the nodesm andn does not only hold the same inner information (Inner(m) and

Inner(n)) but also the same parent (P (m) andP (n).)

This optimization reduces many edges. Whenp nodes inS(T1) andS(T2) have the
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Figure 19: Constructed Bipartite Graph Applying Optimization

same inner information, the constructed bipartite graph is shown in Figure 19. Suppose

the number of classes in two input class diagrams is identical (n classes) and the number

of classes modified is a fixed number, the number of edges in constructing a bipartite

graph reduces from O(n2) to O(n). Details are described in Appendix A.
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5 Evaluation

In this section, we evaluate the system which has been implemented based on the

proposed method. We evaluate the system based on two aspects. For the first aspect, we

evaluate the validity of the MCD by analyzing the correlation between MCD and the effort

for designing the class diagrams. For the second aspect, we evaluate the performance of

the tool to measure the MCD.

5.1 Metric for Effort Estimation

5.1.1 Evaluation Target

The MCD is designed to evaluate an effort for modifying class diagrams (see Section

3.1). “An effort for modifying class diagrams” implies not only its real modification

effort but also other effort e.g. time spent for thinking about the design or meeting which

determines it. Intuitively, the best method to evaluate the validity of the MCD is to analyze

the correlation between the MCD and the effort spent in modifying the class diagram.

However, it is difficult to obtain an actual effort for modifying class diagrams. Therefore,

we use the estimated effort obtained from an actual job assignment data in design phase

to estimate the correlation.

We use the actual development data for analysis provided by “IT Spiral[15]”. These

data include daily UML diagrams produced during the design phase. This project started

on March 6, 2007, and lasted for 45 days, which resulted in 38 class diagrams in the

design phase. In this project, the class diagram contained a total of 361 classes.

Since the data do not indicate the work hours of each person involved in the project,

we assume the eight hours of design work per person per day. In the design phase, 3 devel-

opers were involved in the project, therefore, we estimate8×3 = 24 hours of the effort in

one day. We can estimate the total effort spent in the design phase by using this assump-

tion since the data includes the job assignment data for Microsoft Office Projectc⃝format.

We manually modified the calculated effort when there are records indicating that the de-

velopers attended a meeting. For example, they had a review in Wakayama University (It

is not close to the development company) on April 23 for 7 hours. We regard the total

effort on the day as7× 3 = 21 hours.

The effort spent in design phase may have a strong correlation with the effort spent

in modifying class diagrams, for the other diagrams described by UML is based on class
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Figure 21: How to Measure the Total Measurement

diagrams. This assumption means that in the evaluation, we can substitute the total effort

spent in modifying class diagram for the effort spent in design phase. Therefore, we use

the estimated total effort spent in design phase in our evaluation.

The final class diagram was developed based on 4 steps and illustrated in Figure 20.

Regarding the product of the each step as a version of class diagram, we analyze the

correlation between the MCD and the total effort for modifying class diagrams in each

step. The total MCD in one step is obtained by accumulating the MCD in each pair of

class diagrams. For example, since there are 15 class diagrams in step 1, letmx,1 be

the MCD betweenC1 andC2 which is designed in stepx, the total MCDm1 is m1 =

m1,1 +m1,2 + · · ·+m1,14 (see Figure 21.)

Note that Step 3 started (on May 15th) before Step 2 ended (on May 18th.) However,

we simplified that Step 2 ended on May 11th, since the actual design ended on May 11th,
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though, it had the review on May 18th.

Let Effort(x) be the total estimated effort spent in phasex. By analyzing the corre-

lation betweenmx and Effort(x), we will show the validity of the MCD as a metric for

estimating an effort for modifying class diagrams.

5.1.2 Weight of the Each Edit Operation

We determined the weight of each operation as shown in Table 1.

In calculating a MCD from an edit script, it is more realistic to use flexible values

rather than fixed values for weight of INS and UPD, since the weight shows the effort to

modify one class to another. In regard to UPD, major differences in the classes require

a large effort in comparison to the small differences requiring a small effort in a class

modification in a class modification. Similarly in INS, an insertion of large class with

many attributes and operations requires a large effort.

In order to realize the flexibility, we use the weight of UPD between the nodem and

n as Diff(m,n) as defined in Equation 1. For class diagrams, INS shows that one class is

created and added. Thus, the cost of INS needs to reflect the followings:

1. The cost of class creation, and

2. The cost of modifying inner information.

Therefore we determined the weight of INS shown in Table 1.∅ shows the empty node,

which contains no attribute and operation. We assume that the weight of DEL is similar

to the cost of creating a class. The weight of MOV is lower than DEL. MOV refers to a

Table 1: Weight of Each Edit Operation

Edit Operation Weight

INS 10 + InnerChange(m, ∅)
DEL 10

MOV 5

UPD Diff (m,n)

MOV.UPD 5 + Diff (m,n)
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change in the super class of a node. Its effort is lower than creating a class. The cost of

UPD should reflect the difference between classes. Therefore we use the value Diff(m,n),

proposed in Section 3.4.2. MOV.UPD is simply calculated by adding the cost of MOV

and UPD.

5.1.3 Result

The measurement result of the MCD and the modification effort are shown in Figure

22. The x-axis shows the amount of MCD and y-axis shows the effort of modifying class

diagram in each phase. Analyzing their correlation, the correlation coefficient between

them is 0.882. Thus MCD and class diagram modification effort may have a strong corre-

lation. However, as the result of testing the validity of the correlation coefficient by t-test,

it rejects its null hypothesis by 5 percent of a significance level. It is because the number

of target data is too small.

The result shows the MCD may be used in estimating the effort for modifying class

diagrams, however, the evidence provided is not sufficient to make an conclusion. It

is necessary to apply MCD method on more software development data to confirm the

validity of this method.
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Table 2: Running Time for Class Diagram Measurement

Step Times[times] Amout of Time[sec] Ave. time[sec/times]

Step 1 14 20.9 1.5

Step 2 8 18.8 2.4

Step 3 5 13.9 2.8

Step 4 4 11.5 2.9

Amount 31 65.1 2.1

5.2 Running Time

We measure running time of our tool for the class diagrams. The target files are class

diagrams used in Section 5.1.1. Table 2 shows the running time of each phase.

This class diagram finally have a total of 361 classes. Thus the scale of the project is

middle1. Commonly, measurement requiresO(n2) time. However, although the number

of classes in the final class diagram is three times larger than that of in the first class

diagram (91 classes), the average running time in phase 4 (2.9 sec.) is less than half in

phase 1 (1.5 sec.) This is due to the optimization of the original MHDIFF described in

Section 3.8.

The result shows the time spent for measuring the MCD is sufficiently low. Moreover,

the measurement requires less thanO(n2) times.

1In [16], the median lines of code for the similar type of software is 64000. This project finally imple-

ment around 200 classes, and the lines of code are 26033. If the developers implement all classes, lines of

code are around 47000. This result shows the scale of project is middle.
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6 Application

The metric measured by proposed method is applicable to some areas. In this section,

we introduce two application areas.

6.1 Gap between Design and Implementation

It becomes different the designs of a system and its implementation during the devel-

opment process[17]. It is because design reengineering is difficult[18], for reengineering

requires a recognition of the current design and an accurate implementation, or even in

some software developments, developers choose not to modify the designs.

One of the reasons against modifying the design is its high cost. However, when

developers conduct software maintenance (especially in adaptive maintenance), they can-

not utilize the design documents since they are different from their implementation. Gap

between design and implementation result in maintenance difficult or even impossible.

Regarding an agile development, frequent iteration is a key to minimize risks[19].

This means the software is changed in short terms. That is, design documents and their

implementation become different in each iteration, however, when the source code modi-

fication in one iteration only affects trivial changes to the design document, the developers

need not to change it.

The problems would be solved if one can detect the proper timing of modifying design

documents. The developers can concentrate on development until the adequate gap be-

tween design and implementation occurs. When the modification is under the threshold,

it means the gap between them is not so high.

In order to accomplish it, first, we enabled the tool to measure a difference between

design and implementation. Abstracting source code into class diagram information is

realized by MASU[20].

Taguchi shows the result of application in [21]. The result shows that the high MCD

from a design and implementation reveal the difference in design and implementation.

6.2 Estimation of the Functional Modification

Quantitative analysis is a key to effectively manage the software development. To an-

alyze the software development quantitatively, the managers should acquire the progress

information. However, if the development are taken place in remote area, it is difficult to
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grasp the progress accurately. When the manager has access to only weekly report and

source code from the software configuration management, it is also difficult to grasp it

accurately. If the number of implemented function can be estimated from source code, it

can be used to monitor a daily progress in functional level abstraction. In this way, we

may estimate the progress of implementation by using the MCD.

In [21], Taguchi applies the MCD to some open source projects to evaluate its appli-

cability as a metric to estimate functional modification. The result showed the MCD is

more efficiently estimate the number of implemented functions than the modifications of

source code and the number of classes.
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7 Limitations

The proposed method has some limitations.

First, it does not have a sensibility to detect all modifications in a class diagram. Since

it does not use all information included in a class diagram, the modification value zero

does not always ensure the input class diagrams are the same. For example, when the input

class diagrams differ only in some relations e.g. realization or association, the MCD is

calculated to be zero.

Second, the weight of each edit operation in the proposed method has no scientific or

statistical evidence. The weights are determined based on our experience in designing a

class diagram and the weights determined in MHDIFF. The weights should be determined

based on a lot of domain specific data in actual software development projects. However,

researchers cannot easily obtain the actual data, since the data are often proprietary in-

formation. Due to the difficulties in obtaining actual data, we determined the weights of

each edit operation intuitively based on the ideas referred in Section 5.1.2 and evaluate

the proposed method.

Third, suppose thatm ∈ T1 is a node with many children (we refer it asflower), andm

is modified largely inm′ ∈ T2. This situation forces the nodem DEL, andm′ INS since

the cost Diff(m,m′) is larger than DEL+ INS. In this situation, large MCD is produced

even if the modified class between two class diagrams is onlym, for the parent ofC(m)

is not the same; a newly added node is regarded as a alien node. Generally, the flower

classes in the first input class diagram are largely modified, therefore, the method produce

large MCD, for the children of the flower is detected as being moved (see Figure 23). We

are not able to prevent this problem, for the method cannot know the children of flowers

in the first class diagram remain in the same position in the second class diagram without

having perfect matching of the bipartite graph. To prevent the problem, the method needs

to know that the flower will be deleted before assigning costs to edges. Therefore the

problem cannot be solved.

Forth, MCD method does not determine the importance of classes, therefore, modi-

fication on important and less important classes are regarded as having the same value.

Intuitively, the modification on important classes e.g. Object class for Java language, is

expected to produce higher MCD compared with less valuable classes e.g. classes defined

by each developer. This problem may be solved if a depth of node in trees is considered
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and is included in weighting process. We consider this potential as one of the important

work in MCD improvement.
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8 Related Work

Some researchers study the method to detect changes between two class diagrams.

Dirk Ohst et al. developed a method to visualize the changes between UML docu-

ments[22]. This method uses an identifier assigned in each element in diagrams. Thus

we are not able to use this algorithm since we are also interested in measuring the class

diagram modification between files such as source code. Martin Girschick proposes an al-

gorithm to visualize the difference between class diagrams[23], called UMLDiffcld. This

algorithm is based on MHDIFF, which is the same algorithm in our proposed method.

UMLDiff cld differs from the MCD method in detecting other modifications,add, delete,

rename, move, cloneandmodify property. Moreover, UMLDiffcld visualizes the differ-

ences; our method output into a scalar value. Christoph Treude et al.[24] developed a new

algorithm SiDiff. SiDiff calculates differences between class diagrams quickly. First, it

calculates hashes of the elements, second constructs high-dimensional search trees called

S3V tree which is similar to LSD Tree[25]. Finally SiDiff searches the most similar ele-

ment for all elements. Using S3V tree, one can detect some elements that are similar to

the target elements without investigating all the elements. Udo Kelte et al.[26] presents

the difference algorithm for each UML diagrams. It translates input diagrams into unique

data model and compare the elements. It does not use the unique class identifier assigned

by some modeling tools.

Studies on measuring the modification between given two classes has not been con-

ducted as we know. However, modification between source code is measured widely in

practice. In [3], Aman et al. show the example to measure the modification between

source code using Unix diff and detect the class to be widely modified or not.

Some of CK metrics[5] are measured from the relations between classes. However,

since they are values for estimating the complexity of the class, the aspect of the metric is

different.

In [27], Beat Fluri et al. shows the method of extracting the meaningful source code

changes. They first abstract source code into AST(Abstract Syntax Tree). Next, they

obtain the edit script of two AST derived from target source code using LaDiff[28]. Fi-

nally they transform the subsequence of edit script intoChange Types. The rules of the

transformations are defined in [29]. This research is correlated to our research, because

both researches first transform the input files into trees and then obtain differences. The
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distinction is the abstraction level of the target. The method abstracts source code into

AST, however, our research abstracts class diagram into unordered tree.

With respect to the algorithm to use in our method, there are some selection. Similar-

ity Flooding[30] is a matching algorithm which compares two graphs. It is applicable to

graphs, therefore, we can use all relations in class diagram e.g. association and compo-

sition which is not used in our method. However, in order to detect the differences with

meaningful operations, we cannot select the algorithm. We chose MHDIFF, which detect

structurally meaningful changes between two trees and output a edit script, a sequence to

edit operations which change one tree to another.
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9 Conclusion

This paper proposed a method for measuring modifications of given two class dia-

grams (MCD). The MCD is a metric which is designed to estimate the effort for modi-

fying one class diagram to another. MCD can be obtained by three steps. First, the class

diagrams are transformed into trees. Second, the sequence of edit operations which trans-

forms one tree to another are obtained. Finally, by weighting each edit operation and

accumulating it, the MCD is obtained.

We represented how to implement the proposed method and the idea for optimization.

Then, we evaluated the MCD in terms of its validity to estimate the class modification ef-

fort and its running time. The result showed the MCD probably can be used in estimating

the class modification effort. We also referred to the application area of the MCD.

As for the future works, we will apply MCD method to the other development project

and verify the validity. Also, we will continue to improve the approaches used in MCD

method. Fluri, B. et al.[29] studied the classifications of the change types by analyzing

a sequence of edit operations. The same idea can be used to improve the MCD method.

For example, one node which is added right after it is deleted is found, we regard it as

modification.
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A Calculation Cost

Supposep of nodes are completely the same i.e. the nodes have the same inner in-

formation and the same parent betweenT1 andT2, applying the method described in

Section 3.4, the constructed graph is like Figure 9. In this graph, the number of edges

are{N(T1) +N(T2)}2, however, applying the method described in Section 4.2, the con-

structed graph is like Figure 19. This graph is constructed first generates edges between

completely the samep nodes, and the next, constructs complete bipartite graph by the

method in Section 3.4 for other nodes. Therefore the number of edges arep+ {(N(T1)−
p) + (N(T2) − p)}2. DefineN(T1) + N(T2) = A, the number of edges created by the

method are

A2 (4)

and

A2 − 4pA+ 4p2 + p (5)

, respectively. The proposed method targets for two versions of class diagrams in the

same project. Therefore, the difference between them are not so high. In the following,

we classify input files as (1) large class diagrams, (2) small class diagrams and discuss

individually.

A.1 Large class diagrams

In this case, the target class diagrams include many classes. Thus we can ignore the

difference between the number of classes in each class diagram. Let the number of classes

in each class diagrams ben, and the modified classes be a constant numberq(≪ n). The

reason why the number of modified classes are a constant is based on the hypothesis

that the number of modified classes in the same term is constant. For example, the class

diagram which consists of 1000 classes is modified for 10 classes in a day. What if

the class diagram consists of 100000 classes. Does the number of classes which will be

modified in one day scale the size of the class diagram i.e. 1000? Maybe not. The number

of modified classes in the same term is not affected by the size of the class diagram.

Keep in mindp = n− q, the number of edges in each bipartite graph are

4n2 (6)
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and

4q2 + n− q (7)

, respectively. The dimension of variablen in Equation 7 is 1. Thus the number of edges

is O(n2) andO(n), respectively.

The number of reduced edges are

4n2 − 4q2 − n+ q (8)

A.2 Small class diagrams

In this case, the number of generated edges isO(n2), however, we do not need to

discuss the number of reduced edges rigorously, for the small class diagrams the number

of edges generated in constructing bipartite graph is small and calculation cost is not so

high. Note that the number of edges with optimized method is always lower than the

original one.
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